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Non–stationary

extremes

5.1 Introduction

In the context of environmental processes, it is common to observe non–stationarity –

for example, due to different seasons having different climate patterns, or perhaps due

to more long term trends owing to climate change. The models that were introduced

in Chapters 2 and 3 assume that the observations used are independent and identically

distributed. We examined the effects of dependence in Chapter 4, and we looked at

how we might work around this at a practical level (for example, using a declustering

technique to filter out a set of independent extremes). But what about extremes for

which we cannot assume stationarity?

To date, no general theory for non–stationary extremes has been established (unlike the

general theory we saw in Section 4.3 for dependent extremes). In practice, it is common

to adopt pragmatic ‘workarounds’ based on the type of non–stationarity observed. For

this reason, in this Chapter we will give some specific examples of how practitioners

have dealt with non–stationarity in recent work and publications.
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5 Non–stationary extremes

5.2 Annual maximum sea levels in Venice

Recall question 4 in problems sheet 2, which investigated the use of the r–largest order

statistics model for extreme sea levels at Venice (for the years 1961–2011 inclusive).

These data are available to download from the course webpage. Once saved, the data

can be read into R using the command read.table:

> venice = read.table("venice.txt")

In this section, we will focus on modelling the set of annual maxima, that is, column 2

of venice – we can extract these by typing:

> venice.anmax = venice[, 2]

A time series plot of the annual maxima is shown in Figure 5.1. Your analysis of the

Venice data in problems sheet 2 should have shown unsatisfactory fits for all values of r

used, and Figure 5.1 gives us a clue as to why: there seems to be rather strong evidence

for a positive trend over the years, and a substantial part of the variability in the data

will probably be explained by the systematic variation in sea levels over time.

1960 1970 1980 1990 2000 2010

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

Year

S
ea

le
ve
l
(c
m
)

Figure 5.1: Time series plot showing the annual maximum sea levels (in cm above the average)

observed at Venice, 1960–2011
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5.2 Annual maximum sea levels in Venice

One way of capturing this trend is by allowing the GEV location parameter µ to vary

across time. From Figure 5.1, a simple linear trend in time seems plausible for our

annual maximum sea levels X, and so we could use the model

Xt ∼ GEV(µ(t), σ, ξ),

where

µ(t) = β0 + β1t (5.1)

and t is an indicator of year. In this way, variations over time are modelled as a linear

trend in the location parameter of the GEV. As in a standard simple linear regression,

β1 represents the slope – in this case, the annual rate of change in sea–level maxima at

Venice. The time–homogeneous model is a special case of this time dependent model,

with β1 = 0; since this is nested within the model which allows for a time dependence,

the deviance statistic can be used to formally compare models.

5.2.1 Parameter estimation

Recall, from Section 2.1.4 in Chapter 2, the log–likelihood function for the GEV:

ℓ(µ, σ, ξ;x) = −mlogσ−(1/ξ+1)

m
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,

where m is the number of block maxima x1, x2, . . . , xm. We simply replace µ in the

above expression with equation (5.1), giving

ℓ(β0, β1, σ, ξ;x, t) = −mlogσ − (1/ξ + 1)
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,

with the usual replacement when ξ = 0. We could then maximise this log–likelihood

in R from first principles – that is, by applying the nlm routine to a function which

returns the negative log–likelihood. However, the ismev function gev.fit has an option

to allow for non–stationary modelling of the GEV parameters. Within the function, we

have:

> library(ismev)

> head(gev.fit)[1:4]

[1] function (xdat, ydat = NULL, mul = NULL, sigl = NULL, shl = NULL,

[2] mulink = identity, siglink = identity, shlink = identity,

[3] muinit = NULL, siginit = NULL, shinit = NULL, show = TRUE,

[4] method = "Nelder-Mead", maxit = 10000, ...)
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5 Non–stationary extremes

Obviously the first argument, xdat, corresponds to our series of annual maxima. The

second argument, which is set to NULL as a default, corresponds to a matrix of covariates

which can be used for non–stationary modelling of the GEV parameters; the argument

mul tells R which column(s) of ydat to use as covariates for the linear modelling of

the location parameter. Notice that, through the arguments sigl and xil, we can also

allow the scale and shape parameters to depend on a covariate, or covariates, in ydat.

