Threshold methods

3.1 Background and theoretical motivation

Threshold methods use a more natural way of determining whether an observation
is extreme - all observations greater than some high value (threshold) are considered.
This allows more efficient use of data and avoids the problems that can arise as a result
of blocking (see Section 2.6), but brings its own problems. We must first go back and
consider the asymptotic theory appropriate for this new situation.

Suppose once more that X7, Xo,..., X, is a sequence of IID random variables having
marginal distribution F', and — once again — let

M, =max{X;,..., X,}.
We know from Chapter 2 that

Pr{M, <z} =~ G(x),

ool 2]

is the Generalised Extreme Value distribution with location, scale and shape u, o and

where

& respectively.
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3 Threshold methods

Theorem (Distribution of threshold excess)

For a large enough threshold w, the distribution function of (X — u), conditional on
X > u, is approximately

-1/¢
H(y)=1- <1 + ny> , (3.1)
7/ +
defined on y > 0, where
g=0+&u—p). (3.2)

Proof

48



3.1 Background and theoretical motivation

D ...proof continued...
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3 Threshold methods

The family of distributions defined by Equation (3.1) is known as the Generalised Pareto
family; the distribution itself is often referred to as the Generalised Pareto Distribution,
or GPD for short.

Comments

e If block maxima have approximate distribution G, then threshold excesses have
a corresponding distribution given by the Generalised Pareto family.

e The parameters of the GPD are uniquely determined by those of the GEV:

— The parameter ¢ in Equation (3.1) is equal to that of the corresponding
GEV;

— The GPD scale parameter is a function of the GEV location and shape
parameters.

e Estimates of the GEV parameters are sensitive to the size of block chosen to
identify extremes; estimates of the GPD parameters are ‘stable’.

e The duality between the GEV and GPD means that the shape parameter £ is
dominant in determining the qualitative behaviour of the GPD:

— If £ < 0 the distribution of excesses has an upper bound;
— if £ > 0 the distribution has no upper limit;
— the case £ = 0 is also unbounded, and is taken as the limit £ — 0, giving
_ Y .
H(y)—l—exp _g ) y>0a
i.e. an exponential distribution with rate 1/&.
e Until this point, we have used the notation & to denote the scale parameter of the
GPD, so as to distinguish it from the corresponding parameter of the GEV. For

notational convenience we now drop this distinction, using ¢ to denote the scale
parameter within either family.
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3.1 Background and theoretical motivation

Example 3.1

Suppose X1, Xo,..., X, is a sequence of independent exp(1) random variables. Show
that the limiting distribution of threshold excesses belongs to the generalised Pareto
family.

>
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3 Threshold methods

Example 3.2

Suppose X1, Xo,..., X, is a sequence of independent U(0, 1) random variables. Show
that the limiting distribution of threshold excesses belongs to the generalised Pareto

family.

ES
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3.2 Application: rainfall extremes in New York

3.2 Application: rainfall extremes in New York

The file newyork.txt, available to download from the course webpage, gives daily
rainfall accumulations (in mm) for New York City for the years 1914-1961 (inclusive).
Much of the northeastern United States is relatively low—lying and so prone to flooding;
this is made much worse on the odd occasion that a hurricane travels this far north (for
example, “Superstorm Sandy” in 2012). Thus, analysing extreme rainfall data has a
real practical motivation here, in terms of river and sea flood defence systems. In this
Section, we will illustrate a complete threshold—based analysis of the rainfall extremes
observed at New York.

The data have been scanned into R from the course webpage and stored in the
vector rain:

‘> rain = scan( ) ‘

3.2.1 Threshold choice

The threshold stability property of the GPD means that if the GPD is a valid model for
excesses over some threshold ug, then it is valid for excesses over all thresholds u > wy.
Denoting by o, the GPD scale parameter for excesses over threshold ug, the expected
value of our threshold excesses, conditional on being greater than the threshold, is

EX —ulX >u] = 0“10725“ (3.3)
Thus, for all u > ug, E[X —u|X > u], is a linear function of w. Furthermore, E[X —
u|X > u] is simply the mean of the excesses of the threshold u, for which the sample
mean of the threshold excesses of u provides an estimate. This leads to the mean residual
life plot, a graphical procedure for identifying a suitably high threshold for modelling
extremes via the GPD. In this plot, for a range of candidate values for u we identify the
corresponding mean threshold excess; we then plot this mean threshold excess against
u, and look for the value uy above which we can see linearity in the plot.

