Hints: Question 1

- (d) Define the first component distribution as the one with the larger mean.
 - This is the component with the smaller variance
 - Low values of \bar{x} are consistent with component 2
 - As \bar{x} increases so does the (posterior) probability of component 2 (until around $\bar{x} = 16.5$)
 - Show that p_1^* depends on \bar{x} only through B_1 and B_2
 - Express $D_2B_2^2 D_1B_1^2$ as a quadratic in \bar{x}
 - Show that there exists a k such that your quadratic increases as \bar{x} increases $(\bar{x} > k)$ and increases as \bar{x} decreases $(\bar{x} < k)$

Hints: Question 2

- (h) Follow solution on page 50 of the lecture notes, but with $\bar{Y}|\mu, \tau \sim N(\mu, 1/m\tau)$ due to the central limit theorem you should get a generalised t distribution
- (i) Produce plot as in part (d)
- (j) Use the formula for the predictive distribution, as given in section 1.4.2 of the notes. With the hint, we have

$$f(v|\boldsymbol{x}) = \int f(v|\tau)\pi(\tau|\boldsymbol{x})d\tau,$$

where, using the hint, we have $v|\tau \sim Ga((m-1)/2, m\tau/2)$ and - as usual - $\tau | \boldsymbol{x} \sim Ga(G, H)$. The solution to Example 1.10 in the notes *might* prove useful. A bit.

(k) Sorry, not giving help here... I know, that is cruel. But sorry