
Chapter 4

Dependent extremes
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4.1 Introduction

The threshold–based approach to modelling extremes has

obvious practical advantages over the more traditional ‘block

maxima’ approach.

Since extremes are (by their very nature) scarce, a modelling

procedure which allows the inclusion of more data in the

analysis has got to be a good thing.

Indeed, the whole point of a threshold–based analysis is that

we include all extremes in the analysis — extreme in the sense

that the observations used have all exceeded some

pre–determined threshold u.
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4.1 Introduction

Advantages

Data pre–processing dead easy

Estimates with smaller standard errors (including return

levels!)

Narrower confidence intervals (standard or

profile–likelihood based)

Disadvantages

Temporal dependence (e.g. temperature extremes, wind

gusts,...)

Non–stationarity (e.g. trends and seasonal effects)
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4.2 Example: Hourly wind speeds at High Bradfield

Hourly maximum wind gusts (in knots) were collected at High

Bradfield, in the Peak District, over a period of 10 years from

January 1st 2003 to December 31st 2012.

This gives total of 87,672 observations (including any missing

values: 81,835 after the missing values have been removed).

Suppose these hourly observations are in the vector brad in R;

the series without the missing values has been stored in the

vector brad2.
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4.2 Example: Hourly wind speeds at High Bradfield
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4.2 Example: Hourly wind speeds at High Bradfield
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4.2 Example: Hourly wind speeds at High Bradfield

It is clear that we have (fairly strong) dependence between

consecutive wind speeds recordings – even at extreme levels.

How can we proceed?

Ignore this dependence – proceed as normal?

Possible consequence: Standard errors under–estimated

as there are fewer independence observations than the

likelihood assumes

Model this dependence – see Chapter 6

Filter out this dependence
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4.3 Maxima of dependent (but stationary) series

The book by Leadbetter et al. (1983) considers, in great detail,

properties of extremes of dependent processes.

A key result often used is ‘Leadbetter’s D(un) condition’,

which ensures that long–range dependence is sufficiently weak

so as not to affect the asymptotics of an extreme value analysis.

This condition is stated more formally in the definition below.
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4.3 Maxima of dependent (but stationary) series

Definition (Leadbetter’s D(un) condition)

A stationary series X̃1, X̃2, . . . is said to satisfy the D(un)
condition if, for all i1 < . . . < ip < j1 < . . . < jq with j1 − ip > l ,






Pr

{

X̃i1 ≤ un, . . . , X̃ip ≤ un, X̃j1 ≤ un, . . . , X̃jq ≤ un

}

−Pr
{

X̃i1 ≤ un, . . . , X̃ip ≤ un

}

Pr
{

X̃j1 ≤ un, . . . , X̃jq ≤ un

}




≤ α(n, l),

where α(n, l) → 0 for some sequence ln such that ln/n → 0 as

n → ∞.
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4.3 Maxima of dependent (but stationary) series

For sequences of independent variables, the difference in

probabilities in the above expression is exactly zero for any

sequence un.

More generally, we will require that the D(un) condition holds

only for a specific sequence of thresholds un that increases with

n.

For such a sequence, the D(un) condition ensures that, for sets

of variables that are far enough apart, the difference in

probabilities expressed in (4.1), while not zero, is sufficiently

close to zero to have no effect on the limit laws for extremes.
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4.3 Maxima of dependent (but stationary) series

Theorem (Extremes of dependent sequences)

Let X̃1, X̃2, . . . be a stationary series satisfying Leadbetter’s

D(un) condition, and let M̃n = max{X̃1, . . . , X̃n}.

Now let X1,X2, . . . be an independent series with X having the

same distribution as X̃ , and let Mn = max{X1, . . . ,Xn}. Then if

Mn has a non–degenerate limit law given by

Pr {(Mn − bn)/an ≤ x} → G(x), it follows that

Pr
{

(M̃n − bn)/an ≤ x
}

→ Gθ(x) (4.2)

for some 0 ≤ θ ≤ 1.
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4.3 Maxima of dependent (but stationary) series

The parameter θ is known as the extremal index, and

quantifies the extent of extremal dependence

θ = 1: completely independent process

θ → 0: increasing levels of (extremal) dependence
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4.3 Maxima of dependent (but stationary) series

Since G in the above theorem is necessarily an extreme value

distribution, and due to the max–stability property (see

Leadbetter et al., 1983), then the distribution of maxima in

processes displaying short–range temporal dependence

(characterised by the extremal index θ) is also a GEV

distribution.

The powering of the limit distribution by θ only affects the

location and scale parameters of this distribution.
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4.3 Maxima of dependent (but stationary) series

What does this all mean in practical terms?

