
Chapter 2

Classical models for extremes

MAS8306: Environmental Extremes



2.1 Background and theoretical motivation

Suppose that X1,X2, . . . ,Xn is a sequence of independent and

identically distributed (IID) random variables with common

distribution function F .

One way of characterising extremes is by considering the

distribution of the maximum order statistic

Mn = max {X1,X2, . . . ,Xn} . (2.1)
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2.1 Background and theoretical motivation

Think back to the example in Section 1.4 concerning sea

surges at Wassaw Island.

Sea surge measurements were taken every hour; for each year

(1955–2004) you were presented with the annual maximum

sea surge.

Thus, here n = 365 × 24 = 8760 (for non–leap years, anyway),

and we might use the notation:

M8760,i , i = 1, . . . ,50,

to denote, generally, the 50 annual maxima given in Table 1.1

(of course, for leap years the notation would be M8784,i).
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2.1 Background and theoretical motivation

The assumption of IID might be reasonable here.

For example, each annual maximum is likely to occur during the

hurricane season (which is usually at its peak in

September/October), and so it seems likely that maximum

hourly observations from one year to the next will be far enough

apart to be independent.

Issues of non–stationarity, however, might arise in long–range

datasets owing to the effects of climate change, for example,

and we will come back to this in Chapter 4.
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2.1 Background and theoretical motivation

Assuming, for now, that our maxima are IID, how can we obtain

the distribution of Mn?
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2.1 Background and theoretical motivation

This is trivial (in principle), since

Pr {Mn ≤ x} = Pr {X1 ≤ x ,X2 ≤ x , . . . ,Xn ≤ x}
= Pr {X1 ≤ x} × Pr {X2 ≤ x} × · · · × Pr {Xn ≤ x}
= {F (x)}n .

However, in practice the distribution function F is unknown.

This leads to an approach based on asymptotic arguments –

specifically, we look for limiting distributions for {F (x)}n as

n → ∞ — this is where the field of Extreme Value Theory was

born.
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2.1.1 A brief history of Extreme Value Theory

One of the earliest books on the statistics of extreme values is

E.J. Gumbel (1958, see Figure 2.1).

Gumbel traces the origins back to 1709, when N. Bernoulli

considers the problem of estimating the age of the longest

survivor in a group of people.
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2.1.1 A brief history of Extreme Value Theory

Research into extreme values as a subject in it’s own right

began much later, between 1920 and 1940, when work by E.L.

Dodd, M. Fréchet, E.J. Gumbel, R. von Mises and L.H.C.

Tippett investigated the asymptotic distribution of the largest

order statistic.

This led to the main theoretical result: the Extremal Types

Theorem (see Section 2.1.2), which was developed in stages

by Fisher, Tippett and von Mises, and eventually proved in

general by B. Gnedenko in 1943.

MAS8306: Environmental Extremes



2.1.1 A brief history of Extreme Value Theory

Until 1950, development was largely theoretical.

In 1958, Gumbel started applying theory to problems in

engineering.

In the 1970s, L. de Haan and J. Pickands generalised the

theoretical results, giving a better basis for statistical models.

MAS8306: Environmental Extremes



2.1.1 A brief history of Extreme Value Theory

Since the 1980s, methods for the application of Extreme Value

Theory have become much more widespread.

Current researchers who have played a significant role in

developing applications and methodology include Richard

Smith, Anthony Davison, Jonathan Tawn and Stuart Coles.
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2.1.1 A brief history of Extreme Value Theory

There are still gaps between the theory and the models, and

also between the models and common practice in applications

– this is where our work fits in (Fawcett and Walshaw).
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2.1.2 The Extremal Types Theorem

The obvious questions now are:

What possible distributions might be considered

candidates for the distribution for Mn = {F (x)}n as

n → ∞?

Can we formulate this set of candidate distributions into a

single class – say G – which is independent of F?

Can we estimate the distribution of Mn using G, without

any reference to F?
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2.1.2 The Extremal Types Theorem

Clearly, the limiting distribution of Mn is degenerate:

The distribution converges to a single point on the real line

with probability 1

In this case, this single point is the upper endpoint of F

In some applications, this will be ∞
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2.1.2 The Extremal Types Theorem

This is analogous to the sample mean X̄ converging to the

population mean µ with certainty in the Central Limit

Theorem.

Here, the degenerate limit is prevented by allowing a linear

rescaling, so that

X̄ − bn

an

D−−−→ N(0,1)

where bn = µ and an = σ/
√

n, where σ and n are the

population standard deviation and sample size, respectively.

Can we apply a similar linear rescaling to Mn to avoid

convergence of the distribution to a single point?
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2.1.2 The Extremal Types Theorem

The answer, of course, is “yes”, and is provided by the main

result in classical extreme value theory – the Extremal Types

Theorem – a result for the maximum Mn which is analogous to

the Central Limit Theorem for the mean µ.
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2.1.2 The Extremal Types Theorem

Theorem (The Extremal Types Theorem)

If there exist sequences of constants an > 0 and bn such that,

as n → ∞,

Pr {(Mn − bn)/an ≤ x} → G(x) (2.2)

for some non–degenerate distribution G, then G is of the same

type as one of the following distributions:

I : G(x) = exp {−exp(−x)} −∞ < x < ∞; (2.3)

II : G(x) =

{

0 x ≤ 0

exp(−x−α) x > 0, α > 0;
(2.4)

III : G(x) =

{

exp {−(−x)α} x < 0, α > 0

1 x ≥ 0.
(2.5)
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2.1.2 The Extremal Types Theorem

The three types of distribution – I, II and III – have become

known as the Gumbel, Fréchet and Weibull types

(respectively), and are known collectively as the extreme value

distributions.

For both the Gumbel and Fréchet distributions the limiting

distribution G is unbounded; that is, the upper–endpoint tends

to ∞. Of the two, the Fréchet distribution gives heavier tails.

For the Weibull distribution, the limiting distribution is bounded.
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2.1.2 The Extremal Types Theorem

It should be noted that this Theorem does not ensure the

existence of a non–degenerate limit for Mn.

