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Chapter 4. Non-conjugate multi-parameter problems

Here we will study some multi-parameter problems in which the prior
distribution does not have to be conjugate

Inferences are made by using techniques which simulate realisations
from the posterior distribution

These methods are generally referred to as Markov Chain Monte
Carlo techniques, and often abbreviated to MCMC

Two main MCMC techniques:
1. the Gibbs sampler – at the forefront of the recent MCMC revolution
2. Metropolis-Hastings sampling

MCMC schemes based on the combination of these two fundamental
techniques are still at the forefront of MCMC research



4.1 Why is inference not straightforward in non-conjugate
problems?

Example 4.1

Consider again the problem in section 2.2

Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent)

Here we showed that a NGa prior for (µ, τ)T was conjugate

But what if a NGa(b, c , g , h) prior distribution does not adequately
represent our prior beliefs?

Suppose instead that our prior beliefs are represented by independent
priors for the parameters

µ ∼ N

(
b,

1

c

)
and τ ∼ Ga(g , h)

What is the posterior distribution for (µ, τ)T ?

Solution

. . .



In this case . . .

What is the posterior mean of µ and of τ?

What are their marginal distributions?

How can we calculate the moments E (µm1τm2 |x) of this posterior
distribution?

Marginal posterior density for µ

π(µ|x) =

∫ ∞
0

π(µ, τ |x) dτ

=

∫ ∞
0

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dτ∫ ∞

−∞

∫ ∞
0

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ



In this case . . .

What is the posterior mean of µ and of τ?

What are their marginal distributions?

How can we calculate the moments E (µm1τm2 |x) of this posterior
distribution?

Marginal posterior density for µ

π(µ|x) =

∫ ∞
0

π(µ, τ |x) dτ

=

∫ ∞
0

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dτ∫ ∞

−∞

∫ ∞
0

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ



Marginal posterior density for τ

π(τ |x) =

∫ ∞
−∞

π(µ, τ |x) dµ

=

∫ ∞
−∞

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dµ∫ ∞

−∞

∫ ∞
0

τ g+ n
2−1 exp

{
−c

2
(µ− b)2 − hτ − nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ

General moments

E(µm1τm2 |x)

=

∫ ∞
−∞

∫ ∞
0

µm1τm2π(µ, τ |x) dτ dµ

=

∫ ∞
−∞

∫ ∞
0

µm1τm2 × τg+ n
2
−1 exp

{
−

c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ∫ ∞

−∞

∫ ∞
0

τg+ n
2
−1 exp

{
−

c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ
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Comments

These integrals cannot be determined analytically

It is possible to use numerical integration methods or approximations
(for large n)

However, in general, the accuracy of the numerical approximation to
the integral deteriorates as the dimension of the integral increases

How do we analyse models with a large number of parameters?



Comment

Not using a conjugate prior distribution can cause many basic
problems such as difficulty in plotting the marginal posterior density
or determining posterior moments

But having to use conjugate priors is far too restrictive for many real
data analyses:

(i) our prior beliefs may not be captured using a conjugate prior
(ii) most models for complex data do not have conjugate priors

Until relatively recently, practical Bayesian inference for real complex
problems was either not feasible or only undertaken by the dedicated
few prepared to develop bespoke computer code to numerically
evaluate all the integrals etc.



4.2 Simulation-based inference

Can get around the problem of having to work out integrals

Base inferences on simulated realisations from the posterior
distribution

This is the fundamental idea behind MCMC methods

If we could simulate from the posterior distribution then we could use
a very large sample of realisations to determine posterior means,
standard deviations, correlations, joint densities, marginal densities
etc.



Imagine you wanted to know about the standard normal distribution –
its shape, its mean, its standard deviation

But didn’t know any mathematics so that you couldn’t derive say the
distribution’s zero mean and unit variance

However you’ve been given a “black box” which can simulate
realisations from this distribution

Here we’ll use the R function rnorm() as the black box simulator

If you decide to generate 1K realisations the output might look
something like

Iteration

x

0 200 600 1000

−
3

−
1

0
1

2

0 5 15 25

0.
0

0.
4

0.
8

Lag

A
C

F

x

D
en

si
ty

−3 −1 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

Iteration

x

0 200 600 1000

−
3

−
1

1
2

3

0 5 15 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series  x

x

D
en

si
ty

−3 −1 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure: Summaries of the 1K realisations from the black box simulator



In these plots

Left: the trace plot of the output – the realisations from the black box
sampler in the order they are produced

Mid: the autocorrelation (ACF) plot – shows the correlation between
{x1, . . . , xN−k} and {xk+1, . . . , xN} for k ≥ 0. Call k as the lag. It
shows how correlated the realisations are at different lags. The lag 0
autocorrelation corr(xi , xi ) must be one (by definition). Here the
(sample) correlation between say consecutive values corr(xi , xi+1) will
be almost zero, which shows that the simulator rnorm() produces
independent realisations. This is also the case for correlations at all
positive lags. This sample ACF plot tells that the simulator generates
independent sample.