To allow for a linear trend in µ through time, ydat will need to be a matrix with just a

single column, where the values in the column are a time counter from 1 to 51 (as we

have 51 annual maxima). Thus:

> ti = matrix(ncol = 1, nrow = 51)

> ti[, 1] = seq(1, 51, 1)

Now to fit the GEV to allow for a linear trend in µ, we type:

> gev.fit(venice.anmax, ydat = ti, mul = 1)

$model

$model[[1]]

[1] 1

$model[[2]]

NULL

$model[[3]]

NULL

$link

[1] "c(identity, identity, identity)"

$conv

[1] 0

$nllh

[1] 216.0626

$mle

[1] 96.98579330 0.56414269 14.58435088 -0.02731421

$se

[1] 4.24930969 0.13948421 1.57840034 0.08270996
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5.2 Annual maximum sea levels in Venice

Thus, we have

β̂0 = 96.986(4.249) β̂1 = 0.564(0.139) σ̂ = 14.584(1.578) ξ̂ = −0.027(0.083)

(with standard errors in parentheses). The value of the negative log–likelihood at these

parameter estimates is 216.0626; NULL in model[[2]] and model[[3]] indicates that

we have not asked for any modelling of the scale and shape parameters here – only the

location parameter (hence model[[1]] = 1). Thus, we have

µ̂(t) = 96.986 + 0.564t,

giving an estimated increase in maximum sea levels at Venice of about 0.564cm per

year. For example, the estimated value for µ in the year 2013 would be

µ̂(53) = 96.986 + 0.564 × 53 = 126.878;

we could, of course, use the delta method to obtain the corresponding standard error.

Using this simple linear model, we can estimate µ for t = 1, 2, . . . , 51 to cover the years

for which we have data (i.e. 1961, 1962, . . . , 2011). Superimposing µ(t) on the original

time series shown in Figure 5.1 summarises our fit, and the effect of the linear trend in

µ; this updated plot can be seen in Figure 5.2.
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Figure 5.2: Time series plot showing the annual maximum sea levels (in cm above the average)

with the trend for µ superimposed (dashed red line)
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5 Non–stationary extremes

5.2.2 Model choice

Fitting a completely stationary model to the set of annual maxima, as you did in

question 4(a) of problems sheet 2, gives:

> gev.fit(venice.anmax)

$conv

[1] 0

$nllh

[1] 222.7145

$mle

[1] 111.09925486 17.17548761 -0.07673265

$se

[1] 2.6280070 1.8033672 0.0735214

Is the non–stationary model worthwhile? Is the trend we observe in Figure 5.1 signif-

icant? In other words, does the non–stationary model provide an improvement in fit

over the simpler model shown here? We can use a version of the result in Section 2.4

(page 43) to address this question. Generally, maximum likelihood estimation of nested

models leads to a simple test procedure of one model against the other. With models

M0 ⊂ M1, we define the deviance statistic as

D = 2 {ℓ1(M1)− ℓ0(M0)} ,

where ℓ1(M1) and ℓ0(M0) are the maximised log–likelihood under models M1 and M0

respectively. The asymptotic distribution of D is given by the χ2
k distribution with k

degrees of freedom, where k is the difference in dimensionality of M1 and M0; thus,

calculated values of D can be compared to critical values from χ2
k, where large values

of D suggest that model M1 explains substantially more of the variation in the data

than M0.

✎

where ℓ1(M1) and ℓ0(M0) are the maximised log–likelihood under models M1 and M0

respectively. The asymptotic distribution of D is given by the χ2
k distribution with k

degrees of freedom, where k is the difference in dimensionality of M1 and M0; thus,

calculated values of D can be compared to critical values from χ2
k, where large values

of D suggest that model M1 explains substantially more of the variation in the data
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5.2 Annual maximum sea levels in Venice

We could, of course, use this method to check for a more complex association through

time. For example, to check for a quadratic trend we might use a model M2 with the

following form for µ:

µ(t) = β0 + β1t+ β2t
2.

