
6
Multivariate

extremes

6.1 Introduction

In this section we consider the problems we face if we wish to model the extremal

behaviour of two or more (dependent) processes simultaneously. There are several

reasons why we may wish to do this:

� to model the extreme behaviour of a particular variable over several nearby lo-

cations (e.g. rainfall over a network of sites – simultaneous flooding at several

locations could cause devastation);

� to model the joint extremes of two or more different variables at a particular

location (e.g. wind and rain at a site – the combined effects of wind and rain

during a hurricane can result in extreme storm surge);

� to model the joint behaviour of extremes which occur as consecutive observations

in a time–series (e.g. consecutive hourly maximum wind gusts during a storm).

All of these problems suggest fitting an appropriate limiting multivariate distribution

to the relevant data. However, as we shall see, the derivation of such a multivariate
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6 Multivariate extremes

distribution is not as easy as we might hope. The analogy with the Normal distribution

as a model for means breaks down as we move into n dimensions! It is not even clear

what the ‘relevant data’ should be! Most of the increased complexity is apparent in the

move from 1 to 2 dimensions, so we will focus largely on bivariate problems.

6.2 Componentwise maxima models

6.2.1 Example: Rainfall at 8 locations in Scotland

Suppose we want to study the joint extremes of daily rainfall accumulations at the

network of 8 sites is southwest Scotland shown in Figure 6.1.
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Figure 6.1: Eight rainfall recording stations in southwest Scotland.

Such issues are of great interest, especially currently – given the severe flooding expe-

rienced in the U.K. Suppose we have sequences of daily total rainfall at each location.

There is likely to be strong inter–site dependence in extremes, in the sense that days

with heavy rain are liable to occur simultaneously across locations. The raw multivari-

ate observations are 8–dimensional vectors of the daily rainfall over the eight sites.

Now suppose we wish to take a block–maxima approach, with ‘blocks’ being years.

For any given year, the 8–dimensional vector of annual maxima is unlikely to be

one of the raw multivariate observations. Let’s simplify to the bivariate case. Let

(X1, Y1), (X2, Y2), . . . be i.i.d. vectors with distribution function F (x, y). Now consider

the componentwise block maxima

Mx,n = max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi}.

We define the vector of componentwise maxima to be

Mn = (Mx,n,My,n).
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6.2 Componentwise maxima models

Mn is not necessarily one of the original observations (Xi, Yi). Nevertheless, we are

interested in the limiting behaviour of Mn as n → ∞.

The first point to note is that standard univariate extreme value results apply in each

margin. When considering the dependence, this allows us to make a simplifying as-

sumption.

We assume that the Xi and Yi variables have a known marginal distribution. It is

convenient to assume a unit Fréchet distribution (see Chapter 2), which has CDF

F (z) = exp(−1/z), z > 0.

This gives rise to a very simple normalisation of maxima:

Pr(Xi < x) = Pr(Mx,n/n < x) = exp(−1/x), x > 0,

(and similarly for Yi). So if we consider the re–scaled vector

M
∗

n
=

(
max

i=1,...,n
{Xi}/n, max

i=1,...,n
{Yi}/n

)
,

the margins are unit Fréchet for all n, and hence we can characterise the limiting joint

behaviour of M∗

n
without having to worry about the margins. Unfortunately no limiting

parametric family exists (for bivariate extremes, or multivariate extremes in general)!

6.2.2 Theorem: limiting distributions for bivariate extremes

Let M∗

n
= (M∗

x,n,M
∗

y,n) be the normalised maxima as above, where the (Xi, Yi) are i.i.d.

with standard Fréchet marginal distributions. Then if

Pr(M∗

x,n,M
∗

y,n) → G(x, y),

where G is non–degenerate, then G has the form

G (x, y) = exp {−V (x, y)} ; x > 0, y > 0 (6.1)

where:

V (x, y) = 2

∫ 1

0
max

(
ω

x
,
1− ω

y

)
dH (ω) (6.2)

and H is a distribution function on [0, 1] satisfying the mean constraint:

∫ 1

0
ω dH (ω) = 0.5. (6.3)
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6 Multivariate extremes

Hence the class of bivariate extreme value distributions is in one-to-one correspondence

with distribution functions H satisfying the constraint (6.3). If H is differentiable with

density h, then (6.1) becomes

V (x, y) = 2

∫ 1

0
max

(
ω

x
,
1− ω

y

)
h(ω)dω.

However some simple models arise when H is not differentiable. For example, if H

places mass 0.5 on each of ω = 0 and ω = 1, then we get

G(x, y) = exp{−(x−1 + y−1)}, x > 0, y > 0,

corresponding to independent x and y.