Right: the density histogram of the realisations. This tells that what the
standard normal distribution is like.



If you simulate another 1K realisations then the output you get will
be a different set of realisations but from the same distribution

Both sets of realisations might look like
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Figure: Summaries of the 1K realisations from the black box simulator



We can also estimate various quantities of the standard normal
distribution from these simulated datasets of 1K realisations

1st Qu. Median Mean 3rd Qu. St.Dev.

Dataset 1 -0.65240 -0.00130 -0.00192 0.64810 0.96049
Dataset 2 -0.69880 -0.09637 -0.03274 0.67330 0.99599

The numerical summaries are slightly different but essentially tell the
same story

In each Dataset, the mean and median are around zero and the
standard deviation is around one.

We know from previous modules that there is sample variability in
estimates of means from random samples



Now look at two datasets with 10K simulated realisations:

1st Qu. Median Mean 3rd Qu. St.Dev.

Dataset 3 -0.66820 -0.00048 0.00370 0.68070 0.99593
Dataset 4 -0.67130 0.01354 0.01008 0.67920 1.00691
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Figure: Summaries of the 10K realisations from the black box simulator



Now estimates have much less sampling variability due to the larger
sample size

In fact we can estimate any “population” quantity to any required
accuracy simply by simulating a large enough collection of realisations

These analyses show how we can make inferences, calculate means,
variances, densities etc by using realisations from a distribution. In
the rest of this chapter, we will look into how we can construct
algorithms for simulating from (complex) posterior distributions, from
which we can then make inferences



4.3 Motivation for MCMC methods

We consider a generic case where we want to simulate realisations of
two random variables X and Y with joint density f (x , y)

This joint density can be factorised as

f (x , y) = f (x) f (y |x)

and so we can simulate from f (x , y) by first simulating X = x from
f (x), and then simulating Y = y from f (y |x)

On the other hand, we can write

f (x , y) = f (y) f (x |y)

and so simulate Y = y from f (y) and then X = x from f (x |y)

Assume that simulating from f (y |x) and f (x |y) is straightforward



The key problem: in general, we can’t simulate from the marginal
distribution, f (x) and f (y)

Suppose we have a single simulated sample point from the marginal
distribution for X , that is, we have an X = x from f (x). We can now
simulate a Y = y from f (y |x) to give a pair (x , y) from the bivariate
density f (x , y).

Given that this pair is from the bivariate density, the y value must be
from the marginal f (y), and so we can simulate an X = x ′ from
f (x |y) to give a new pair (x ′, y) also from the joint density f (x , y).

But now x ′ is from the marginal f (x), and so we can simulate a
Y = y ′ from f (y |X = x ′) to give a new pair (x ′, y ′) also from the
joint density f (x , y).

And we can keep going.

This alternate sampling from conditional distributions defines a
bivariate Markov chain, and the above is an intuitive explanation for
why f (x , y) is its stationary distribution
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4.4 The Gibbs sampler

Suppose we want to generate realisations from the posterior density
π(θ|x), where θ = (θ1, θ2, . . . , θp)T , and that we can simulate from
the full conditional distributions (FCDs)

π(θi |θ1, . . . , θi−1, θi+1, . . . , θp, x) = π(θi |·), i = 1, 2, . . . , p

The Gibbs sampler follows the following algorithm:
1 Initialise the iteration counter to j = 1.

Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )T .

2 Obtain a new value θ(j) from θ(j−1) by successive generation of values

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , . . . , θ(j−1)

p , x)

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ(j−1)

p , x)

...
...

...

θ(j)
p ∼ π(θp|θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
p−1, x)

3 Change counter j to j + 1, and return to step 2.



Comments

This algorithm defines a homogeneous Markov chain as each
simulated value depends only on the previous simulated value and not
on any other previous values or the iteration counter j

It can be shown that π(θ|x) is the stationary distribution of this chain
and so if we simulate realisations by using a Gibbs sampler, eventually
the Markov chain will converge to the required posterior distribution



Illustration of burn-in
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Illustration of burn-in in two dimension

Different starting points

Chains converge to the “same” distribution



More comments

This is an iterative scheme

It needs a period to get to convergence: the burn-in period

As it is a Markov chain, successive iterates are not independent

We can get accurate values for E (θ|x), SD(θ|x) or even π(θ|x) by
running the sampler for a long time



4.4.1 Processing output from a Gibbs sampler

Consider a p = 2 parameter problem, with θ = (µ, τ)T

Run Gibbs sampler for N iterations after burn-in, giving

{(µ(1), τ (1)), (µ(2), τ (2)), . . . , (µ(N), τ (N))}

Can calculate features of the posterior distribution using their sample
equivalents: µ̄, τ̄ , s2

µ, s2
τ and rµτ

How accurate are these “estimates”?