The matrix of covariates would now need two columns to include t and t2, that is:

> ti2 = matrix(ncol = 2, nrow = 51)

> ti2[, 1] = seq(1, 51, 1)

> ti2[, 2] = ti2[, 1]^2

Then we could fit the model which allows for a quadratic trend in sea–levels in the

following way (output not shown):

> gev.fit(venice.anmax, ydat = ti2, mul=c(1, 2), show = FALSE)

You could try this yourself – this gives a maximised log–likelihood of –216.0555. Com-

paring with model M1 we have

D = 2 {−216.0555 − (−216.0626)} = 0.0142,

which is small compared to χ2
1(0.05) = 3.841. Thus, allowing for a quadratic dependence

in time does not improve on our model which allows for a linear trend through time,

and so we would reject model M2.

5.2.3 Model diagnostics

Before estimating return levels, we should check the goodness–of–fit of our model which

allows for a linear trend in µ. The lack of homogeneity in the distributional assumptions

for each observation, however, mean some modification of the standard procedures (e.g.

probability plots and quantile plots) is required. For example, for the Venice annual

maximum sea levels, we have

Xt ∼ GEV(µ(t), σ, ξ), t = 1, 2, . . . , 51,

giving a different GEV in each year indicated by t. What we need to do is standardise so

that we can assume the Xt are IID across all years t; usually, the set of non–stationary

annual maxima are transformed to a common Gumbel distribution with distribution

function F (y) = exp {−e−y}. We can obtain the required transformation by equating

F (yt) to GEV(xt; µ̂(t), σ̂, ξ̂) and solving for yt:
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5 Non–stationary extremes

✎

Now that we have transformed the original data, with a yearly–varying GEV, to a single

common distribution, we can apply the standard graphical diagnostics. For example,

we can compare the empirical probabilities and quantiles of yt to their theoretical coun-

terparts from the Gumbel distribution. Fortunately, the usual command in ismev can

be used to produce these plots. For example, the following code results in the plots

shown in Figure 5.3. It is clear from these plots that the model allowing for a linear

trend in µ is adequate for our data.

> A = gev.fit(venice.anmax, ydat = ti, mul = 1, show = FALSE)

> gev.diag(A)
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Figure 5.3: Diagnostic plots to assess the goodness–of–fit of the GEV model for the annual maxi-

mum sea–levels at Venice, allowing for a linear trend in µ
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5.2 Annual maximum sea levels in Venice

5.2.4 Return level estimation

Recall Equation (2.10) from Chapter 2 for estimating return levels from the GEV:

ẑr = µ̂+
σ̂

ξ̂

[

(

−log
(

1− r−1
))

−ξ̂ − 1

]

.

Since we have a time–varying location parameter µ̂(t) = β̂0 + β̂1t, we will clearly have

time–varying estimates of return levels ẑr(t). For example, an estimate of the sea level

we might expect to see in Venice once every 100 years is given by

ẑr(t) = (96.986 + 0.564t) − 14.584

0.027

[

(

−log
(

1− 100−1
))0.027 − 1

]

. (5.2)

Figure 5.4 shows how we might expect this estimate to vary for t = 52, 53, . . ., i.e. for

the years 2012, 2013, . . . . We could treat these as forecasts of the 100–year return levels

as we move through time; obviously, such forecasts will assume the linear trend for µ

continues beyond the range of data we have observed and will, of course be subject to

error (which we can estimate by constructing point–wise 95% confidence intervals using

the profile log–likelihood, for example).
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Figure 5.4: Time series plot showing the forecasted 100–year return levels at Venice, for the years

2012–2050
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5 Non–stationary extremes

5.3 Sea levels and the Southern Oscillation Index

A different situation which could use the same approach as that in the previous section

is where the extremal behaviour of a series is related to another variable, rather than

time. For example, studies have revealed a link between annual maximum sea levels

at Fremantle, Australia, and the mean value of the Southern Oscillation Index (SOI,

an indicator of meteorological volatility due to effect such as El Niño); see Figure 5.5.

Thus, the following model for Xt, the annual maximum sea level at Fremantle in year

t, might be suitable:

Xt ∼ GEV(µ(t), σ, ξ),

where

µ(t) = β0 + β1SOI(t), (5.3)

where SOI(t) denotes the mean value of the SOI in year t. However, the plot in the

right–hand–side of Figure 5.5 also reveals a possible trend in sea levels through time,

suggesting

µ(t) = β0 + β1t, (5.4)

where t = 1, 2, . . . , as in Example 5.2. We can combine Equations (5.3) and (5.4) to

allow for a dependence on time and SOI by letting

µ(t) = β0 + β1SOI(t) + β2t; (5.5)

however, a technique of forward selection should be used to check whether or not any of

Equations (5.3), (5.4) or (5.5) give significant improvement over the stationary model.

