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Chapter 2. Inference for a normal population

2.1 Bayes Theorem for many parameters

Data: x = (x1, x2, . . . , xn)T

Model: depends on many parameters θ = (θ1, θ2, . . . , θp)T

pdf/pf f (x |θ)→ Likelihood function f (x |θ)

Prior beliefs: pdf/pf π(θ)

Combine using Bayes Theorem

Posterior beliefs: pdf/pf π(θ|x)

Posterior distribution summarises all our current knowledge about the
parameter θ



Bayes Theorem

The posterior probability (density) function for θ is

π(θ|x) =
π(θ) f (x |θ)

f (x)

where

f (x) =


∫

Θ π(θ) f (x |θ) dθ if θ is continuous,

∑
Θ π(θ) f (x |θ) if θ is discrete.

As before, this can be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)

i .e. posterior ∝ prior× likelihood



Generalised t distribution: X ∼ ta(b, c)

Density for x ∈ R

f (x |a, b, c) =
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) {1 +
(x − b)2

ac

}− a+1
2

Parameters: a > 0, b ∈ R, c > 0

E (X ) = Mode(X ) = b and Var(X ) =
ac

a− 2
, if a ≥ 2

Generalisation of the standard t-distribution since (X − b)/
√
c ∼ ta

ta(0, 1) ≡ ta

lima→∞ ta(b, c) = N(b, c)



Example 2.1

If X ∼ ta(b, c) then show that Y = (X − b)/
√
c ∼ ta, with density

f (y) =
Γ
(
a+1

2

)
√
aπ Γ

(
a
2

) {1 +
y2

a

}− a+1
2

, −∞ < y <∞,

Recall the general result: if X is a random variable with probability
density function fX (x) and g is a bijective (1–1) function then the
random variable Y = g(X ) has probability density function

fY (y) = fX
{
g−1(y)

} ∣∣∣∣ ddy g−1(y)

∣∣∣∣ . (2.1)

Solution

. . .



Comments

R functions pgt and dgt in the package nclbayes give values for
FX (x) and fX (x) when X ∼ ta(b, c)

Relationship between the generalised t distribution and the standard t
distribution is similar to that of the normal distribution and the
standard normal distribution:

X ∼ N(b, c) =⇒ X − b√
c
∼ N(0, 1)

X ∼ ta(b, c) =⇒ X − b√
c
∼ ta



Inverse Chi distribution: Y ∼ Inv-Chi(a, b)

Density

f (y |a, b) =
2bay−2a−1e−b/y

2

Γ(a)
, y > 0

Parameters: a > 0, b > 0

E (Y ) =

√
b Γ(a− 1/2)

Γ(a)

Var(Y ) =
b

a− 1
− E (Y )2, if a ≥ 1

The name of the distribution comes from the fact that
1/Y 2 ∼ Ga(a, b) ≡ χ2

2a/(2b)



2.2 Prior to posterior analysis

Data: Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (indep)

Prior: µ|τ ∼ N
(
b, 1

cτ

)
, τ ∼ Ga(g , h), with joint density, for

µ ∈ R, τ > 0

π(µ, τ) = π(µ|τ)π(τ)

=
(cτ

2π

)1/2
exp

{
−cτ

2
(µ− b)2

}
× hgτg−1e−hτ

Γ(g)

∝ τg−
1
2 exp

{
−τ

2

[
c(µ− b)2 + 2h

]}
(2.2)

We write

(
µ
τ

)
∼ NGa(b, c , g , h)

Determine the posterior distribution for

(
µ
τ

)
Hint:

c(µ− b)2 + n(x̄ − µ)2 = (c + n)

{
µ−

(
cb + nx̄

c + n

)}2

+
nc(x̄ − b)2

c + n
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Solution

. . .
(2.3)



2.2.1 Marginal distributions

If

(
µ
τ

)
∼ NGa(b, c , g , h) then τ ∼ Ga(g , h)