Difficult to determine exactly as they are not a random sample

If it was a random sample then (for large N) approximate 95% CI for
µ is

µ̄± 1.96sµ√
N

But we don’t have a random sample! What to do?
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How to deal with autocorrelation

But we don’t have a random sample! What to do?

Method one: Assume the output follows some Markov chain model,
and use CI of this model to approximate the true CI.

E.g. the autoregressive model with order 1, AR(1), is

µ(t) − µ = θ(µ(t−1) − µ) + εt , where εt ∼ N(0, 1).

The approximate 95% CI of µ depends on the sample autocorrelation
r(1) = Corr(µ(t), µ(t+1)), and is

µ̄± 1.96sµ√
N{1− r(1)}2

.

Effective sample size: Neff = N{1− r(1)}2.

In general, MCMC output with positive autocorrelations has
Neff < N.



How to deal with autocorrelation

In practise, the autocorrelation structure of the output is far too
complex to determine a simple formula for the accuracy of µ̄

Method two (more popular): thin the output – don’t take every
iterate

Sample autocorrelation function with lag k for µ is

r(k) = Corr(µ(j), µ(j+k)).

For example, if r(k) ' 0, k ≥ 2 then taking every 2nd iterate would
give a posterior sample

{(µ(1), τ (1)), (µ(3), τ (3)), . . . , (µ(2j+1), τ (2j+1), . . .)}

with autocorrelation function r∗(k) = 0, k ≥ 1, that is, this output
has very low autocorrelation

Generally we look at the ACF plot and choose the level of thinning
needed to give low autocorrelations

We will see how this works in some examples



N(0, 1) random sample
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Sample from a MA(1) process

xt = εt + θεt−1, where εt ∼ N(0, 1), and r(1) = θ, r(k) = 0, k ≥ 2.
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Thinned sample from a MA(1) process (thin = 2)
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Sample from a AR(1) process

xt = θxt−1 + εt , where εt ∼ N(0, 1), and r(k) ' r(1)k , k ≥ 2.
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Thinned sample from a AR(1) process (thin = 10)
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Strategy

1 Determine the burn-in period, after which the Gibbs sampler has
reached its stationary distribution
This may involve thinning the posterior sample as slowly snaking
trace plots may be due to high autocorrelations rather than a lack of
convergence

2 After this, determine the level of thinning to obtain a posterior
sample whose autocorrelations are roughly zero

3 Repeat steps 1 and 2 several times using different initial values to
make sure that the sample really is from the posterior distribution



4.4.2 Bayesian inference using a Gibbs sampler

Example 4.2

Construct a Gibbs sampler for the posterior distribution in Example 4.1:

Data: Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent)

Prior:

µ ∼ N

(
b,

1

c

)
and τ ∼ Ga(g , h), independent

Solution

. . .



R functions in the nclbayes library

gibbsNormal – implements this algorithm

mcmcProcess – used to remove the burn-in and thin the output

mcmcAnalysis – analyses the MCMC output

Look at a particular numerical example

Data: n = 100, x̄ = 15 and s = 4.5

Prior: µ ∼ N(10, 1/100) and τ ∼ Ga(3, 12), independently

Initialise Gibbs sampler at (10, 0.25)
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R commands used

library(nclbayes)

posterior=gibbsNormal(N=2000,initial=c(10,0.25),

priorparam=c(10,1/100,3,12),n=100,xbar=15,s=4.5)

posterior2=mcmcProcess(input=posterior,burnin=1000,thin=1)

op=par(mfrow=c(2,2))

plot(posterior,col=c(1:length(posterior)),

main="All realisations")

plot(posterior,type="l",main="All realisations")

plot(posterior2,col=c(1:length(posterior2)),

main="After deleting first 1000")

plot(posterior2,type="l",main="After deleting first 1000")

par(op)

mcmcAnalysis(posterior,rows=2,show=F)

mcmcAnalysis(posterior2,rows=2,show=F)



Progress of the MCMC scheme
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Analysis of MCMC output (all realisations)
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Analysis of MCMC output (after deleting the first 10 iterations)
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Summaries of the output (after deleting the first 10 iterations)

N = 1000 iterations

mu tau

Min. :13.54 Min. :0.03017

1st Qu.:14.69 1st Qu.:0.04595

Median :15.01 Median :0.05089

Mean :14.99 Mean :0.05110

3rd Qu.:15.28 3rd Qu.:0.05562

Max. :16.52 Max. :0.07253

Standard deviations:

mu tau

0.444299473 0.007124057

Also Corr(µ, τ |x) = −0.02153



Equi-tailed confidence intervals are calculated as follows:

MCMC output has N realisations (µ(j), τ (j))
Sort the µ(j) and the τ (j) into increasing order
CI end-points will be the Nα/2th and the N(1− α/2)th values
Use mcmcCi command in the nclbayes package
Gives 95% confidence intervals

µ : (14.123, 15.847)

τ : (0.037949, 0.065571)



Distributions of functions of the parameters

Now we have a sample from the posterior distribution, we can
determine the posterior distribution for any function of the parameters

For example, if we want the posterior distribution for σ = 1/
√
τ then

we can easily obtain realisations of σ as

σ(j) = 1
/√

τ (j)

Summaries of the output for σ

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.713 4.240 4.433 4.457 4.665 5.758

st.dev. 0.3178429

Equi-tailed 95% confidence interval for σ is (3.9001, 5.1192).



Joint and marginal distributions of (µ, τ)T
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Joint and marginal distributions of (µ, σ)T
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R commands used

library(nclbayes)

posterior=gibbsNormal(N=2000,initial=c(10,0.25),

priorparam=c(10,1/100,3,12),n=100,xbar=15,s=4.5)

posterior2=mcmcProcess(input=posterior,burnin=1000,thin=1)

mcmcAnalysis(posterior,rows=2,show=F)

mcmcAnalysis(posterior2,rows=2,show=F)

cor(posterior2)

mcmcCi(posterior2,level=0.95)

sigma=1/sqrt(posterior2[,2])

summary(sigma)

sd(sigma)



Summary

We can use the (converged and thinned) MCMC output to do the
following

Obtain the posterior distribution for any (joint) functions of the
parameters (such as σ = 1/

√
τ or (θ1 = µ− τ, θ2 = eµ+τ/2)T )

Look at bivariate posterior distributions via scatter plots

Look at univariate marginal posterior distributions via histograms or
boxplots

Obtain numerical summaries such as the mean, standard deviation
and confidence intervals for single variables and correlations between
variables



Example 4.3

Gibbs sampling can also be used when using a conjugate prior

Construct a Gibbs sampler for the problem in Example 3.2:
Cavendish’s data on the earth’s density

Data: random sample from a normal distribution with unknown
mean µ and precision τ , that is

Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent)

Prior: NGa distribution for (µ, τ)T

Solution

. . .



R function in the nclbayes library

gibbsNormal2 – implements this algorithm

Reanalysis of Cavendish’s data

Data: n = 23, x̄ = 5.4848, s = 0.1882

Prior: NGa(b = 5.41, c = 0.25, g = 2.5, h = 0.1)

Have seen in Example 3.2 that

posterior is NGa(B = 5.4840,C = 23.25,G = 14,H = 0.5080)
marginals are

µ|x ∼ t2G=28(B = 5.4840,H/(GC ) = 0.001561)

τ |x ∼ Ga(G = 14,H = 0.5080)

We now analyse this problem using the Gibbs sampler

Can check that the Gibbs sampler is producing realisations from the
correct distribution by comparing its output with the above
theoretical marginal distributions
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Main R commands used

library(nclbayes)

posterior=gibbsNormal2(N=2000,initial=c(5.41,25),

priorparam=c(5.41,0.25,2.5,0.1),n=23,xbar=5.4848,s=0.1882)

posterior2=mcmcProcess(input=posterior,burnin=1000,thin=1)

mcmcAnalysis(posterior,rows=2,show=F)

mcmcAnalysis(posterior2,rows=2,show=F)



Analysis of MCMC output (after deleting the first 1000 iterations)
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Figure: Trace plots, autocorrelation plots and histograms of the Gibbs sampler
output



Summaries of the output (after deleting the first 1000 iterations)

N = 1000 iterations

mu tau

Min. :5.376 Min. :11.01

1st Qu.:5.456 1st Qu.:22.09

Median :5.483 Median :27.06

Mean :5.484 Mean :27.66

3rd Qu.:5.512 3rd Qu.:32.60

Max. :5.605 Max. :56.16

Standard deviations:

mu tau

0.04090114 7.47836536

Check:

E (µ|x) = B = 5.4840, SD(µ|x) =

√
H

(G − 1)C
= 0.04100

E (τ |x) =
G

H
= 27.559, SD(τ |x) =

√
G

H
= 7.3655



Marginal posterior distributions of µ and σ
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Conclusion

Posterior means match pretty closely

Posterior standard deviations match pretty closely

Marginal posterior denisties match pretty closely

They are close enough within sampling error – but could run sampler
for more iterations if we wanted more accurate estimates

This confirms that the Gibbs sampler does indeed produce realisations
from the correct posterior distribution
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Accuracy of posterior estimates

Posterior output: sample mean µ̄, standard deviation sµ

How accuracte are these estimates of M = E (µ|x) and Σ = SD(µ|x)?