We can easily do this from first principles in R. First of all, we set up a vector of possible
thresholds, starting at zero and going up to the maximum value in our dataset:

> u = seq(0, max(rain), 0.1)

The vector x is then set up to take the corresponding values for the mean excess over
each value in u:
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3 Threshold methods

> x = vector( , length(u))

The following code computes the mean excess for each value in u and stores it in x:

> for(i in 1:length(x)){

T threshold.exceedances = rain[rain>ul[i]]
+ x[i] = mean(threshold.exceedances-ul[i])
+ 3}

The MRL plot is produced using the following code, giving the plot in Figure 3.1:

> plot(x~u, type='l', main= , ylab= )
MRL plot
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i .
8
c
b
E

o

0 20 40 60 80

Figure 3.1: Mean residual life plot for the New York rainfall data.

Though interpretation of these plots can be subjective, linearity in Figure 3.1 might be
suggested above uy = 30mm (information in the far right-hand-side of these plots is
unreliable; here, variability is high due to the limited amount of data above such high
thresholds). Of course, there is a function in the ismev package that produces exactly
the same plot, but including 95% confidence bounds for the mean excess:

> library(ismev)
> mrl.plot(rain)
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3.2 Application: rainfall extremes in New York

3.2.2 Data pre—processing

In problems sheet 1, we considered how to use R to extract the set of block maxima
to be modelled by the generalised extreme value distribution. Writing R code to do
this can be a time—consuming process, and the code needs to written specifically for
the data being analysed. In a threshold—based analysis the data pre—processing is far
more straightforward. Using ug = 30 as our threshold for identifying extremes (see
Figure 3.1), we can easily obtain our set of threshold exceedances for modelling with
the generalised Pareto distribution:

> above.threshold = rain[rain>30]
> threshold.exceedances = above.threshold-30

We can look at our set of threshold exceedances by typing:

> threshold.exceedances

[1] 1.8 2.5 1.8 14.5 0.5 13.2 5.6 8.1 2.0 1.8 3.0 9.1 0.5
1.8 2.3

[16] 3.0 0.5 2.5 18.5 5.3 10.6 0.5 4.3 2.8 0.5 15.7 1.8 3.5
3.5 1.8

[31] 4.8 5.3 7.8 46.7 2.3 4.0 3.8 6.6 0.5 15.7 56.6 5.6 17.8
17.5 4.3

[46] 18.5 0.7 13.4 29.4 5.1 23.3 3.5 0.5 0.2 10.9 12.7 53.3 24.9
29.2 1.8

[61] 7.3 2.5 4.037.3 1.2 0.2 6.1 6.8 8.4 1.0 3.3 17.0 2.0
3.0 8.1

[76] 0.5 42.4 4.3 7.1 3.0 10.9 9.9 17.0 6.3 0.5 0.5 25.9 1.8
21.3 55.3

[91] 11.9 0.5 3.0 5.6 25.9 14.2 8.1 4.3 1.8 2.0 1.8 5.6 15.2
0.5 9.4

[106] 0.2 14.5 1.8 3.8 21.6 5.3 29.4 3.5 5.3 0.5 6.8 17.8 12.9
7.6 25.4

[121] 5.3 12.4 3.0 3.0 10.1 4.8 8.1 9.4 4.0 5.6 4.3 3.5 1.0
6.6 6.3

[136] 8.4 8.1 17.0 1.0 0.5 1.2 5.6 18.811.9 1.7 1.2 21.3 3.5
7.6 9.4

[151] 9.4 15.7

Thus, we have identified 152 observations as being extreme. Compare this to an analysis
of annual maxima in which we would have only 48 observations to work with — one from
each year.
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3 Threshold methods