The (marginal) density for µ is, for µ ∈ R

π(µ) =

∫ ∞
0

π(µ, τ) dτ

∝
∫ ∞

0
τg−

1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
dτ

∝
∫ ∞

0
τg+ 1

2
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−
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2
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c(µ− b)2 + 2h
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dτ

∝
Γ
(
g + 1

2

)
[{c(µ− b)2 + 2h}/2}]g+ 1

2

using

∫ ∞
0

θa−1e−bθ dθ =
Γ(a)

ba

∝ h−g−1/2

{
1 +

c(µ− b)2

2h

}−g−1/2

∝
{

1 +
c(µ− b)2

2h

}− 2g+1
2

i.e. µ ∼ t2g

(
b,

h

gc

)
(2.4)



Summary of marginal distributions

The prior

(
µ
τ

)
∼ NGa(b, c , g , h) has marginal distributions

µ ∼ t2g

(
b, h

gc

)
τ ∼ Ga(g , h)

Also σ = 1/
√
τ ∼ Inv-Chi(g , h)

The posterior

(
µ
τ

)∣∣∣∣ x ∼ NGa(B,C ,G ,H) has marginal distributions

µ|x ∼ t2G

(
B, H

GC

)
τ |x ∼ Ga(G ,H)

Also σ|x ∼ Inv-Chi(G ,H)



Example 2.2

The 18th century physicist Henry Cavendish made 23 experimental
determinations of the earth’s density, and these data (in g/cm3) are

5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29
5.44 5.34 5.79 5.10 5.27 5.39 5.42 5.47
5.63 5.34 5.46 5.30 5.78 5.68 5.85

with sufficient statistics n = 23, x̄ = 5.4848, s = 0.1882

We consider X |µ, τ ∼ N(µ, 1/τ), with τ unknown

In Example 1.4 we assumed Xi |µ ∼ N(µ, 0.22) with µ ∼ N(5.41, 0.42)
and τ known with τ = 1/0.22 = 25.

Must specify the parameters in the NGa(b, c , g , h) prior distribution
for (µ, τ)T . Suppose we choose Var(τ) = 250.

Choice of b and c : the NGa prior distribution has
µ|τ ∼ N{b, 1/(cτ)}. Matching the prior for µ|τ = 25 gives b = 5.41
and c = 0.25

Choice of g and h: the NGa prior distribution has τ ∼ Ga(g , h).
Choose E (τ) = 25, giving g = 2.5 and h = 0.1



Summary: take prior(
µ
τ

)
∼ NGa(b = 5.41, c = 0.25, g = 2.5, h = 0.1)

Is the marginal prior distribution for µ close to what we used in
Example 1.4? Yes, see plot below
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Figure: Marginal prior density for µ: new version (solid) and previous version
(dashed)



Determine the posterior distribution for (µ, τ)T . Also determine the
marginal prior distribution for τ and for σ, and the marginal posterior
distribution for each of µ, τ and σ.

Solution

. . .



Comparison of prior and posterior marginal distributions
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Figure: Prior (dashed) and posterior (solid) densities for µ, τ and σ



Review of contour plots for bivariate distribution

Bivariate normal:

(
X
Y

)
∼ N

{(
0
0

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

)}
, with

density 1

2πσxσy
√

1−ρ2
exp

{
− 1

2(1−ρ2)

(
x2

σ2
x

+ y2

σ2
y
− 2ρ xy

σxσy

)}
.

Figure: Contour plots for different bivariate normal densities



Comparison of prior and posterior distributions

Can plot their contours using R command NGacontour:
mu=seq(4.5,6.5,len=1000); tau=seq(0,71,len=1000)

NGacontour(mu,tau,b,c,g,h,lty=3); NGacontour(mu,tau,B,C,G,H,add=TRUE)
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Figure: Contour plot of the prior (dashed) and posterior (solid) densities for (µ, τ)T .



Comments

Wikipedia tells us that the actual mean density of the earth is
5.515 g/cm3

What is the (posterior) probability that the mean density is within 0.1
of this value?