The sea level data for Fremantle are part of the ismev package; once ismev has been

installed, the data can be loaded by typing

> data(fremantle)

We can then look at the data:

> head(fremantle)

Year SeaLevel SOI

1 1897 1.58 -0.67

2 1898 1.71 0.57

3 1899 1.40 0.16

4 1900 1.34 -0.65

5 1901 1.43 0.06

7 1903 1.19 0.47

86



5.3 Sea levels and the Southern Oscillation Index

1900 1920 1940 1960 1980-1 0 1 2

1
.2

1
.2

1
.4

1
.4

1
.6

1
.6

1
.8

1
.8

S
ea

le
ve
l
(m

)

S
ea

le
ve
l
(m

)

SOI Year

Figure 5.5: Sea levels at Fremantle, Western Australia, plotted against (1) mean Southern Oscilla-

tion Index (left), and (2) year (right).

Column 1 is an indicator of year; the annual maximum sea levels, and mean SOI values,

are in columns 2 and 3 respectively. Although we have data from 1897–1989, data are

missing for the years 1902, 1907, 1910–11, 1913, 1926 and 1942, giving us 86 years of

data. Assuming our data have been continuously collected, we can then set up the year

indicator t:

> ti = seq(1, 86, 1)

Then our matrix of covariates, including the mean SOI values and t, can be con-

structed:

> covar = matrix(ncol = 2, nrow = 86)

> covar[, 1] = fremantle[, 3]

> covar[, 2] = ti

Fitting the stationary model gives:
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5 Non–stationary extremes

> gev.fit(fremantle[, 2])

$conv

[1] 0

$nllh

[1] -43.56663

$mle

[1] 1.4823409 0.1412671 -0.2174320

$se

[1] 0.01672502 0.01149461 0.06377394

Now we should try incorporating SOI and time, one variable at a time (via Equations

(5.3) and (5.4) respectively), to see which (if any!) gives the most significant improve-

ment over the stationary model. First, allowing for a dependence on the mean value of

the Southern Oscillation Index gives the following output in R:

> A = gev.fit(fremantle[, 2], ydat = covar, mul = 1, show = FALSE)

> A$nllh

[1] -47.21114

> A$mle

[1] 1.48985338 0.06188902 0.13960518 -0.26848380

> A$se

[1] 0.01655406 0.02315637 0.01150991 0.06399288

Comparing to the stationary model, we have

D = 2{47.21114 − 43.56663} = 7.28902,

which is greater than χ2
1(0.05) = 3.841, suggesting a significant improvement over the

stationary model. Allowing for a dependence in time, gives:

> A = gev.fit(fremantle[, 2], ydat = covar, mul = 2, show = FALSE)

> A$nllh

[1] -49.78972

> A$mle

[1] 1.387186155 0.002140832 0.124716473 -0.128545018

> A$se

[1] 0.0274796482 0.0005215259 0.0104146285 0.0679844086
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5.3 Sea levels and the Southern Oscillation Index

Again, comparing to the stationary model, we have

D = 2{49.78972 − 43.56663} = 12.44618,

suggesting that including a dependence on time gives a more significant improvement

than allowing for a dependence on SOI (since 12.44618 > 7.28902). Thus, our current

“best model” is

Xt ∼ GEV(µ(t), σ, ξ),

where µ(t) = β0 + β1t, and

µ̂(t) = 1.387 + 0.002t

σ̂ = 0.125

ξ̂ = −0.129

Now let’s see if including mean SOI on top of this adds further improvement:

> A = gev.fit(fremantle[, 2], ydat = covar, mul = c(1, 2), show = FALSE)

> A$nllh

[1] -53.8257

> A$mle

[1] 1.389381297 0.055171074 0.002232467 0.121147089 -0.154480161

> A$se

[1] 0.0272538644 0.0197789753 0.0005178779 0.0100390306 0.0636920071

So we have

D = 2{53.8257 − 49.78972} = 8.07286,

which is significant when compared to χ2
1(0.05) = 3.841! So we should include both time

and SOI as covariates, giving us our final model:

Xt ∼ GEV(µ(t), σ, ξ),

where

µ(t) = β0 + β1t+ β2SOI(t),

and

µ̂(t) = 1.389 + 0.055t + 0.002SOI(t)

