Chapter 3

General results for multi-parameter problems

Chapter 3. General results for multi-parameter problems

3.1 Different levels of prior knowledge

- Substantial prior information: $\pi(m{ heta}|m{x}) \sim \pi(m{ heta})$
- Limited prior knowledge: use conjugate prior where possible and determine its parameter(s) by prior knowledge
- Vague prior information: use conjugate prior where possible and make them diffuse
- Prior ignorant use 'flat' prior? Problem?
 - 1. Have $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_p)^T$ and we are prior ignorant
 - 2. Use $\pi(\theta) = constant$?
 - 3. Let $\phi_i = g_i(\theta), i = 1, ..., p$ and $\phi = (\phi_1, \phi_2, ..., \phi_p)^T$
 - 4. Prior density for ϕ is not constant!
 - 5. But if we are ignorant about heta we must be ignorant about $\phi...$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Example 3.1

Suppose $0 < \theta_1 < 1$ and $0 < \theta_2 < 1$. If we are ignorant about $\theta = (\theta_1, \theta_2)^T$ then show that $\theta_1 \theta_2$ does not have constant prior density.

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Solution

. . .

3.2 Asymptotic posterior distribution

$$p=1 ext{ case }: \qquad \sqrt{J(\hat{ heta}) \left(heta - \hat{ heta}
ight)} \, oldsymbol{x} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,1) \qquad ext{ as } n o \infty$$

Suppose we have a statistical model $f(\mathbf{x}|\boldsymbol{\theta})$ for data $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_p)^T$, together with a prior distribution $\pi(\boldsymbol{\theta})$ for $\boldsymbol{\theta}$. Then

$$J(\hat{\boldsymbol{ heta}})^{1/2}(\boldsymbol{ heta}-\hat{\boldsymbol{ heta}})|\mathbf{x}\overset{\mathcal{D}}{\longrightarrow}\mathsf{N}_{p}(\underline{0},\mathrm{I}_{p}) \qquad ext{as } n o \infty,$$

where $\hat{\theta}$ is the likelihood mode, I_p is the $p \times p$ identity matrix and $J(\theta)$ is the observed information matrix, with $(i, j)^{th}$ element

$$J_{ij} = -\frac{\partial^2}{\partial heta_i \partial heta_j} \log f(\mathbf{x}|\boldsymbol{ heta}),$$

Comments

When n is large, $m{ heta} \mid m{x} \sim N_{
m
ho}(m{\hat{ heta}}, J(m{\hat{ heta}})^{-1})$ approximately. . . .

Example 3.2

Suppose we now have a random sample from a $N(\mu, 1/\tau)$ distribution (with τ unknown). Determine the asymptotic posterior distribution for (μ, τ) .

Hint: we have already seen that the likelihood function can be written as

$$f(\mathbf{x}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{n/2} \exp\left[-\frac{n\tau}{2}\left\{s^2 + (\bar{x}-\mu)^2\right\}\right]$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $s^{2} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} / n$

Solution

3.3 Learning objectives

By the end of this chapter, you should be able to:

- 1. describe the different levels of prior information; determine and use vague priors
- 2. determine the asymptotic posterior distribution when the data are a random sample from **any** distribution
- 3. explain the similarities and differences between the asymptotic posterior distribution and the asymptotic distribution of the maximum likelihood estimator

(日) (部) (注) (注) (注)