If maxima of a stationary series converge in distribution

(and we know they do – the GEV), and

if Leadbetter’s D(un) condition holds (i.e. long–range

dependence is negligible), then

the limit distribution is related to that of the independent

series...

...in fact, it’s Gθ(x), where G is the GEV for the

independent series (with parameters µ, σ and ξ)
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4.3 Maxima of dependent (but stationary) series

Further, it can be shown that

Gθ(x) = exp

{

−

[

1 + ξ

(

x − µ

σ

)]

−1/ξ
}θ

= exp

{

−

[

1 + ξ

(

x − µ∗

σ∗

)]

−1/ξ
}

,

where µ∗ = µ− σ
ξ

(

1 − θ−ξ
)

and σ∗ = σθξ.
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4.3.1 Modelling block maxima

We can proceed as we did in Chapter 2 – even in the presence

of dependence...

... provided long range dependence is weak (i.e. Leadbetter’s

D(un) condition can be assumed)

The only difference is the parameters of the GEV:

(µ, σ, ξ) −→ (µ∗, σ∗, ξ).

Since we estimates these parameters anyway, who cares?!
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4.3.2 Modelling threshold exceedances

Though the modelling procedure for fitting the GEV to a set of

annual maxima is unchanged for series which display

short–term temporal dependence, some revision is needed of

the threshold exceedance approach.

If all threshold exceedances are used in our analysis, and the

GPD fitted to the set of threshold excesses, the likelihoods we

use will be incorrect since they assume independence of

sample observations.
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4.3.2 Modelling threshold exceedances

In practice, several techniques have been developed to

circumvent this problem, including:

1. filtering out an (approximately) independent set of

threshold exceedances

2. fitting the GPD to all exceedances, ignoring dependence,

but then appropriately adjusting the inference (usually an

inflation of standard errors) to take into account the

reduction in information

3. Explicitly modelling the temporal dependence in the

process
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4.3.2 Declustering

Since the mid–1990s, various methods for declustering a

series of extremes, to extract a set of independent extremes,

have been discussed in the literature.

The most natural, commonly–used method of declustering is

that of runs declustering. This is how it works:

1. Choose an auxiliary ‘declustering parameter’ (which we

call κ)

2. A cluster of threshold excesses is then deemed to have

terminated as soon as at least κ consecutive observations

fall below the threshold

3. Go through the entire series identifying clusters in this way

4. The maximum (or ‘peak’) observation from each cluster is

then extracted, and the GPD fitted to the set of cluster

peak excesses.
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4.3.2 Declustering

This approach is often referred to as the peaks over threshold

approach (POT, Davison and Smith, 1990) and is widely

accepted as the main pragmatic approach for dealing with

clustered extremes.

Easy to implement, but if:

κ is too small, the cluster peaks will not be far enough

apart to safely assume independence

κ is too large, there will be too few cluster exceedances on

which to form our inference
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4.3.2 Declustering

It has also been shown (Fawcett and Walshaw, 2012)1 that

parameter estimates can be sensitive to the choice of κ, and κ
is all too often chosen arbitrarily.

1Estimating return levels from serially dependent extremes,

Environmetrics 23(3), pp 272–283
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4.3.2 Declustering

Using κ = 2:
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4.3.2 Declustering

Using κ = 2:
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4.3.2 Declustering

Using κ = 2:
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4.3.2 Declustering

Using κ = 2:
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4.3.2 Declustering

Using κ = 4:
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4.3.2 Declustering

Using κ = 4:
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4.3.2 Declustering

Using κ = 4:
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4.3.2 Declustering

Using κ = 10:
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4.3.2 Declustering

Using κ = 10:
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4.3.2 Declustering

Suppose we use κ = 10.

Obviously, we wouldn’t want to identify clusters by hand for the

full Bradfield wind speed series (recall that we have 10 years of

hourly observations!).

Unfortunately, there is no function in ismev to perform runs

declustering.

I have written the following R code to perform this declustering,

for κ = 10.
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4.3.2 Declustering

Class demonstration in R
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4.4 Words of warning (Fawcett & Walshaw, 2012)
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4.4 Words of warning (Fawcett & Walshaw, 2012)
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4.4 Words of warning (Fawcett & Walshaw, 2012)
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4.4 Words of warning (Fawcett & Walshaw, 2012)
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4.4 Words of warning (Fawcett & Walshaw, 2012)
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4.4 Words of warning

Similar to the block maxima approach, this is wasteful of

data! We are throwing away observations we have

identified as extreme!

How do we choose κ? Estimates of GPD parameters –

and return levels/confidence intervals for return levels –

can be sensitive to the choice of κ (often hugely so)

What if we are interested in the dependence?
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