σ̂ = 0.121

ξ̂ = −0.154

Checks of model goodness–of–fit can be dome in the usual way, and return level esti-

mates obtained given values of time and SOI.
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5 Non–stationary extremes

5.4 Rainfall in New York

Recall Section 3.2 in which we modelled rainfall extremes in New York using a threshold–

based approach. The Generalised Pareto distribution was applied to rainfall exceedances

over a threshold of u = 30mm, giving estimates of the scale and shape as

σ̂ = 7.44(0.958) ξ̂ = 0.184(0.101)

(respectively). Recall that the GPD(σ, ξ) arises from the GEV(µ, σ, ξ), where the GPD

scale parameter is a function of the GEV location and shape parameters. Thus, at-

tempting to model any trend in our threshold exceedances is usually done through

linear modelling of the scale parameter σ (the GPD doesn’t have a location parameter

per se). Since the scale parameter σ must be positive, we might choose to model a

trend through time as

σ(t) = exp{β0 + β1t}, (5.6)

where t is, once again, an indicator of time. There are 17,531 observations in the rainfall

series (stored in the vector rain in R); thus, to check for a dependence on time, we set

up the following covariate matrix in R:

> ti = matrix(ncol = 1, nrow = 17531)

> ti[, 1] = seq(1, 17531, 1)

Then the code to fit the model which allows for a linear trend through time is similar to

that used in the previous sections for the Venice and Fremantle sea level data, but now

we must specify the exponential “link function” for the scale parameter, as specified by

Equation (5.6):

> rain = scan("newyork.txt")

> library(ismev)

> gpd.fit(rain, threshold = 30, ydat = ti, sigl = 1, siglink = exp, show

= FALSE)

You can try this yourself; the fitted model gives

σ̂ = exp{1.804 + 0.00002t} and ξ̂ = 0.198

with a maximised log–likelihood of –484.6017. Thus, comparing to the stationary model

(results shown on page 56), we get

D = 2{−484.6017 − (−485.0937)} = 0.984,

which is small relative to χ2
1(0.05) = 3.841. Thus, there is no evidence of a (linear)

trend in the log–scale parameter.
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5.5 Generalisation

5.5 Generalisation

With reference to the examples discussed so far, we could model non–stationarity

through any of the parameters in our extremal model (be that the GEV or the GPD).

For example, take a non–stationary GEV model to describe the distribution of Xt, for

t = 1, 2, . . . ,m:

Xt ∼ GEV(µ(t), σ(t), ξ(t)),

where each of the model parameters have an expression in terms of a parameter vector

β and some covariates. The likelihood is then

L(xt;β) =
m
∏

i=1

g(xt;µ(t), σ(t), ξ(t)),

where g is the GEV density function. From this, we can form the log–likelihood, and

then maximise in the usual way (for example, using nlm in R).

In terms of threshold exceedances Yt, t = 1, 2, . . . , k, we could replace the GEV with

the GPD:

Yt ∼ GPD(σ(t), ξ(t)),

with σ being defined as in Equation (5.5) to retain the positivity of the GPD scale.

5.6 Wind speed extremes at High Bradfield

Recall the wind speed data observed at High Bradfield, in the Peak District, first in-

troduced in Section 4.2. These data were collected every hour, over a period of 10

years, from January 1st 2003 to December 31st 2012. A time series plot of the first four

years of data (just over 35,000 observations) is shown below in Figure 5.6. We thought

about how to deal with the dependence between successive observations in Chapter 4

(by declustering); however, it is clear from Figure 5.6 that wind speeds at this location

also vary seasonally, suggesting a departure from the ideal of stationarity.

To investigate further, Figure 5.7 shows the wind speed distribution at High Bradfield

by month. Although any seasonal changes are less obvious in the middle portion of the

data, there is some evidence for seasonal variation in the extremes – this can be seen by

marked differences in the upper quartile wind speeds, by month, and in the upper tails

more generally. The green line cutting across the boxplots in Figure 5.7 corresponds to

a monthly varying threshold used to identify wind speeds as extreme; twelve separate

mean residual life plots (see Section 3.2.1) were applied to the wind speeds from each

month to obtain these thresholds.
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Figure 5.6: Time series plot showing the first four years of wind speed data at High Bradfield in

the Peak District.
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Figure 5.7: Boxplots of wind speed data at High Bradfield, by month.