Since the GEV provides the complete class of marginal limit distributions, then the

complete class of bivariate extreme value distributions is obtained as follows. If we

suppose X and Y are GEV with parameters (µx, σx, ξx) and (µy, σy, ξy) respectively,

then the transformations

x̃ =

[
1 + ξx

(
x− µx

σx

)]1/ξx
and ỹ =

[
1 + ξy

(
y − µy

σy

)]1/ξy

obtain unit Fréchet margins. Hence

G(x, y) = exp{−V (x̃, ỹ)}

is a bivariate extreme value distribution with the appropriate margins for valid V (.),

provided [1 + ξx(x− µx)/σx] > 0] and [1 + ξy(x− µy)/σy ] > 0].

6.3 Bivariate threshold excess models

6.3.1 Example: wave–surge data at Newlyn, Cornwall

Here, we choose a different type of example of dependence to the rainfall problem

considered in Section 6.2.1. Specifically, we consider two variables recorded concurrently

at the same site. A series of 3–hourly measurements on sea–surge were obtained from

Newlyn, southwest England, giving – at each time point – measurements of the wave

height (in metres) and the surge (also in metres). Figure 6.2 below shows these two

variables plotted against each other; this plot suggests a tendency for extremes of one

variable to coincide with extremes of the other. This dependence could be important –

the impact of an event that is simultaneously extreme in both variables is likely to be

much greater than if extremes of either component occurred in isolation.
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6.3 Bivariate threshold excess models
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Figure 6.2: Concurrent wave and surge heights at Newlyn, Cornwall.

6.3.2 From componentwise maxima to threshold excesses

Now we want to define our bivariate extremes as those observations which exceed a

threshold in one or other margin. For our bivariate observation (X,Y ), let’s focus

on X. We have already seen that the distribution function for the exceedances of a

threshold u by a variable X, conditional on X > u for large enough u, is given by:

H(x) = 1− λux

{
1 +

ξx (x− ux)

σx

}
−1/ξx

defined on {x− ux : x− ux > 0 and (1 + ξx (x− ux) /σx) > 0}, where ξx 6= 0, σx > 0,

and λux = Pr (X > ux). Now we can obtain a unit Fréchet margin with the transfor-

mation:

x̃ = −
(
log

{
1− λux

[
1 +

ξx (x− ux)

σx

]
−1/ξx

})
−1

. (6.4)

If we apply the analogous transformation to the Y margin, we obtain

G (x, y) = exp {−V (x̃, ỹ)} ; x > ux, y > uy,

where V (x, y) is as defined in Equation (6.1), again satisfying the mean constraint in

Equation (6.3). For the remainder of this chapter, we assume the margins have been

transformed to unit Freéchet in this way before any modelling of dependence takes

place.
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6 Multivariate extremes

6.4 Modelling bivariate extremes in practice

In practice, modelling usually involves identifying a parametric sub–family with appro-

priate flexibility to handle the structure inherent in the data. Models can be fitted, e.g.

by maximum–likelihood estimation, either in two steps (marginal components followed

by dependence function), or in a single sweep. All of these procedures, including the

choice of models, are handled in a very similar way when dealing with either bivariate

componentwise maxima or bivariate threshold exceedances.

6.4.1 Modelling the dependence structure

The class of bivariate extreme value models contains many families of distributions

which can be used to model the dependence structure in the data. The dependence

structure must satisfy the conditions on H (ω). Possible choices are:

� Logistic Model — symmetric

� Negative Logistic Model

� Bilogistic Model — asymmetric

� Dirichlet Model

Here we will focus on the logistic model and the bilogistic model as two commonly used

but contrasting choices.

✎
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6.4 Modelling bivariate extremes in practice

1. The Logistic model

Here, for V (x, y) in Equation (6.1), we have

(
x−1/α + y−1/α

)α
,

where x > 0, y > 0 and α ∈ (0, 1).

� α → 1 corresponds to independent variables.

� α → 0 corresponds to perfectly dependent variables.

� This model is symmetric — the variables are exchangeable.

The Bilogistic model

Now we have the following form for V (x, y):

−xγ1−α − y (1− γ)1−β ,

where 0 < α < 1, 0 < β < 1 and γ = γ (x, y;α, β) is the solution of:

(1− α) x (1− γ)β = (1− β) yγα

� Independence is obtained when α = β → 1 and when one of α or β is fixed and

the other approaches 1.

� When α = β the model reduces to the logistic model.

� The value of α− β determines the extent of asymmetry in the dependence struc-

ture.

6.4.2 Likelihood calculations

After transformation to unit Fréchet margins, we can obtain the probability density

function of the chosen dependence model by differentiation of Equation (6.1) to give

g(x, y); from this, the likelihood can be formed (and maximised) in the usual way.