µ|x ∼ t28(5.484, 0.001561) ⇒ Pr(5.415 < µ < 5.615|x) = 0.9529

using
pgt(5.615,28,5.484,0.001561)-pgt(5.415,28,5.484,0.001561)

Without the data, the only basis for determining the earth’s density is
via the prior distribution

µ ∼ t5(5.41, 0.16) ⇒ Pr(5.415 < µ < 5.615) = 0.1802

using pgt(5.615,5,5.41,0.16)-pgt(5.415,5,5.41,0.16)

These probability calculations demonstrate that the data have been
very informative and changed our beliefs about the earth’s density
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2.3 Confidence intervals and regions

Example 2.3

Determine the 100(1− α)% highest density interval (HDI) for the
population mean µ in terms of quantiles of the standard t-distribution

Solution

. . .



Calculating 95% posterior confidence intervals using R

µ|x ∼ t2G{B,H/(GC )}
Symmetric distribution → HDI and equi-tailed intervals are the same
c(qgt(0.025,2*G,B,H/(G*C)),qgt(0.975,2*G,B,H/(G*C)))

τ |x ∼ Ga(G ,H)
Skewed distribution → HDI and equi-tailed intervals are different
hdiGamma(0.95,G,H)

c(qgamma(0.025,G,H),qgamma(0.975,G,H))

σ|x ∼ Inv-Chi(G ,H)
Skewed distribution → HDI and equi-tailed intervals are different
hdiInvchi(0.95,G,H)

c(qinvchi(0.025,G,H),qinvchi(0.975,G,H))



Results from this data analysis . . .

Prior Posterior
µ: (4.3818, 6.4382) (5.4031, 5.5649)

τ : (1.4812, 55.9573) (14.0193, 42.2530) ← HDI
(4.1561, 64.1625) (15.0674, 43.7625)

σ: (0.1062, 0.4246) (0.1466, 0.2505) ← HDI
(0.1248, 0.4905) (0.1512, 0.2576)

Posterior HDI and equi-tailed intervals for τ are fairly similar but prior
intervals are not

Ditto for σ

Why?

The prior distributions are quite skewed but the posterior distributions
are fairly symmetric
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Confidence regions

We have looked at (marginal) HDIs

Can be useful to also look at (joint) confidence regions

Example 2.4

Determine a joint α confidence region for (µ, τ)T by calculating k
satisfying P(π(µ, τ) > k) = α or P(π(µ, τ) > k | x) = α.

Solution

. . .

Can plot these regions using NGacontour by using the appropriate
value for the contour level
mu=seq(3.5,7.5,len=1000)

tau=seq(0,80,len=1000)

NGacontour(mu,tau,b,c,g,h,p=c(0.95,0.9,0.8),lty=3)

NGacontour(mu,tau,B,C,G,H,p=c(0.95,0.9,0.8),add=TRUE)

Over to an R demo . . .



Confidence regions for (µ, τ)T
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Figure: 95%, 90% and 80% prior (dashed) and posterior (solid) confidence
regions for (µ, τ)T ; 95% (outer), 80% (inner).



Focusing on central part of plot . . .
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Figure: 95%, 90% and 80% prior (dashed) and posterior (solid) confidence
regions for (µ, τ)T ; 95% (outer), 80% (inner).



Mid-term feedback: A snapshot of your comments

Good notes; well-structured notes; fantabulous notes; super
hand-writing; good use of visualiser

Left-handed; learn to be ambidextrous; your left-hand gets in the way
man; hate lefties; your left hand is problematic

Good pace; way too slow; never seem to get through much; took
weeks to start the course; loads of stage 2 content - will this be on
exam?

No more postgrad help; don’t go to China; you abandoned us when
the course got tough; don’t be ill

Be on time; puntuality problems; please start on time (not bothered
really)

Trust issues

Lee >>> Chris; we want more Chris comparisons; Bring Chris back;
Chris’s part of the module is better than yours

What could be improved? The shirts
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2.4 Predictive distributions

In this model we can determine the predictive distribution via

f (y |x) =

∫
f (y |µ, τ)π(µ, τ |x) dµ dτ

or by using Candidate’s formula (as this is a conjugate analysis)

But, for this model, there is a more straightforward way

. . .