Nor does it specify which of types I, II or III is applicable if a

limit distribution does exist (i.e. in which domain of attraction

the distribution of G lies).

However, when such a distribution does exist, we find that, by

analogy with the Central Limit Theorem, the limiting distribution

of sample maxima follows one of the distributions given by the

Extremal Types Theorem, no matter what the parent

distribution F .

MAS8306: Environmental Extremes



2.1.2 The Extremal Types Theorem

So we know that
Mn − bn

an

D−−−→ G,

where – if it exists – G is given by one of the extreme value

distributions.

But how do we know which one of these distributions to use?
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2.1.3 The Generalised Extreme Value distribution

In practice, working with — and having to choose between —

three distributions is inconvenient.

However, there exists a parameterisation which encompasses

all three types of extreme value distribution.
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2.1.3 The Generalised Extreme Value distribution

Von Mises (1954) and Jenkinson (1955) independently

derived the generalised extreme value distribution (GEV),

often denoted G(µ, σ, ξ), with CDF:

G(x ;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

x − µ

σ

)]−1/ξ

+

}

, (2.6)

where a+ = max(0,a). The situation where ξ = 0 is not defined

in (2.6), but is taken as the limit as ξ → 0, given by

G(x ;µ, σ) = exp

{

−exp

(

−
[

x − µ

σ

])}

. (2.7)
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2.1.3 The Generalised Extreme Value distribution

The parameters µ (−∞ < µ < ∞), σ (> 0) and ξ (−∞ < ξ < ∞)

are location, scale and shape parameters, respectively.

Shape parameter ξ:

ξ = 0: Gumbel (type I extreme value) distribution

ξ > 0: Fréchet (type II extreme value) distribution

ξ < 0: Weibull (type III extreme value) distribution

Through inference for ξ, the data themselves determine

the most appropriate type of tail behaviour – no need for

any a priori judgements

The standard error for ξ accounts for our uncertainty in

choosing between the 3 EV distributions
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2.1.3 The Generalised Extreme Value distribution
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2.1.3 The Generalised Extreme Value distribution

But what about the constants an and bn?

We know that

Mn − bn

an

D−−−→ G(µ, σ, ξ), as n → ∞.

After some algebra, it turns out that

Mn
D−−−→ G(µ∗, σ∗, ξ), approximately, as n → ∞,

with an and bn being absorbed into µ∗ and σ∗.
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2.1.3 The Generalised Extreme Value distribution

Since the GEV parameters need to be estimated anyway, in

practice we just ignore the normalisation constants and fit the

GEV directly to our set of maxima Mn,i .

However, before we consider applications of the GEV to real

data, let us first consider some theoretical examples which

demonstrate that, with careful choices of an and bn, one of the

three extreme value distributions is always achieved when the

parent distribution F is known.
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Example 2.1

Suppose X1,X2, . . . ,Xn is a sequence of independent Exp(1)
variables, that is

F (x) = 1 − e−x , x > 0.

By letting an = 1 and bn = log n, show that the limit distribution

of (Mn − bn)/an is of extreme value type, and identify the

distribution.
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Example 2.1: Solution (1/2)

We want the distribution of (Mn − bn)/an, i.e.

Pr

{

Mn − bn

an
≤ z

}

= Pr

{

Max(X1, . . . ,Xn)− bn

an
≤ z

}

= Pr

{

X1 − bn

an
≤ z, . . . ,

Xn − bn

an
≤ z

}

= Pr {X1 ≤ anz + bn} × · · ·

=
[

1 − e−(anz+bn)
]n

,

as X1, . . . ,Xn are I.I.D.
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Example 2.1: Solution (2/2)

Now using an = 1 and bn = log n, we get

[

1 − e−(z+log n)
]n

=
[

1 − e−zelog n−1
]n

=
[

1 − n−1e−z
]n

.

From Stage 1 methods courses, you should know that

exp(y) = limn→∞

(

1 +
y

n

)n

.

Thus, we have

[

1 +
−e−z

n

]n

−→ exp
(

−e−z
)

, as n → ∞.

This is the Gumbel (type I extreme value) distribution.
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Example 2.2

Suppose X1,X2, . . . ,Xn is a sequence of independent

Fréchet(1) variables, that is

F (x) = e−1/x , x > 0.

By letting an = n and bn = 0, show that the limit distribution of

(Mn − bn)/an is of extreme value type, and identify the

distribution.
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Example 2.2: Solution (1/1)

Following the solution to Example 2.1, we find:

Pr

{

Mn − bn

an
≤ z

}

= Pr {X1 ≤ anz + bn} × · · ·

=

[

exp

{

− 1

anz + bn

}]n

.

Letting an = n and bn = 0 gives

[

exp

{

− 1

nz

}]n

= e−1/z ,

which is the Fréchet (type II extreme value) distribution with

α = 1, i.e. a unit Fréchet distribution.
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2.1.4 Typical application – 1: Data pre–processing

Choose your block length n (usually the number of

observations in a calendar year)

Discard all but the largest observation within each block

n too small: limiting arguments will not hold

n too large: not enough maxima to work with!
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2.1.4 Typical application – 2: Parameter estimation

Fit the GEV to your set of block maxima Mn,i – numerical

maximum likelihood estimation is the most common approach

here.

Assuming independence, we form the likelihood in the usual

way:

L(µ, σ, ξ;x) =

m
∏

i=1

g(xi ;µ, σ, ξ),

where g is the GEV probability density function and can be

found, after differentiation of the distribution function (2.6), to be

1

σ

[

1 + ξ

(

x − µ

σ

)]−(1/ξ+1)

+

exp

{

−
[

1 + ξ

(

x − µ

σ

)]−1/ξ

+

}

.