Each time we run an MCMC scheme, we obtain a different sample
from the posterior distribution

Suppose we have a large sample with effective sample size N

It’s easiest to think of this as being a sample which has been thinned
so that it has N values, say µ1, . . . , µN (and effective sample size N)

To quantify accuracy, we need to make an assumption about the
posterior distribution

If the data sample size n is large then the posterior distribution will be
approximately normal

Think of the MCMC output as being a random sample from a normal
distribution



When the random sample θ1, . . . , θN is from the normal N(a, 1/d),
from example 3.1, the asymptotic posterior distribution about the
mean and precision (a, d)T is

a|θ ∼ N(θ̄, s2/N), d |θ ∼ N{1/s2, 2/(Ns4)}, independently

If the Gibbs outputs µ1, . . . , µN come from a normal distribution
N(M,Σ2), rewriting this result in terms of the MCMC sample
mean µ̄, standard deviation sµ and the parameters they estimate gives
posterior distributions

M ∼ N(µ̄, s2
µ/N), Σ−2 ∼ N{1/s2

µ, 2/(Ns4
µ)}, independently

Therefore an approximate 95% HDI for M is

µ̄± z0.025
sµ√
N
' µ̄± 2sµ√

N

since z0.025 ' 2.



Also, from the posterior distribution for Σ−2, we have

P

(
1

s2
µ

− 2

√
2

Ns4
µ

< Σ−2 <
1

s2
µ

+ 2

√
2

Ns4
µ

)
' 0.95

=⇒ P

(
1− 2

√
2/N

s2
µ

< Σ−2 <
1 + 2

√
2/N

s2
µ

)
' 0.95

=⇒ P

 sµ√
1 + 2

√
2/N

< Σ <
sµ√

1− 2
√

2/N

 ' 0.95.

Therefore a 95% confidence interval for Σ is

sµ
(

1± 2
√

2/N
)−1/2

' sµ

(
1± 1

2
× 2
√

2/N

)
= sµ ± sµ

√
2

N

It can be shown that these accuracy calculations are fairly accurate
even when the posterior distribution (from which we have the MCMC
sample) is not particularly normal



Example 4.4

Data: Xi |α, λ ∼ Ga(α, λ), i = 1, 2, . . . , n (independent), where the
index α and scale parameter λ are unknown

Prior: α ∼ Ga(a, b) and λ ∼ Ga(c, d), independent

Determine the posterior density for (α, λ)T and hence the posterior
conditional densities for α|λ and λ|α

Solution

. . .



Problem

Although the FCD for λ is a standard distribution and easy to
simulate from, the FCD for α is NOT!

Therefore we can’t use a Gibbs sampler for this analysis

Fortunately there are other methods we can use . . .



4.5 Metropolis–Hastings sampling

The Gibbs sampler is a very powerful tool

Only useful if the full conditional distributions (FCDs) are standard
distributions (which are easy to simulate from)

Fortunately there is a class of methods which can be used when the
FCDs are non-standard

These methods are known as Metropolis-Hastings schemes

Want to simulate realisations from the posterior density π(θ|x)

All of the FCDs are non-standard

Choose a proposal distribution with density q(θ∗|θ), which is easy to
simulate from

This distribution gives us a way of proposing new values θ∗ from the
current value θ



Metropolis–Hastings algorithm

1 Initialise the iteration counter to j = 1, and initialise the chain to θ(0)

2 Generate a proposed value θ∗ using the proposal distribution
q(θ∗|θ(j−1))

3 Evaluate the acceptance probability α(θ(j−1),θ∗) of the proposed
move, where

α(θ,θ∗) = min

{
1,
π(θ∗|x) q(θ|θ∗)
π(θ|x) q(θ∗|θ)

}
4 Set θ(j) = θ∗ with probability α(θ(j−1),θ∗), and set θ(j) = θ(j−1)

otherwise

5 Change the counter from j to j + 1 and return to step 2
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Comments

At each stage, a new value is generated from the proposal distribution

This value is either accepted, in which case the chain moves, or
rejected, in which case the chain stays where it is

Whether or not the move is accepted or rejected depends on an
acceptance probability which itself depends on the relationship
between the density of interest and the proposal distribution

The posterior density π(θ|x) only enters into the acceptance
probability as a ratio, and so the method can be used when the
posterior density is only known up to a scaling constant, that is,

α(θ,θ∗) = min

{
1,
π(θ∗) f (x |θ∗) q(θ|θ∗)
π(θ) f (x |θ) q(θ∗|θ)

}
This algorithm defines a Markov chain with π(θ|x) as its stationary
distribution

It holds for all possible proposal distributions (subject to them
generating realisations from the full parameter space)



Possible proposal distributions

Are some choices of proposal distribution better than others?