These predictive intervals can be calculated easily using the R

function qgt

In Example 3.2, the prior and posterior predictive HDIs for a new
value Y from the population are (4.2604, 6.5596) and
(5.0855, 5.8825) respectively, calculated using

c(qgt(0.025,2*g,b,h*(c+1)/(g*c)),qgt(0.975,2*g,b,h*(c+1)/(g*c)))

c(qgt(0.025,2*G,B,H*(C+1)/(G*C)),qgt(0.975,2*G,B,H*(C+1)/(G*C)))
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2.5 Summary

Suppose we have a normal random sample with Xi |µ, τ ∼ N(µ, 1/τ),
i = 1, 2, . . . , n (independent)

(i) (µ, τ)T ∼ NGa(b, c , g , h) is a conjugate prior distribution

(ii) The posterior distribution is (µ, τ)T |x ∼ NGa(B,C ,G ,H) where the
posterior parameters are given by (2.3)

(iii) The marginal prior distributions are µ ∼ t2g{b, h/(gc)},
τ ∼ Ga(g , h), σ = 1/

√
τ ∼ Inv-Chi(g , h)

(iv) The marginal posterior distributions are µ|x ∼ t2G{B,H/(GC )},
τ |x ∼ Ga(G ,H), σ|x ∼ Inv-Chi(G ,H)

(v) Prior and posterior means and standard deviations for µ, τ and σ can
be calculated from the properties of the t, Gamma and Inv-Chi
distributions

(vi) Prior and posterior probabilities and densities for µ, τ and σ can be
calculated using the R functions pgt, dgt, pgamma, dgamma,

pinvchi, dinvchi



Suppose we have a normal random sample with Xi |µ, τ ∼ N(µ, 1/τ),
i = 1, 2, . . . , n (independent)

(vii) HDIs or equi-tailed CIs for µ, τ and σ can be calculated using qgt,

hdiGamma, hdiInvchi, qgamma, qinvchi

(viii) Contour plots of the prior and posterior densities for (µ, τ)T can be
plotted using the NGacontour function

(ix) Prior and posterior confidence regions for (µ, τ)T can be plotted
using the NGacontour function

(x) The predictive distribution for a new observation Y from the
population is Y |x ∼ t2G{B,H(C + 1)/(GC )} and its HDI can be
calculated using the qgt function



2.6 Why do we have so many different distributions?

So far we have used many distributions, some you will have met
before and some will be new

After a while the variety and sheer number of different distributions
can become overwhelming

Why do we need so many distributions and why do we name so many
of them?

Justification

Statistics studies the random variation in experiments, samples and
processes

The variety of applications leads to their randomness being described
by many different distributions

In many applications, bespoke distributions need to be formulated

However, some distributions come up time and time again for
modelling random variation in data and for describing prior beliefs



Justification (continued)

It is helpful for us to be able to refer to these distributions – and so
we give each one a name – and be able to quote known results for
these distributions such as their mean and variance

For example, in this chapter you have been introduced to

a generalisation of the t-distribution
the inverse chi distribution
The Normal-Gamma distribution

We have been able to use results for their mean and variance to study
prior and posterior distributions and have been able to plot these
distributions using functions in the R package

You will meet several other new distributions in the remainder of the
module



Justification (continued)

Obviously it’s useful to have a working knowledge of each of these
distributions but not vital to remember all their properties

The exam paper will contain a list of all the distributions used in the
exam, together with their density (or probability function) and any
useful proprieties such as their mean and variance (as needed for the
exam)
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2.7 Learning objectives

By the end of this chapter, you should be able to:

1. Determine the posterior distribution for (µ, τ)T

2. Determine and use the univariate prior and posterior distributions

3. Determine confidence intervals, HDIs and confidence regions

4. Determine the predictive distribution of another value from the
population, and its predictive interval

5. Determine the predictive distribution of the mean of another random
sample from the population

both in general and for a particular prior and data set.
Also you should be able to:

6. Appreciate the benefit of naming distributions and for having lists of
properties for these distributions
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