(2.8)

(try this yourself!)
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2.1.4 Typical application – 2: Parameter estimation

Use the GEV probability density function in (2.8) to form the

likelihood function L(µ, σ, ξ;x). Also, obtain the GEV

log–likelihood function ℓ(µ, σ, ξ;x) and the corresponding (log)

likelihood equations.
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2.1.4 Typical application – 2: Parameter estimation

The likelihood is given by

L(µ, σ, ξ;x) =

m
∏

i=1

1

σ

[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

+

×exp

{

−
[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

}
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2.1.4 Typical application – 2: Parameter estimation

The log–likelihood is given by

ℓ(µ, σ, ξ;x) =

m
∑

i=1

log σ−1 +

m
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

= −mlog σ − (1/ξ + 1)

m
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

.
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2.1.4 Typical application – 2: Parameter estimation

The (log)–likelihood equations are ∂ℓ
∂µ = ∂ℓ

∂σ = ∂ℓ
∂ξ = 0. For

example:

∂ℓ

∂µ
=

ξ + 1

σ

m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1

+
1

σ

m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−(1/ξ+1)

= 0

The other two (log)–likelihood equations would be found in

exactly the same way.
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2.1.4 Typical application – 2: Parameter estimation

How would you use the (log) likelihood equations in order to

obtain maximum likelihood estimates of µ, σ and ξ?

Why can’t we obtain closed form solutions for µ̂, σ̂ and ξ̂?

How can we get around this?
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2.1.4 Typical application – 2: Parameter estimation

The next step would be to replace µ, σ and ξ with their

corresponding estimators µ̂, σ̂ and ξ̂ (respectively), and then

solve for µ̂, σ̂ and ξ̂.

In fact, for the GEV there are no closed–form solutions for µ̂, σ̂
and ξ̂ – the (log) likelihood equations cannot be solved

analytically.

We can get around this by adopting a numerical method to

obtain (approximate) solutions to the (log) likelihood equations

– R uses a Newton–Raphson type algorithm.
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2.1.4 Typical application – 3: Model adequacy

As with all statistical models, there are various

goodness–of–fit properties that should be considered to

check the overall adequacy of the fitted GEV.

These include probability plots, quantile–quantile (Q-Q

plots) and simply plotting a histogram of the data against the

fitted density.

Again, these will be reviewed shortly via a real–life data

demonstration in R.
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2.1.4 Typical application – 4: Return level estimation

As discussed in Section 1.3, interest usually lies not in

estimates of the GEV parameters themselves, but in how we

can use the fitted model to estimate other quantities – such as

The height of a sea wall to protect against the once in a

hundred year sea–surge;

The “fifty year wind speed” to provide new structures

enough protection against wind damage.
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2.1.4 Typical application – 4: Return level estimation

Such quantities, in extreme value terminology, are usually

referred to as return levels.

If we have faith in our fitted model being suitable beyond the

range of our observed data, we can estimate the r–year return

level zr for any period by setting the GEV distribution function

equal to 1 − 1/r and solving for x = ẑr (provided we have

annual maxima).
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2.1.4 Typical application – 4: Return level estimation

For example, suppose we fit the GEV to the set of annual

maxima given in Table 1.1 and obtain estimates of the location,

scale and shape as µ̂, σ̂ and ξ̂ (respectively).

Suppose further that the authorities require an estimate of z100,

the sea surge we might expect to be exceeded once in a

hundred years.

Then we can write down the following probability statement:

Pr(annual maximum > z100) =
1

100
,

i.e.

1 − Pr(annual maximum ≤ z100) =
1

100
. (2.9)
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2.1.4 Typical application – 4: Return level estimation

Now the left–hand–side of (2.9), in terms of our fitted GEV, is

1 − G(ẑ100; µ̂, σ̂, ξ̂),

giving

1 − exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]−1/ξ̂
}

= 0.01 i.e.

exp

{

−
[

1 + ξ̂

(

ẑ100 − µ̂

σ̂

)]−1/ξ̂
}

= 0.99.
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2.1.4 Typical application – 4: Return level estimation

Solving for ẑ100 gives an estimate of the 100–year return level

as

ẑ100 = µ̂+
σ̂

ξ̂

[

(−log(0.99))−ξ̂ − 1
]

;

more generally, estimates of the r–year return level zr are given

by

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1

]

. (2.10)
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2.1.4 Typical application – 4: Return level estimation

Care needs to be taken when ξ = 0; in this case, as with

forming the likelihood in the first place, we should work with the

limiting form (as ξ → 0) of the distribution function (i.e. Equation

(2.7)).

Of course, a point estimate of the return level alone is not

enough; any estimate requires a corresponding standard error.

To obtain standard errors for return levels, we can use the delta

method.

However, as we shall see later, we do not recommend using

these standard errors to form confidence intervals for zr .

MAS8306: Environmental Extremes



2.2 Sea surge at Wassaw Island

Recall the example from Section 1.4.

The southeastern coast of the USA is an area often hit by

hurricanes

The historic city of Savannah, Georgia, has suffered direct

hits from 22 Hurricanes since 1871

The city can expect to ‘brushed’ or directly hit once every

other year

Predictions show that the city is three years overdue it’s

next direct hit

8.5 8.9 9.1 8.9 8.4 9.7 9.1 9.6 8.7 9.3
9.6 9.3 8.7 9.0 8.8 8.9 8.9 12.2 7.8 7.7

8.3 8.1 7.3 6.8 6.7 7.3 7.6 8.2 8.6 9.8

9.5 7.4 7.3 10.2 10.3 10.4 8.8 9.7 10.0 10.8
11.1 12.7 11.5 11.8 12.6 13.0 10.5 10.5 10.0 9.4
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2.2 Sea surge at Wassaw Island

Recall that, in Chapter 1, we tried to estimated quantities

beyond the range of our observed data.

For example, using simple empirical arguments,

Pr(Sea surge exceeds 14 feet) = 0,

simply because, over the time-frame we have data for, we have

not observed such an extreme event.

Does this really mean this event is impossible?
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2.2.1 Data pre–processing

None necessary — we are given a set of annual maxima (in the

first computer practical session, we will consider how to

pre–process a dataset to obtain the set of block maxima).