We now discuss some commonly used proposal distributions

4.5.1 Symmetric chains (Metropolis method)

Use a symmetric proposal distribution: q(θ∗|θ) = q(θ|θ∗), ∀ θ,θ∗

The acceptance probability simplifies to

α(θ,θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

}
and hence does not involve the proposal density at all

Proposed moves which will take the chain to a region of higher
posterior density are always accepted

Moves which take the chain to a region of lower posterior density are
accepted with probability proportional to the ratio of the two densities

Moves which will take the chain to a region of very low density will be
accepted with very low probability
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Any proposal of the form q(θ∗|θ) = f (|θ∗ − θ|) is symmetric, where
f (·) is an arbitrary density. In this case, the proposal value is a
symmetric displacement from the current value

Random walk proposals

Consider the random walk proposal in which the proposed value θ∗ at
stage j is

θ∗ = θ(j−1) + w j

where the w j are independent and identically distributed random
p × 1 vectors (completely independent of the state of the chain)

Suppose that the w j have density f (·), which is easy to simulate
from, has mean 0 and is symmetric about its mean

We can then simulate an innovation w j , and set the proposal value to

θ∗ = θ(j−1) + w j

Clearly q(θ∗|θ) = f (|θ∗ − θ|)
However, what distribution should we use for f (·)?
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Choice of innovation distribution

A distribution which is simple and easy to simulate from is always a good
idea; for example, the uniform or normal · · · · · ·
Normal is generally better, but is a bit more expensive to simulate

What variance should we choose for the innovation distribution?

This choice will affect the acceptance probability, and hence the overall
proportion of accepted moves

If the variance of the innovation is too low, then most proposed values will
be accepted, but the chain will move very slowly around the space — the
chain is said to be too “cold”

If the variance of the innovation is too large, very few proposed values will
be accepted, but when they are, they will often correspond to quite large
moves — the chain is said to be too “hot”

Theoretically it has been shown that the optimal acceptance rate is around
0.234 — this is an asymptotic result (for large samples of data) — but
experience suggests that an acceptance rate of around 20–30% is okay

Thus, the variance of the innovation distribution should be “tuned” to get
an acceptance rate of around this level



Example 4.5

Suppose the posterior distribution is a standard normal distribution,
with density φ(·)
Construct a Metropolis–Hastings algorithm which samples this
posterior distribution by using a uniform random walk proposal

Examine how the acceptance rate for this algorithm depends on the
width of the uniform distribution

Solution

. . .

R commands

posterior=metropolis(N=10000,initial=0,a=1)

mcmcAnalysis(posterior,rows=1,show=F)



Sampling from a standard normal using Metropolis-Hastings

a = 0.6
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Comments

a = 0.6 – this chain is too “cold”

The innovations are too small and are generally accepted
The acceptance rate for this chain was 0.911
The autocorrelations are too high and this chain would have to be
thinned

a = 6

The autocorrelations are much lower
The acceptance rate was 0.392 (nearer the asymptotic 0.234 M–H
acceptance rate)

a = 60 – this chain is too “hot”

Few proposed values are accepted (acceptance rate 0.039)
When they are, it results in a fairly large move to the chain
This gives fairly high autocorrelations and this chain would have to be
thinned



Sampling from a standard normal using Metropolis-Hastings

a = 6
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Normal random walk proposals

Suppose we decide to use a normal random walk with f (·) = Np(0,Σ)

The proposal distribution is

q(θ∗|θ) = Np(θ,Σ)

Tuning this random walk requires us to choose Σ
How can we do this?

If the posterior distribution is approximately normally distributed (as
it is with large data samples) then researchers have shown that the
optimal choice is

Σ =
2.382

p
Var(θ|x)

In practice, we don’t know the posterior variance Var(θ|x)



However, we could first run the MCMC algorithm substituting in the
(generally much larger) prior variance Var(θ), that is, take

Σ =
2.382

p
Var(θ)

If this chain doesn’t converge quickly then we can use the output of
this MCMC run to get a better idea of Var(θ|x) and run the MCMC
code again – this will have more appropriate values for the parameter
variances and correlations

It has been shown from experience that it is not vital to get an
extremely accurate value for Σ

Often just getting the correct order of magnitude for its elements will
be sufficient, that is, using say 0.1 rather than 0.01 or 1

Example: Assume the posterior distribution is a standard normal
distribution. Then the optimal Σ = 5.7.



Sampling from a standard normal using normal random walk
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4.5.2 Independence chains

The proposal is formed independently of the position of the chain,
and so q(θ∗|θ) = f (θ∗) for some density f (·)
The acceptance probability is

α(θ,θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

/
f (θ∗)

f (θ)

}
A nice thing is that, when f (·) is close to π(·|x), the acceptance
probability can be close to 1.