3.2.3 Fitting the GPD

The most commonly—used approach to fit the GPD to the set of threshold excesses is
that of maximum likelihood. The GPD log-likelihood function can be derived in the
usual way; this is left as an exercise (actually, you are asked to do this in problems sheet
2!), but can be shown to be:

152

l(o,&y) = —152logo — (1 +1/€) Zlog <1 + %) ; (3.4)
i=1 +
where y = (y1,...,y152) are the set of exceedances above threshold ug = 30. For

the case & = 0, interpreted as & — 0, we have the log-likelihood for an exponential
distribution with rate 1/0 (again, see problems sheet 2). In R, we could now proceed
as we did in Section 2.2.2 when fitting the GEV; that is, we could write a function
which computes the (negative) log-likelihood for the GPD (using the 152 threshold
excesses), and then use the nlm routine to minimise this with respect to 0 = (o,¢).
Actually, this is exactly what you will have to do in problems sheet 2! Here, we will
obtain maximum likelihood estimates of the GPD parameters for our rainfall extremes
by using the gpd.fit function in ismev:

> gpd.fit(rain,30)
$threshold
[1] 30

$nexc
[1] 152

$conv
[1] O

$nllh
[1] 485.0937

$mle
[1] 7.4422639 0.1843027

$rate
[1] 0.008669861

$se
[1] 0.9587773 0.1011714
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3.2 Application: rainfall extremes in New York

Thus, our fitted model is given by

& =7.440(0.958) £ =0.184(0.101)

Note also that the output gives the number of exceedances (nexc = 152), the threshold
exceedance rate (rate = 0.0087; just the number of exceedances divided by the total
length of the series, that is, 152/17532), and the value of the minimised negative log—
likelihood (nllh; thus, the maximised log—likelihood is —485.0937).

3.2.4 Model adequacy

We can use probability plots and quantile plots to check the suitability of the fitted
GPD to the set of extracted threshold exceedances; as demonstrated in Chapter 2
(Section 2.2.3), such plots are easily done from first principles in R; however, the function
gpd.diag in ismev does for the GPD exactly what gev.diag did for the GEV in Chapter
2 (Section 2.2.5):

> A = gpd.fit(rain, 30, show = FALSE)
> gpd.diag(A)

The resulting plots are shown overleaf in Figure 3.2; all diagnostics seem to indicate a
reasonable fit of the GPD to our rainfall extremes.
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Figure 3.2: Diagnostic plots indicating the goodness—of—fit of the GPD to the New York rainfall
extremes.
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3 Threshold methods

3.2.5 Return level estimation

Figure 3.2 seems to indicate that the GPD is suitable for our set of threshold exceedances
Yi,- -, Y1525 that iS7

: q-1/8
Pr(X > u+y|X > u) ~ 1+ : (3.5)
71
for £ # 0. Working with the left-hand-side of (3.5), we see that
Pr(X >u+y)
Pr(X X =—"
r(X >u+ylX >u) PrX > u)
giving
Pr(X >u+y) =Pr(X > u)Pr(X > u+y|X > u).
After substitution of (3.5), we get
¢ ~1/€
Pr(X >uty) ~ Ao|1+2Z| | (3.6)
(o
J'_

where A, = Pr(X > u) and is estimated as the empirical threshold exceedance rate Au.
Now each y;, i = 1,...,152, are the raw rainfall observations (exceeding the threshold)
minus the threshold (z; — w), as the GPD models the magnitude of excess over u;
substitution of y; = z; — u into (3.6) gives

Pr(X >2) ~ Ay [1+é<x;”)]+w. (3.7)

Thus, an estimate of the level z; that is exceeded on average once every t observations
is obtained as the solution of

) e uNTVE
N
o n t

giving

for £ # 0, and
Zr = u + olog(tAy)

when £ = 0 (see problems sheet 2). By construction, z; is the t—observation return level,
however, it is often more convenient to give return levels on an annual scale, so that
the r—year return level is the level expected to be exceeded once every r years. If there
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3.2 Application: rainfall extremes in New York

are n, observations per year, this corresponds to the t-observation return level with
t = r x n,. Hence, an estimate of the r—year return level z, is defined by

5 = u+% [(myAu)f—1 , (3.9)

unless ¢ = 0, in which case

~
~

Zr = u+dlog(rnyAy).