Figure 2.2 shows a time series plot and histogram of the 50

annual maxima:

No obvious trend in our dataset

Issue of dependence?
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2.2.1 Data pre–processing

In R:

> wassaw=scan(’wassaw.txt’)

Or:

> wassaw=c(8.5, 8.9, ..., 9.4)
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2.2.1 Data pre–processing

In R:

> year=seq(1955,2004,1)

# Sequence of values from 1995 to 2004

Then, to produce the plots shown in Figure 2.2:

> par(mfrow=c(1,2))

# Partitions the plotting space

> plot(wassaw∼year,type=’b’)
> hist(wassaw)
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2.2.1 Data pre–processing
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2.2.2 Fitting the GEV: Parameter estimation

We now use R to maximise

ℓ(µ, σ, ξ;x) = −50log σ − (1 + 1/ξ)

50
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]

+

−
50
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

with respect to µ, σ and ξ.

In R:

> theta=c(mean(wassaw), sd(wassaw), 0.1)

# Sets up parameter vector θ = (µ, σ, ξ)
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]
sigma=theta[2]
xi=theta[3]
m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset–mu)/sigma)))
if(m<0.00001)return(as.double(1000000))
if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))
if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=–length(dataset)*log(sigma)

+ –sum((dataset–mu)/sigma)

+ –sum(exp(–((dataset–mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{

loglik=–length(dataset)*log(sigma)

+ –(1/xi+1)*sum(log(1+(xi*(dataset–mu)/sigma)))

+ –sum((1+(xi*(dataset–mu)/sigma))**(–1/xi))}

return(-loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

> gev.loglik=function(theta){
mu=theta[1]

sigma=theta[2]

xi=theta[3]

m=min((1+(xi*(dataset-mu)/sigma)))

if(m<0.00001)return(as.double(1000000))

if(sigma<0.00001)return(as.double(1000000))

if(xi==0){
loglik=-length(dataset)*log(sigma)

+ -sum((dataset-mu)/sigma)

+ -sum(exp(-((dataset-mu)/sigma)))}
else{
loglik=-length(dataset)*log(sigma)

+ -(1/xi+1)*sum(log(1+(xi*(dataset-mu)/sigma)))

+ -sum((1+(xi*(dataset-mu)/sigma))**(-1/xi))}
return(–loglik)}
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2.2.2 Fitting the GEV: Parameter estimation

In R:

> dataset=wassaw

# Attaches the sea–surge extremes to “dataset”

> nlm(gev.loglik,theta)

# Minimisation routine

$minimum

[1] 89.52412

$estimate

[1] 8.7112735 1.3114836 -0.1084451

$gradient

[1] 3.350727e-06 2.316675e-05 2.145839e-06

$code

[1] 1
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2.2.2 Fitting the GEV: Standard errors

In R:

> A=nlm(gev.loglik,theta,hessian=TRUE)

# Stores output, including Hessian, in A

Now:

> A

...

$hessian

[,1] [,2] [,3]

[1,] 27.375570 -4.837481 18.06140

[2,] -4.837481 56.151740 29.89004

[3,] 18.061397 29.890039 118.18086
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2.2.2 Fitting the GEV: Standard errors

The Hessian is the matrix of second–order partial derivatives.

In the case of our log–likelihood function, this is

Hessian =

















∂2ℓ
∂µ2

∂2ℓ
∂σ∂µ

∂2ℓ
∂σ2

∂2ℓ
∂ξ∂µ

∂2ℓ
∂ξ∂σ

∂2ℓ
∂ξ2

















= −Iobs,

evaluated at the MLEs.

However, since gev.loglik returns the negative

log–likelihood, in this example

Hessian = Iobs!!
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2.2.2 Fitting the GEV: Standard errors

Recall from MAS2302 that inversion of the Information matrix

gives the Variance–Covariance matrix.

Thus, we have a 3 × 3 matrix to invert!

You should be able to do this (e.g. assignments), but let’s use

the solve command in R.
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2.2.2 Fitting the GEV: Standard errors

In R, solve will solve the system of equations:

aX = b.

In our example, a = Iobs. Omitting b in the execution of solve

assumes the identity matrix for b, giving:

Iobs · X =





1 0 0

0 1 0

0 0 1





Thus, solving for X will return the inverse of Iobs – the

variance–covariance matrix!
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2.2.2 Fitting the GEV: Standard errors

In R:

> solve(A$hessian)

[,1] [,2] [,3]

[1,] 0.043869792 0.008491490 -0.008852201

[2,] 0.008491490 0.022223135 -0.006918367

[3,] -0.008852201 -0.006918367 0.011564254

> varcovar=solve(A$hessian)

> sqrt(diag(varcovar))

[1] 0.2094512 0.1490743 0.1075372
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2.2.2 Fitting the GEV: Standard errors

Thus, we now have the following inference for our annual

maximum sea surges, in terms of the GEV distribution:

µ̂ = 8.711(0.209) σ̂ = 1.311(0.149) ξ̂ = −0.108(0.108)

From this, we can construct confidence intervals in the usual

way (“Wald” intervals).

For example: parameter estimate ± 1.96 × standard error for a

95% CI, owing to the normality of maximum likelihood

estimators — giving

(8.301,9.121) (1.019,1.603) and (−0.320,0.104)

for µ, σ and ξ (respectively).

Note that the confidence interval for ξ includes zero — a

Gumbel–type tail for our data could be appropriate.
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2.2.3 Model adequacy: Probability plots

Probability plots compare empirical cumulative probabilities

with corresponding values from the fitted model.

For example, the ordered sea–surges at Wassaw, x(i),

i = 1, . . . ,50, are:

6.7 6.8 7.3 7.3 7.3 7.4 7.6 7.7 7.8 8.1

8.2 8.3 8.4 8.5 8.6 8.7 8.7 8.8 8.8 8.9

8.9 8.9 8.9 9.0 9.1 9.1 9.3 9.3 9.4 9.5
9.6 9.6 9.7 9.7 9.8 10.0 10.0 10.2 10.3 10.4

10.5 10.5 10.8 11.1 11.5 11.8 12.2 12.6 12.7 13.0

x(i) Fitted: G(x(i); µ̂, σ̂, ξ̂) Empirical: i/(n + 1)
6.7 0.016 0.020

6.8 0.021 0.039
7.3 0.063 0.059

...
...