Principle of choosing f (·): Simulation from f (·) can easily cover the
support of posterior density.

Don’t use uniform density for f (·), because it takes values in a
bounded region and some values of θ will never be sampled.

Similarly, don’t use underdispersed density for f (·), e.g. N(0,Σ) with
very small Σ.

Therefore, use overdispersed density for f (·), and tune it so that the
higher the acceptance probability, the better.
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Sampling from a standard normal using normal independent chain

Example: Consider the posterior is standard normal. Construct a
Metropolis-Hastings algorithm using an independence chain with
f (θ) = N(0,Σ).

When Σ = 0.12, acceptance rate is 0.4.
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Sampling from a standard normal using normal independent chain

When Σ = 62, acceptance rate is 0.51.
theta
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Choose Σ = 1.62 since the covered region is wide enough and the
acceptance probability is the highest.

Don’t use underdispersed distribution, regardless its acceptance
probability.



Bayes Theorem via independence chains

One possible choice for the proposal density is the prior density

The acceptance probability is then

α(θ,θ∗) = min

{
1,

f (x |θ∗)
f (x |θ)

}
,

and hence depends only on the likelihood ratio of the proposal and
the current value.

It will not be underdispersed.



4.6 Hybrid methods

The Metropolis-Hastings method in last section samples θ in a single
block, i.e. all parameters are updated at the same time.

When the number of parameter is large, it is difficult to choose the
proposal distribution. For example, when there are 5 parameters, the
proposal distribution N(0,Σ) has 5× 5 = 25 tuning parameters in Σ.

Recall the Gibbs sampler for how the componentwise update works.



4.6.1 Componentwise transitions

Given a posterior distribution with FCDs that are awkward to sample
from directly, we can define a Metropolis-Hastings scheme for each
full conditional distribution, and apply them to each component in
turn for each iteration

This is like the Gibbs sampler, but each component update is a
Metropolis-Hastings update, rather than a direct simulation from the
FCD

Each of these steps will require its own proposal distribution

Example

Componentwise Metropolist-Hasting algorithm in two-dimension.

Solution

. . .



The algorithm

1 Initialise the iteration counter to j = 1

Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )T

2 Let θ
(j)
−i =

(
θ

(j)
1 , . . . , θ

(j)
i−1, θ

(j−1)
i+1 , . . . , θ

(j−1)
p

)T
, i = 1, 2, . . . , p

Obtain a new value θ(j) from θ(j−1) by successive generation of
values

θ
(j)
1 ∼ π(θ1|θ(j)

−1, x) using a Metropolis–Hastings step with proposal

distribution q1(θ1|θ(j−1)
1 ,θ

(j)
−1)

θ
(j)
2 ∼ π(θ2|θ(j)

−2, x) using a Metropolis–Hastings step with proposal

distribution q2(θ2|θ(j−1)
2 ,θ

(j)
−2)

...
θ

(j)
p ∼ π(θp|θ(j)

−p, x) using a Metropolis–Hastings step with proposal

distribution qp(θp|θ(j−1)
p ,θ

(j)
−p)

3 Change counter j to j + 1, and return to step 2

The distributions π(θi |θ
(j)
−i , x) are just the FCDs



Suppose we decide to use normal random walks for these M–H steps,

that is, take qi (θ
∗
i |θi ,θ

(j)
−i ) = N(θi ,Σij )

What is the appropriate value for Σij ?

As the proposal in step j is targeting the conditional posterior density

π(θi |θ
(j)
−i , x), the optimal choice of Σij is

Σij =
2.382

1
Var(θi |θ

(j)
−i , x) = 2.382 Var(θi |θ

(j)
−i , x)

As these (conditional) posterior variances are not known before
running the MCMC code, a sensible strategy might be to replace it
with the (probably much larger) prior conditional variance or even the
prior marginal variance, that is, use

Σij = 2.382 Var(θi |θ
(j)
−i ) or Σij = 2.382 Var(θi )

Again, recall that these values are to be used as a guide, generally to
get the order of magnitude for the innovation variance



Hybrid methods

The Gibbs sampler can be used to sample from multivariate posterior
distributions provided that we can simulate from the full conditional
distributions (FCDs). The acceptance probability is 1.

The Metropolis-Hastings method can be used to sample from
awkward FCDs. The acceptance probability is less than 1.

We can combine these, when some FCDs can be simulated from
directly and some can not, to increase the acceptance probability.