In the literature, various methods have been considered to deal with non–stationarity

arising from such seasonal variation, and we will now outline each of them.

5.6.1 Single season approach

Under the single season approach, an extremal model is fitted to the extremes of an

environmental process from the season which gives rise to the ‘most extreme’ extremes.

For example, with reference to the Bradfield wind speed data and Figures 5.6 and

5.7 above, January is clearly the windiest month. Thus, a single season approach

would disregard data from all other months, and perhaps fit the GPD to threshold

excesses from January only. This approach clearly has some appeal: it is easy to

implement and it focuses on the largest (or smallest) extreme values. However, apart

from assuming that extremes within the chosen month, or season, are stationary (and

experience suggests that certain times in January are windier than other times in the

same month), this is extremely wasteful of data – especially if we then decluster to filter

out any dependence.
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5.6 Wind speed extremes at High Bradfield

5.6.2 Seasonal piecewise approach

It is usual in strongly seasonal climates for the occurrence of extreme winds to be

confined to a certain part of the yearly cycle. In the U.K., for example, it is very

unusual for wind damage to occur outside the period October–March. The seasonal

variation observed at Bradfield (Figures 5.6 and 5.7) might be expected, since prolonged,

anticyclonic periods are more prevalent during June, July and August than in winter

months. A model which takes account of seasonal variability will identify all gusts

which are large given the time of year as extreme. There is only a point to modelling

the extremes which occur in summer months, for example, if we believe that they can

help us understand what happens in winter months, where genuinely large events can

occur. For this to be realistic, we must assume that the same mechanism is responsible

for the generation of large gusts throughout the year, and it is just the scale of this

mechanism which changes. Indeed, in temperate climates (such as that of the U.K.), the

same alternating sequence of anticyclones and depressions leads to most of the storms

which occur throughout the year; the seasonal variability comes from the severity of

these systems.

For wind speed data, there is no natural partition of the year into separate seasons. Here,

we might take our seasonal unit to be one month; Fawcett and Walshaw (2006; 2007;

2008) argue that by dividing the year into twelve equal length seasons, we can strike

a good balance between the two conflicting requirements of (a) reflecting reasonably

accurately the continuous nature of seasonal changes in climate, and (b) retaining a

substantial amount of data for analysis within each season.

Table 5.1 shows the results of fitting a separate GPD to excesses above the monthly

varying thresholds shown in Figure 5.7. Temporal dependence has been accounted for

by filtering out a set of independent threshold exceedances using runs declustering; after

extensive discussions with a meteorologist, various values of cluster separation interval

κ were used, depending on the month, to carefully identify clusters – where a cluster of

extreme wind speeds was deemed to be a “storm”.

The approach followed so far – known as the seasonal piecewise approach – avoids

the problems of non–stationarity as a result of seasonal variability (provided we can

safely assume stationarity within each seasonal unit). However, in terms of return level

inference, it would not make practical sense to have monthly varying estimates of the

r–year return level zr. To include information from all months in our return level

estimation procedure, we solve

12
∏

m=1

H(ẑr; λ̂um , σ̂m, ξ̂m) = 1− 1

rny

for ẑr, where H is the GPD distribution function and ny is the (average) number of

observations per year (see Section 3.2.5 for more details about return level estimation
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5 Non–stationary extremes

Month (m) um nm σ̂m ξ̂m

1 55.341 28 21.373 (5.358) −0.420 (0.183)

2 41.531 24 15.130 (4.635) −0.226 (0.233)

3 48.100 29 23.277 (6.316) −0.894 (0.259)

4 39.910 29 14.853 (4.448) −0.440 (0.249)

5 31.943 46 9.456 (1.990) −0.158 (0.147)

6 35.670 35 12.329 (2.592) −0.409 (0.143)

7 32.290 36 12.517 (2.609) −0.605 (0.161)

8 32.639 34 10.199 (2.361) −0.203 (0.159)

9 33.232 49 18.772 (3.668) −0.255 (0.138)

10 44.914 34 11.669 (3.533) −0.274 (0.254)

11 48.394 33 14.991 (3.381) −0.225 (0.149)

12 49.341 35 18.681 (4.229) −0.416 (0.166)

Table 5.1: Extreme wind speeds at Bradfield: separate months model fitted to cluster peak excesses.