However, inference for the bivariate threshold excess setup is complicated by the fact

that a bivariate pair may exceed a specified threshold in just one of its components.

For example, consider Figure 6.3 below, an updated version of Figure 6.2 for the wave–

surge data now including marginal thresholds (obtained by using mean residual life
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6 Multivariate extremes

plots for both components). We obtain contributions to the likelihood function for a

pair of observations in the following way, where θ represents the parameter(s) in our

dependence model (e.g. θ = α if we use the logistic model; θ = (α, β) in the bilogistic

model):

g (x, y; θ) =





∂2G

∂x∂y

∣∣∣∣
(x,y)

if (x, y) ∈ Region 1

∂G

∂x

∣∣∣∣
(x,uy)

if (x, y) ∈ Region 2

∂G

∂y

∣∣∣∣
(ux,y)

if (x, y) ∈ Region 3

G (ux, uy) if (x, y) ∈ Region 4

Then, we have

L(θ;x, y) =

n∏

i=1

g(xi, yi).

0 2 4 6 8 10

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Wave−Surge Data (1971−1977, Newlyn, Cornwall)

Region 3 Region 1

Region 4 Region 2

Wave Height (m)

S
u
rg
e
(m

)

Figure 6.3: Threshold classification of bivariate data.

Example 6.1: Wave–surge analysis at Newlyn

Consider the wave–surge data from Newlyn, Cornwall, shown in Figures 6.2 and 6.3.

Flood defences in Newlyn have been designed to withstand a sea swell resulting from, at

most, a wave height of x = 9 metres combined with a surge height of y = 0.7 metres.

A threshold–based approach to modelling is to be used for the wave–surge data shown

in Figures 6.2 and 6.3. Mean residual life plots suggest marginal thresholds of ux =
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6.4 Modelling bivariate extremes in practice

6.1 metres and uy = 0.32 metres (as shown in Figure 6.2) for identifying wave height

and surge height as extreme.

(a) Assuming extreme wave heights occur independently of extreme surge heights, find

the probability that the flood defence system in Newlyn will be overwhelmed.

(b) Now assume there is extremal dependence between wave height and surge height.

(i) Assuming the logistic model for this dependence, obtain the likelihood con-

tributions to L(α;xi, yi) if x > ux but y < ux (e.g. region 2 in Figure 6.3).

Explain how you would obtain the likelihood contributions for pairs in other

regions in Figure 6.3.

(ii) Use the evd function fbvpot to fit the logistic model with likelihood contribu-

tions you identified in part (i). Show your estimated dependence parameter

α, with its standard error.

(iii) Using your fitted model in (ii), find the probability that the flood defence

system in Newlyn will be overwhelmed. Compare your answer to that in

part (a).

(c) Check for the presence of asymmetry in the dependence structure.

Example 6.1: Solution

The Newlyn wavesurge data are available to download from the ismev package:

> library(ismev)

> data(wavesurge)

> head(wavesurge)

wave surge

1 1.50 -0.009

2 1.83 -0.053

3 2.44 -0.024

4 1.68 0.000

5 1.49 0.079

6 1.20 0.068
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6 Multivariate extremes

For convenience, we can extract the wave and surge components:

> wave = wavesurge[, 1]

> surge = wavesurge[, 2]

Thus, we can estimate (σ̂x, ξ̂x) and (σ̂y, ξ̂y) using gpd.fit. For example:

> gpd.fit(wave, 6.1)

$threshold

[1] 6.1

$nexc

[1] 141

$conv

[1] 0

$nllh

[1] 155.1482

$mle

[1] 1.3334059 -0.1875104

$rate

[1] 0.04872149

$se

[1] 0.14082152 0.06565517

Using the same command on surge, i.e. gpd.fit(surge, 0.32), we have

λ̂ux = 0.049(0.004) σ̂x = 1.334(0.141) ξ̂x = −0.188(0.066)

and

λ̂uy = 0.051(0.004) σ̂y = 0.093(0.011) ξ̂y = −0.041(0.080),

with standard errors in parentheses.
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6.4 Modelling bivariate extremes in practice

✎

Assuming independence, we have

Pr(flood defence fails) = Pr(X > 9)× Pr(Y > 0.7)

= λ̂ux

[
1 + ξ̂x

(
9− ux
σ̂x

)]
−1/ξ̂x

+

× λ̂uy

[
1 + ξ̂y

(
0.7 − uy

σ̂y

)]
−1/ξ̂y

+

= 0.049

[
1− 0.188

(
9− 6.1

1.334

)]1/0.188

+

×0.051

[
1− 0.041

(
0.7 − 0.32

0.093

)]1/0.041

+

= 0.002995 × 0.000583

= 0.00000175.