Thus, for the New York City rainfall extremes, we have

7.44
250 = 30 + g7 [(50 X 365.25 x 0.00867)"1% — 1] = 92.24mm

as an estimate of the 50-year return level, where n, = 365.25 to account for leap years

(we have daily observations).

The delta method can, once again, be used to obtain estimated standard errors
for such return levels. We should, however, also include uncertainty in our estimate
of A\, in the calculation (since z, is a function of \,). Since the number of threshold
exceedances follows a binomial distribution Bin(N, \,), where N is the total number
of observations in the series, we know (from MAS2302) that

Var(Ay) = Au(1 — Ay)/N = 0.00072
in our rainfall example. Then, by the delta method,
Var(3,) ~ VzlVVz,.

Here, V is now the variance-covariance matrix of the triple (\,,&,&)”; in our rainfall
example, this is

0.00072
vV = 0 0.9582 ,
0 —0.0655 0.1012

assuming that Var(Ay, &) = Var(Ay, €) = 0. The value —0.0656 is the estimated covari-
ance between ¢ and &, and is found in A$cov (recall that we stored the fit of the GPD
to our rainfall extremes in A):

> A$cov

[,1] [,2]
[1,] 0.91925394 -0.06550662
[2,] -0.06550662 0.01023566

We can now proceed as in Section 2.2.4 to obtain standard errors.
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3 Threshold methods

For example, obtain the standard error for the 50—year return level estimate of rainfall
at New York.

ES
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3.2 Application: rainfall extremes in New York

3.2.6 Profile likelihood

Recall that confidence intervals for return levels constructed using standard errors are
usually not appropriate; rather, we should construct intervals using profile likelihood.
We have already considered the idea of using the profile likelihood to obtain more
realistic confidence intervals for return levels in Section 2.4; we now implement the
ismev command gpd.prof to construct the profile log-likelihood for our estimate of
the 50 year return level at New York.

Recall that we previously stored our results of fitting the GPD to the set of rain-
fall extremes observed at New York in A, that is:

> A = gpd.fit(rain, 30)
$threshold
[1] 30

$nexc
[1] 152

$conv
[1] O

$nllh
[1] 485.0937

$mle
[1] 7.4422639 0.1843027

$rate
[1] 0.008669861

$se
[1] 0.9587773 0.1011714

Now typing:

> gpd.prof (A, 50, xlow=70, xup=150, npy=365.25)
If routine fails, try changing plotting interval

produces the plot shown in Figure 3.2. Notice that you need to provide the gpd.prof
function with a range of values at which to fix the return level, before maximising the
log—likelihood function with respect to the remaining parameters. Here, we have chosen
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3 Threshold methods

a range from 70—150, although this sometimes requires experimentation. Notice also
that you need to tell the function the (average) number of observations per year (365.25
here, to account for leap years).

Just to check, you can also superimpose your estimated return level on the plot,
just to make sure all is well. Recall from Section 3.2.5 that this was

Z50 = 92.24 mm,

and so the code

> abline(v=92.24)

inserts the vertical line that can be seen on Figure 3.2. As you can see, this is at the mode
of the profile log-likelihood — as it should be! The default confidence interval is the 95%
confidence interval, and so the gpd.prof function automatically places a horizontal
line at a distance of $x3(0.05) = 1.921 from the maximised value of the profile log—
likelihood (see Section 2.4). This gives us a 95% confidence interval, based on profiling
the log-likelihood, of about (74.1mm, 143mm). Planners and civil engineers often
design to the upper end—point of such confidence intervals, just to make sure they don’t
“under—protect”. When feeding back such information to non—statisticians, we often say
something like “once every fifty years, we might expect daily rainfall accumulations in
New York City to reach up to about 143mm”.

Compare the 95% confidence interval for the 50—year return level obtained from profiling
the log-likelihood to that you would obtain by using the standard error. Comment.

ESY
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Figure 3.3: Profile log—likelihood curves for the 50 year return level daily rainfall accumulation at
New York.
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