using the GPD). Thus, we need to solve

12
∏

m=1

{

1− λ̂u

[

1 + ξ̂

(

ẑr − um
σ̂m

)]

−1/ξ̂m

+

}

=
1

rny
(5.7)

for ẑr. This equation cannot be solved analytically; rather, a numerical procedure must

be used. This is easy to do in R. Suppose we wanted to estimate the 10–year return

level. First of all, define a function f which returns equation (5.7) above:

> f = function(z){

+ r = 10

+ ny = 365.25*24

+ sigma = c(21.373, 15.130, ... )

+ xi = c(-0.420, -0.226, ... )

+ u = c(55.341, 41.531, ... )

+ nobs = c(31*24*10, 28*24*7+29*24*3, ... )

+ lambda = c(28/nobs[1], 24/nobs[2], ... )

+ component = vector("numeric", 12)

+ inner = vector("numeric", 12)

+ for(m in 1:12){

+ inner[m] = max((1+xi[m]*((z - u[m])/sigma[m])), 0)

+ component[m] = 1-lambda[m]*((inner[m])^(-1/xi[m]))}

+ answer = prod(component)-(1-1/(r*ny))

+ return(answer)}
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5.6 Wind speed extremes at High Bradfield

Return period (r years)

10 50 200 1000

ẑr (st. err.) 102.33 (3.970) 104.59 (15.951) 106.21 (23.793) 108.89 (44.865)

Table 5.2: Return level estimates for the Bradfield wind speed data (units are knots). Standard

errors are shown in parentheses.

Then we apply the uniroot function to find the root of answer; this function requires

a range of values to search within:

> uniroot(f, lower = 0, upper = 200)

$root

[1] 102.3291

$f.root

[1] -6.242917e-11

$iter

[1] 12

$init.it

[1] NA

$estim.prec

[1] 6.103516e-05

Thus, we have ẑ10 = 102.3291 – that is, we can expect to see a wind speed in excess

of 102.3 knots about once every 10 years. Replacing r with 50, 200 and 1000 gives the

return level estimates shown in Table 5.2 overleaf.

Table 5.2 shows standard errors for our return level estimates, obtained via the delta

method (see Section 3.2.5). However, we now have

V =

























λ̂u1(1−λ̂u1 )
N1

0 . . . 0 . . . 0

0
. . .

. . .
...

. . .
...

...
. . . λ̂u12 (1−λ̂u12 )

N12
0 . . . 0

0 . . . 0 v1,1 . . . v1,24
...

. . .
...

...
. . .

...

0 . . . 0 v24,1 . . . v24,24

























,

where vi,j denotes the (i, j)–th term of the variance–covariance matrix of σ̂m and ξ̂m,
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5 Non–stationary extremes

m = 1, . . . , 12. Hence, by the delta method,

Var(ẑr) ≈ ∇zTr V∇zr,

where

∇zTr =

[

∂zr
∂λu1

, . . . ,
∂zr
∂λu12

,
∂zr
∂σ1

, . . . ,
∂zr
∂σ12

,
∂zr
∂ξ1

, . . . ,
∂zr
∂ξ12

]

,

evaluated at (λ̂u1 , σ̂1, ξ̂1, . . . , λ̂u12 , σ̂12, ξ̂12). A modification of the usual procedure for

obtaining confidence intervals based on the profile log–likelihood is also available (see,

for example Fawcett (2005)), but this goes beyond the scope of MAS8306.

As an aside, notice how the estimate of the 50–year return level wind speed here differs

to that when we assumed stationarity in Section 4.3.2: assuming stationarity gives

ẑ50 = 101.533 knots, a slight under–estimation relative to the approach which uses a

piecewise seasonal approach to inference. In fact, this under–estimation is a common

observation when we fail to account for seasonal variability correctly.

5.6.3 Smoothly varying seasonal parameters

Various authors (e.g. Fawcett and Walshaw (2006)) have investigated the use of continu-

ously varying parameters for the GPD when seasonal variation is present. For example,

Fourier forms can be used to allow the GPD scale and shape to vary smoothly through

time. However, such analyses for the Bradfield wind speed data yielded little, if any, im-

provement over the seasonal piecewise approach (in terms of model fit and precision of

standard errors for return levels), and so the added computational burden was deemed

unnecessary.
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