...
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2.2.3 Model adequacy: Quantile plots

Quantile plots compare empirical quantiles with corresponding

values from the fitted model:

Empirical: x(i) Prob: i/(n + 1) Fitted: G−1(i/(n + 1); µ̂, σ̂, ξ̂)
6.7 0.020 6.78
6.8 0.039 7.07

7.3 0.059 7.27
...

...
...
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2.2.3 Model adequacy: Quantile plots

Quantile plots compare empirical quantiles with corresponding

values from the fitted model:
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2.2.3 Probability plot in R

In R:

>ordered=sort(dataset)

# Orders the data

> empirical=vector(’numeric’,length(ordered))

> for(i in 1:length(empirical)){
empirical[i]=i/(length(dataset)+1)}
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2.2.3 Probability plot in R

The function GEV.DF defines the distribution function for the

GEV:

GEV.DF=function(data,mu,sigma,xi){
if(xi==0){
GEV=exp(-exp(-((data-mu)/sigma)))}
else{
GEV=exp(-(1+xi*((data-mu)/sigma))**(-1/xi))}
return(GEV)}
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2.2.3 Probability plot in R

Then:

> model=vector(’numeric’,length(dataset))

> for(i in 1:length(model)){

model[i]=GEV.DF(ordered[i],A$est[1],A$est[2],A$est[3])}

Plotting model against empirical produces the

corresponding probability plot.
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2.2.3 Probability/Quantile plots in R

0
.0

0.0

0
.2

0.2

0
.4

0.4

0
.6

0.6

0
.8

0.8

1
.0

1.0
7

7
8

8

Probability plot

m
o

d
e

l.
q

u
a

n
ti
le

ordered

Quantile plot

Empirical

M
o

d
e

l

9
9

1
0

10
1

1
11

1
2

12
1

3
13

MAS8306: Environmental Extremes



2.2.4 Return level estimation

In question 2 of Section 1.4, you were asked to provide an

estimate of the height of a new sea wall to protect the city of

Savannah against the storm surge we would expect to see

(i) once in ten years;

(ii) once in a hundred years.
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2.2.4 Return level estimation

Using the data alone we could not obtain a meaningful estimate

of (ii) because we only have 50 years of data.

However, we can now use our fitted GEV to extrapolate beyond

the range of our data to estimate such return levels.

Using Equation (2.10):

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1

]

, (2.10)

we find that

ẑ10 = 8.711−1.311

0.108

[

(

−log
(

1 − 10−1
))0.108

− 1

]

= 11.33 feet;

similarly,

ẑ10 = 8.711−1.311

0.108

[

(

−log
(

1 − 100−1
))0.108

− 1

]

= 13.46 feet.
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2.2.4 Return level estimation

Thus, an estimate of the height of the sea–wall might be about

11.5 feet or 13.5 feet to protect against the once in ten year, or

once in a hundred year, storm surges (respectively).

In fact, due to the invariance property of maximum likelihood

estimators, our estimates of z10 and z100 are also the maximum

likelihood estimators of these quantities.
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2.2.4 Return level estimation

As with our inference for the GEV parameters, it is preferable to

quote estimates of return levels with their estimated standard

errors.

Since zr is a function of the GEV parameters µ, σ and ξ, we can

use the delta method to find the approximate variance of ẑr .

Specifically,

Var(ẑr ) ≈ ∇zT
r V∇zr ,

where V is the variance–covariance matrix of (µ̂, σ̂, ξ̂)T and

∇zT
r =

[

∂zr

∂µ
,
∂zr

∂σ
,
∂zr

∂ξ

]

=
[

1,−ξ−1(1 − y
−ξ
r ), σξ−2(1 − y

−ξ
r )− σξ−1y

−ξ
r log yr

]

,

where yr = −log(1 − r−1), evaluated at (µ̂, σ̂, ξ̂).
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2.2.4 Return level standard errors in R

Recall that we previously stored V in the matrix varcovar in R.

Also, recall that our estimates of the GEV parameters are

stored in A$est.

We can define ∇z10, for example, in R as:

>y10=–log(1–(1/10))
>del=matrix(ncol=1,nrow=3)

>del[1,1]=1

>del[2,1]=-((A$est[3])**(-1))*(1-(y10**(-A$est[3])))

>del[3,1]=((A$est[2])*((A$est[3])**(-2))*(1-((y10)**(-A$est[3]))))

-((A$est[2])*((A$est[3])**(-1))*((y10)**(-(A$est[3])))*log(y10))

>del.transpose=t(del)
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2.2.4 Return level standard errors in R

Then the R command for matrix multiplication – %*% – can be

used to obtain an estimate of the standard error for ẑ10 in the

following way:

> sqrt(del.transpose%*%varcovar%*%del)

[,1]

[1,] 0.3614568

Estimated standard errors for other return levels can be

obtained in a similar way.
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2.2.4 Return level standard errors in R

For example, for the standard error for the 100–year return

level, we would replace

> y10=-log(1-(1/10))

with

> y100=-log(1-(1/100))

and then y10 would be replaced with y100 throughout.
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2.2.4 Return level estimation

Table 2.2 shows a range of estimated return levels, with

associated standard errors in parentheses.

Of course, we could use these standard errors to construct

confidence intervals for our return level estimates; however, as

we shall shortly discuss, such confidence intervals can be

misleading.

Return level: MLE (s.e.)

z10 z100 z200 z1000

11.33 (0.361) 13.46 (0.938) 13.99 (1.182) 15.09 (1.821)
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2.2.5 Using the ismev package in R

Class demonstration in R
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Example 2.3: Rainfall in the Lake District

The data shown in Table 2.3 are annual maximum rainfall

accumulations, obtained from daily records, for a period of 21

years (1991–2011 inclusive) at Eskdale in the Lake District.