For the logistic model, we have

G(x, y) = exp
{
−
(
x−1/α + y−1/α

)α}
.

Likelihood contribution – region 2:

✎
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Lee

Likelihood contributions – other regions:
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6.4 Modelling bivariate extremes in practice

For each pair of wave height/surge height measurements, we would now use the marginal

GPD fits from part (a) to transform to unit Fréchet margins (via Equation 6.4); then

the full likelihood

L(α;x, y) =

2894∏

i=1

g(x̃i, ỹi)

can be maximised in the usual way to estimate the dependence parameter α. However,

we can make use of the fbvpot command in evd:

> library(evd)

> fbvpot(wavesurge, threshold=c(6.1,0.32), model='log')

Call: fbvpot(x = wavesurge, threshold = c(6.1, 0.32), model = "log")

Likelihood: censored

Deviance: 2025.254

AIC: 2035.254

Dependence: 0.3023499

Threshold: 6.1 0.32

Marginal Number Above: 141 147

Marginal Proportion Above: 0.0487 0.0508

Number Above: 48

Proportion Above: 0.0166

Estimates

scale1 shape1 scale2 shape2 dep

1.265706 -0.139014 0.091818 0.006741 0.763539

Standard Errors

scale1 shape1 scale2 shape2 dep

0.13280 0.06886 0.01052 0.08404 0.02933

Optimization Information

Convergence: successful

Function Evaluations: 37

Gradient Evaluations: 8

Thus, we have

λ̂ux = 0.049(0.004) σ̂x = 1.266(0.133) ξ̂x = −0.139(0.069)

λ̂uy = 0.051(0.004) σ̂y = 0.092(0.011) ξ̂y = 0.007(0.084)

and

α̂ = 0.764(0.029)
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6 Multivariate extremes

Notice that there are slight differences in the estimates of the marginal GPD parameters

compared to those we found in part (a) (although these differences are not significant).

This is because the full log–likelihood ℓ(λux , λuy , σx, σy, ξx, ξy, α) has been optimised in

a single sweep for all of the parameters simultaneously.

Although our estimated dependence parameter does not indicate the presence of strong

extremal dependence (recall that as α → 1 we have decreasing dependence), at least we

have correctly accounted for this dependence.

✎

Assuming extremal dependence, we have

Pr(Flood defence fails) = 1−G(9̃, 0̃.7)

= 1− exp
{
−
(
9̃−1/0.764 + 0̃.7

−1/0.764
)}

.

Using our estimated marginal GPD parameters from the output above, and the trans-

formation given by Equation (6.4), we have

9̃ = 321.4721 0̃.7 = 1161.417;

this gives, on substitution into the above expression,

Pr(Flood defence fails) = 1− exp
{
−
(
321.4721−1/0.764 + 1161.417−1/0.764

)}
= 0.0006.

Although this probability is small, notice that it is more than 350 times as large as

the probability obtained assuming independence between wave height and surge height.

Thus, assuming independence gives us a false sense of security, as it grossly underes-

timates the chance of the flood defence being overwhelmed. This is typical of what

happens when we ignore extremal dependence!
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6.4 Modelling bivariate extremes in practice

To check for asymmetry in the dependence structure, we can fit a bilogistic model in R

and then compare this to the fitted logistic (as the logistic is nested within the bilogistic;

when α = β, the bilogistic reduces to the logistic).

> fbvpot(wavesurge, threshold = c(6.1, 0.32), model = "bilog")

Call: fbvpot(x = wavesurge, threshold = c(6.1, 0.32), model = "bilog")

Likelihood: censored

Deviance: 2024.823

AIC: 2036.823

Dependence: 0.3032494

Threshold: 6.1 0.32

Marginal Number Above: 141 147

Marginal Proportion Above: 0.0487 0.0508

Number Above: 48

Proportion Above: 0.0166

Estimates

scale1 shape1 scale2 shape2 alpha beta

1.28033 -0.14768 0.09074 0.01283 0.79655 0.71996

Standard Errors

scale1 shape1 scale2 shape2 alpha beta

0.13597 0.06955 0.01047 0.08315 0.05209 0.07883

Optimization Information

Convergence: successful

Function Evaluations: 47

Gradient Evaluations: 10

Notice the similarity in the estimates of α and β; in fact, constructing confidence inter-

vals for these two parameters gives:

α : (0.694, 0.899)

β : (0.565, 0.874)

Notice that these intervals overlap, suggesting that α ≈ β; thus, allowing for asymmetry

in the dependence structure is probably not worthwhile.
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