4.6.2 Metropolis within Gibbs

Given a posterior distribution with full conditional distributions,

some of which may be simulated from directly,
and others of which have Metropolis-Hastings updating schemes,

the Metropolis within Gibbs algorithm goes through each in turn, and
simulates directly from the full conditional, or carries out a
Metropolis-Hastings update as necessary

This algorithm is, in fact, just the above algorithm but uses the full
conditional distributions as the proposal distributions when they are
easy to simulate from

To see this, suppose that we can simulate from the FCD π(θi |θ
(j)
−i , x)

and use this as the proposal distribution, that is, take

θ∗i ∼ π(θi |θ
(j)
−i , x)



Then the acceptance probability for this step is

α(θi , θ
∗
i ) = min

{
1,
π(θ∗i |θ

(j)
−i , x)

π(θi |θ
(j)
−i , x)

q(θi |θ∗i ,θ
(j)
−i )

q(θ∗i |θi ,θ
(j)
−i )

}

= min

{
1,
π(θ∗i |θ

(j)
−i , x)

π(θi |θ
(j)
−i , x)

π(θi |θ
(j)
−i , x)

π(θ∗i |θ
(j)
−i , x)

}
= min{1, 1}
= 1,

that is, we always accept the proposal from the FCD



Example 4.6

Construct an MCMC scheme for the problem in Example 4.4 where
we had a random sample of size n from a gamma Ga(α, λ)
distribution and independent gamma Ga(a, b) and Ga(c , d) prior
distributions for α and λ respectively

Recall that the FCDs were

π(α|λ, x) ∝ αa−1e(−b+n log x̄g +n log λ)α

Γ(α)n
, α > 0

and

π(λ|α, x) ∝ λc+nα−1 e−(d+nx̄)λ, λ > 0

Solution

. . .



R code

Use the function mwgGamma in the nclbayes library

Data: n = 50, x̄ = 0.62, x̄g = 0.46 and s = 0.4

Prior: a = 2, b = 1, c = 3, d = 1

Use a normal random walk proposal with variance Σα = 0.92

This gives a reasonable acceptance probability of 0.237

library(nclbayes)

posterior=mwgGamma(N=20000,initial=(xbar/s)^2,innov=0.9,

priorparam=c(2,1,3,1),n=50,xbar=0.62,xgbar=0.46,show=TRUE)

mcmcAnalysis(posterior,rows=2,show=F)

posterior2=mcmcProcess(input=posterior,burnin=10,thin=20)

mcmcAnalysis(posterior2,rows=2)

Using burnin = 10, thin = 20 produces (almost) un-autocorrelated
posterior output



Analysis of MCMC output (all realisations)
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Figure: Trace plots, autocorrelation plots and histograms of the Metropolis within
Gibbs sampler output



Analysis of MCMC output (with burnin = 10, thin = 20)
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Figure: Trace plots, autocorrelation plots and histograms of the Metropolis within
Gibbs sampler output



4.7 Summary

(i) Bayesian inference can be complicated when not using a conjugate
prior distribution

(ii) One solution is to use Markov chain Monte Carlo (MCMC) methods

(iii) These work by producing realisations from the posterior distribution
by constructing a Markov chain which has the posterior distribution
as its stationary distribution

(iv) The MCMC methods we have studied are the Gibbs sampler,
Metropolis within Gibbs algorithm and the Metropolis–Hastings
algorithm

(v) When obtaining output from these algorithms, we need to assess
whether there needs to be a burn-in and whether the output needs to
be thinned (by looking at traceplots and autocorrelation plots) using
mcmcAnalysis and mcmcProcess



(vi) The (converged and thinned) MCMC output are realisations from the
posterior distribution. It can be used to

obtain the posterior distribution for any (joint) functions of the
parameters (such as σ = 1/

√
τ or (θ1 = µ− τ, θ2 = eµ+τ/2)T )

look at bivariate posterior distributions via scatter plots
look at univariate marginal posterior distributions via histograms or
boxplots
obtain numerical summaries such as the mean, standard deviation and
confidence intervals for single variables and correlations between
variables

(vii) Equi-tailed posterior confidence intervals can be determined from the
MCMC output using mcmcCi



4.8 Learning objectives

By the end of this chapter, you should be able to:

1. explain why not using a conjugate prior generally causes problems in
determining the posterior distribution

2. describe the Gibbs sampler, explain why it is a Markov chain and give
an outline as to why its stationary distribution is the posterior
distribution

3. describe the issues of processing MCMC output (burn-in,
autocorrelation, thinning etc.) and interpret numerical/graphical
output

4. derive the full conditional densities for any posterior distribution and
name these distributions if they are “standard” distributions given in
the notes or on the exam paper



5. describe a Metropolis-Hastings algorithm in general terms and when
using symmetric random walk proposals or independence proposals or
general proposals

6. describe the hybrid methods: componentwise transitions and
Metropolis within Gibbs

7. provide a detailed description of any of the MCMC algorithms as
they apply to generating realisations from any posterior distribution
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