333 213 790 343 351 521 307 305 352 277 319

319 339 262 285 297 327 620 350 545 258
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Example 2.3: Rainfall in the Lake District

Shown below are the maximum likelihood estimates of the GEV

parameters, obtained using R; also shown is the observed

information matrix IO.

µ̂ = 304.242; σ̂ = 68.977; ξ̂ = 0.249;

IO =





0.0062 −0.0046 0.1962

−0.0046 0.0091 −0.2114

0.1962 −0.2114 48.4122



 .
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Example 2.3: Rainfall in the Lake District

(a) Estimate the standard errors for µ̂, σ̂ and ξ̂, and use these

to estimate the 95% confidence intervals for the GEV

parameters. Comment.

(b) What is the estimated correlation between σ and ξ?

(c) Estimate the 100 and 1000 year return levels for daily

rainfall totals at Eskdale.

(d) Obtain standard errors for your estimates in (b), and use

these to construct 95% confidence intervals in the usual

way. Comment.
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Example 2.3: Solution to part(a) (1/8)

The standard errors are found from the variance–covariance

matrix, which is I−1
O

.

1. Find the determinant of IO:

det(IO) = 0.0062(0.0091 × 48.4122 − 0.21142)

+0.0046(−0.0046 × 48.4122 − 0.1962 × (−0.2114))

+0.1962(0.0046 × 0.2114 − 0.1962 × 0.0091)

= 0.00146.
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Example 2.3: Solution to part(a) (2/8)

2. Find the transpose of IO:

IT
O =





0.0062 −0.0046 0.1962

−0.0046 0.0091 −0.2114

0.1962 −0.2114 48.4122




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Example 2.3: Solution to part(a) (3/8)

3. Find the determinants of each of the 2 × 2 minor

matrices of I
T
O:

∣

∣

∣

∣

0.0091 −0.2114

−0.2114 48.4122

∣

∣

∣

∣

= 0.395861

∣

∣

∣

∣

−0.0046 −0.2114

0.1962 48.4122

∣

∣

∣

∣

= −0.181219

∣

∣

∣

∣

−0.0046 0.0091

0.1962 −0.2114

∣

∣

∣

∣

= −0.000813
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Example 2.3: Solution to part(a) (4/8)

∣

∣

∣

∣

−0.0046 0.1962

−0.2114 48.4122

∣

∣

∣

∣

= −0.181219

∣

∣

∣

∣

0.0062 0.1962

0.1962 48.4122

∣

∣

∣

∣

= 0.261661

∣

∣

∣

∣

0.0062 −0.0046

0.1962 −0.2144

∣

∣

∣

∣

= −0.000408

MAS8306: Environmental Extremes



Example 2.3: Solution to part(a) (5/8)

∣

∣

∣

∣

−0.0046 0.1962

0.0091 −0.2114

∣

∣

∣

∣

= −0.000813

∣

∣

∣

∣

0.0062 0.1962

−0.0046 −0.2114

∣

∣

∣

∣

= −0.000408

∣

∣

∣

∣

0.0062 −0.0046

−0.0046 0.0091

∣

∣

∣

∣

= 0.000035
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Example 2.3: Solution to part(a) (6/8)

4. This gives us the matrix of cofactors – we multiply each

term in this by the signs indicated below, to get the adjoint

matrix:





0.395861 −0.181219 −0.000813

−0.181219 0.261661 −0.000408

−0.000813 −0.000408 0.000035



×





+ − +
− + −
+ − +





=





0.395861 0.181219 −0.000813

0.181219 0.261661 0.000408

−0.000813 0.000408 0.000035




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Example 2.3: Solution to part(a) (7/8)

5. Final step:

I−1
O

=
1

det(IO)

(

adj(IO)

)

= 0.00146−1 ×





0.395861 0.181219 −0.000813

0.181219 0.261661 0.000408

−0.000813 0.000408 0.000035





=





271.1377 124.1226 −0.5568

124.1226 179.2199 0.2795

−0.5568 0.2795 0.0240



 .

The standard errors are thus
√

271.1377 = 16.466,√
179.2199 = 13.387 and

√
0.0240 = 0.155 for µ̂, σ̂ and ξ̂,

respectively.
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Example 2.3: Solution to part(a) (8/8)

Using the estimated standard errors, we can form confidence

intervals for the GEV parameters in the usual way:

µ : 304.242± 1.96 × 16.466 −→ (271.969,336.515)

σ : 68.977 ± 1.96 × 13.387 −→ (42.738,95.216)

ξ : 0.249 ± 1.96 × 0.155 −→ (−0.055,0.553)

Comment: ξ > 0 (i.e. we have Fréchet tails), suggesting

unbounded, heavy tails – seems plausible for rainfall. However,

the 95% CI for ξ passes through zero (only just, though!).
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Example 2.3: Solution to part(b) (1/1)

The correlation between σ and ξ can be estimated using

corr(σ̂, ξ̂) =
cov(σ̂, ξ̂)

√

var(σ̂)× var(ξ̂)

=
0.2795√

179.2119 × 0.0240

= 0.1348.
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Example 2.3: Solution to part(c) (1/1)

Using Equation (2.10):

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1

]

,

we get:

ẑ100 = 304.242+
68.977

0.249

[

(

−log
(

1 − 100−1
))−0.249

− 1

]

= 898.1133 mm; similarly,

ẑ1000 = 1574.085 mm.
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Example 2.3: Solution to part(d) (1/3)

From earlier, we know that

∇zT
r =

[

∂zr

∂µ
,
∂zr

∂σ
,
∂zr

∂ξ

]

=
[

1,−ξ−1(1 − y
−ξ
r ), σξ−2(1 − y

−ξ
r )− σξ−1y

−ξ
r log yr

]

,

where yr = −log(1 − r−1); evaluated at the MLEs for µ, σ and

ξ, we get

∇zT
100 = [1,8.6097,1621.187]
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Example 2.3: Solution to part(d) (2/3)

Thus,

var(ẑ100) = ∇zT
100V∇z100

= [1,8.6097,1621.187]

×





271.1377 124.1266 −0.5568

124.1266 179.2199 0.2795

−0.5568 0.2795 0.0240





×





1

8.6097

1621.187





= 84768.61

Therefore, s.e.(ẑ100) =
√

84768.61 = 291.1505.
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Example 2.3: Solution to part(d) (3/3)

Similar calculations for ẑ1000 give

s.e.(ẑ1000) = 932.325.

From these standard errors, we can construct 95% confidence

intervals:

ẑ100 : 898.1133± 1.96 × 291.1505 −→ (327.5,1468.8) mm;

ẑ1000 : 1574.085± 1.96 × 932.325 −→ (−253.3,3401.4) mm.

Comment: CI’s are very wide; also, the CI for ẑ1000 is partly

negative – not sensible!
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Example 2.4: Solution

See R demo
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Example 2.5

The magnitudes of the vertical forces produced by seismic

degassing bursts are known to be associated with destructive

volcanoes.

Table 2.5 shows the maximum force produced by degassing

bursts, every quarter in the years 2005–2011 (inclusive), for the

Kilauea Volcano in Hawaii.

Jan–Mar Apr–Jun Jul–Sep Oct–Dec

2005 99983 100067 99905 100367
2006 99980 99970 100086 99988
2007 99912 100084 100432 99921
2008 100123 99913 100240 100448
2009 100162 100296 100015 100122
2010 99930 99997 100710 100136
2011 99946 99918 99962 100052
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Example 2.5

These data were stored the in the vector haw in R, and the

following output obtained:

gev.fit(haw)

$ conv

[1] 0

$nllh

[1] 178.2502

$mle

[1] 9.998028e+04 8.710824e+01 5.921945e-01

$se

[1] 21.6185212 21.3598264 0.3027163
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Example 2.5

(a) Use this information to estimate the degassing bursts we

would expect to see (i) once every year, (ii) once every fifty

years, and (iii) once every 100 years at this volcano (do not

attempt to obtain standard errors for these estimates).

How does your estimate in (i) compare to it’s empirical

counterpart?

(b) Use Figure 2.5 to assess the goodness–of–fit of the GEV

to these data.
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Example 2.5: Solution to part (a) (1/5)

From Equation (2.10) we know that

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1 − r−1
))−ξ̂

− 1

]

.

The quantity ẑr is an estimate of the level that is exceeded, on

average, once every r observations – if we have only one

observation per year, this is exactly the the same as the r–year

return level.

In this example, we have four observations per year!

MAS8306: Environmental Extremes



Example 2.5: Solution to part (a) (2/5)

Thus, an estimate of the one–year return level is given by

ẑ4 = 99980.28 +
87.10824

0.5921945

[

(

−log(1 − 4−1)
)

−0.5921945 − 1
]

= 100140.8 kg.

Similarly, an estimate of the 50–year return level is given by

ẑ200 = 99980.28 +
87.10824

0.5921945

[

(

−log(1 − 200−1)
)

−0.5921945 − 1
]

= 103218.6 kg.
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Example 2.5: Solution to part (a) (3/5)

Also, an estimate of the 100–year return level is given by

ẑ400 = 99980.28 +
87.10824

0.5921945

[

(

−log(1 − 400−1)
)

−0.5921945 − 1
]

= 104940.6 kg.
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Example 2.5: Solution to part (a) (4/5)

We can obtain the empirical estimate of the one–year return

level by looking at the empirical distribution function (see

Section 2.2.3 on quantile–quantile plots).

For example, ordering the data gives:

x(i) i/(n + 1)
...

...
99946 0.241

99962 0.276
...

...

An empirical estimate of the one–year return level is the value

which is exceeded once every 4 observations – the value for

which i/(n + 1) = 0.25.

MAS8306: Environmental Extremes



Example 2.5: Solution to part (a) (5/5)

i/(n + 1) = 0.25 is 25.71% of the way between 0.241 and

0.276; 25.71% of the way between 99946 and 99962 gives

ẑ4,emp = 99950.11 kg.

The model gives a slight over–estimate.

MAS8306: Environmental Extremes



Example 2.5: Solution to part (b) (1/1)

Both the probability plot and Q-Q plots indicate the suitability of

the fitted GEV to the quarterly maxima, with points lying close

to the unit diagonal.

The fitted density also follows the histogram very closely.

All points in the return level plot fall within the 95% confidence

bands (although these bands have been constructed using

Wald intervals – see Section 2.4).
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2.4 Profile likelihood

As we saw in our solution to Example 2.3, standard errors for

long range return levels, obtained via the delta method, can

often be so large that confidence intervals become difficult to

work with – or even meaningless.

Actually, it turns out that constructing confidence intervals in the

standard way:

estimate ± 1.96 × s.e.

is not advisable for return levels.

This is because of the severe asymmetry often observed in

the likelihood surface for the return level, suggesting that the

assumption of normality may not be valid for zr .
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2.4 Profile likelihood

An alternative, and often more accurate, method for making

inferences on a particular parameter can be found using the

profile log–likelihood.

Formally, the log–likelihood for a parameter vector θ can be

written as ℓ(θj ,θ−j), where θ−j corresponds to all components

of θ excluding θj .
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2.4 Profile likelihood

The profile log–likelihood for θj is defined as

ℓp(θj) = maxθ
−j
ℓ(θj ,θ−j).

Thus, for each value of θj the profile log–likelihood is the

maximised log–likelihood with respect to all other components

of θ.
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2.4 Profile likelihood

For return levels using the GEV model:

1. Re–parameterise the GEV model so that zr becomes one

of the model parameters.

For example, re–arrange equation (2.10) to write µ in

terms of σ, ξ and zr :

µ = zr −
σ

ξ

[

(

−log
(

1 − r−1
))−ξ

− 1

]

;

then obtain an expression for the log–likelihood ℓ(σ, ξ, zr )
by substitution of (2.12) into

−mlogσ − (1 + 1/ξ)

m
∑

i=1

log

[

1 + ξ

(

xi − µ

σ

)]

+

−
m
∑

i=1

[

1 + ξ

(

xi − µ

σ

)]−1/ξ

+

,
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2.4 Profile likelihood

2. For some fixed lower value of zr = zr ,low, maximise the

GEV log–likelihood

ℓ(σ, ξ, zr = zr ,low)

with respect to the two remaining parameters (σ and ξ), to

obtain ℓp(zr ) at zr ,low.

Here, in terms of the more general notation above, θj = zr

and θ−j = (σ, ξ).
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2.4 Profile likelihood

3. Repeat step (2) for a range of values zr for

zr ,low ≤ zr ≤ zr ,up, and plot ℓp(zr ) against zr to show the

profile log–likelihood curve for zr .

Figure 2.6 shows plots of the profile log likelihood for the 100

and 1000 year return levels (ℓp(z100) and ℓp(z1000) respectively)

for the Lake District rainfall data in Example 2.3.
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2.4 Profile likelihood
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2.4 Profile likelihood

Both plots reveal strong asymmetry in the (profile)

log–likelihood for the return levels, and it should be clear from

these plots that constructing return levels in the usual way (as

we did in Example 2.3, part (c)) will be misleading.

So how can we use these plots?
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2.4 Profile likelihood

In this example, we are partitioning the GEV parameter vector

θ = (zr , σ, ξ) into two components (θ(1),θ(2)), where

θ
(1) = zr and

θ
(2) = (σ, ξ),

and the profile log–likelihood is now defined as

ℓp(θ
(1)) = max

θ(2)(θ(1),θ(2)).

The following result leads to a procedure for making inferences

on the maximum likelihood estimator of θ(1).
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2.4 Profile likelihood: Result

Let x1, . . . , xn be independent realisations from a distribution

within a parametric family F , and let θ̂0 be the maximum

likelihood estimator of the d–dimensional model parameter

θ0 = (θ(1),θ(2)), where θ
(1) is a k–dimensional subset of θ0.

Then, under suitable regularity conditions, for large n

Dp(θ
(1)) = 2

{

ℓ(θ̂0)− ℓp(θ
(1))

}

∼ χ2
k .

Thus, for our single component θ(1) = zr , the set of values Cα

for which {zr : Dp(zr ) ≤ cα} provides a (1 − α) confidence

interval for zr , where cα is the (1 − α) quantile of the χ2
1

distribution.
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2.4 Profile likelihood: Result

In practice:

Obtain a plausible range of values for Dp(zr ) from the χ2
1

distribution.

For example, working at the 5% level of significance, we

would have values

Dp(zr ) ≤ χ2
1(0.05) = 3.842.

Convert this into a range of plausible values for the profile

log–likelihood:

ℓ(θ̂0)− ℓp(zr ) ≤ 1.921

ℓp(zr ) ≥ ℓ(θ̂0)− 1.921

Use this to obtain a plausible range of values for zr .
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2.4 Profile likelihood: Result
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Profile Likelihood

ẑ100 ẑ1000

Standard 95% CI (327.5, 1468.8)mm (–253.3, 3401.4)mm

Profiled 95% CI (602.5, 2765)mm (800, 10300)mm

Comments

The profiled confidence intervals more accuratley capture

the asymmetry in the log–likelihood for the return levels

This manifests in much higher upper bounds

Notice that the lower bounds are also affected, and are

much closer to the MLE for zr

More realistic – and no negative rainfall values!

Problem: confidence intervals often extremely wide,

especially for long return periods (e.g. 1000 years)
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2.5 Models for minima

Let M̄n = min {X1, . . . ,Xn}.

If we can assume the Xi are independent and identically

distributed, we can apply similar arguments to M̄n as we

applied to Mn in Section 2.1.2.

If there exist sequences of constants an > 0 and bn such that,

as n → ∞,

Pr
{

(M̄n − bn)/an ≤ x
}

→ Ḡ(x)

for some non–degenerate distribution Ḡ, then Ḡ is a member of

the GEV family of distributions for minima:

Ḡ(x ; µ̄, σ, ξ) = 1 − exp

{

−
[

1 − ξ

(

x − µ̄

σ

)]−1/ξ

+

}

,

where a+ = max(0,a), −∞ < µ̄ < ∞, σ > 0 and −∞ < ξ < ∞.
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2.5 Models for minima

This result can be useful where we are interested in modelling

extremely small, rather than extremely large, observations (e.g.

annual minimum air temperatures).

Alternatively, we could negate our set of block minima and then

model the corresponding set of maxima, giving identical

maximum likelihood estimates of the GEV parameters but for

the sign correction ˆ̄µ = −µ̂.
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2.6 The GEV: Words of warning

Block size?

– Convention is to work with blocks equal in length to the
calendar year, but what if you have hourly data collected

over just a few years?

– Block length too small – limiting arguments will not hold (the

GEV is a limiting result, which holds approximately for large
n)

– Block length is too large – not enough maxima to work with!

– Possible sensitivity of GEV parameter estimates to block

length
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2.6 The GEV: Words of warning

Extremely wasteful of data:

– Discard all but the block maxima

– Often results in throwing away tens of thousands of

observations – some of which might be ‘extreme’ – just not
as extreme as the block maxima!

– Results in large standard errors and extremely wide

confidence intervals for return levels
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2.6 The GEV: Words of warning

Standard asymptotic likelihood results not always
applicable for the GEV:

– When ξ < 0, the end–points of the GEV are functions of the

parameter values: e.g. µ = σ/ξ is the upper end–point

– This violates the usual regularity conditions of MLEs

– Effect: When −1 < ξ ≤ −0.5, MLEs for ξ can be obtained,
but are super–efficient (i.e. have variance smaller than the

Cramér–Rao lower bound)

– Another consequence: Cannot obtain MLE for ξ when

ξ ≤ −1
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