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Timetable and Administrative arrangements

Classes are on Mondays at 3, Tuesdays at 1 and Thursdays at 2, all
in LT2 of the Herschel Building

Two of these classes will be lectures, and the other session will be a
problems class/drop-in

– Lectures will ordinarily be in the Monday/Tuesday slots, and PCs/DIs
in the Thursday slot

– PCs will take place in even teaching weeks, DIs in odd teaching weeks
– For the first two weeks all slots will be used as lectures

Tutorials will take place on some Thursdays to support project work.
I will remind you about these sessions in advance – they all take place
in the Herschel Learning Lab

Office hours will be scheduled soon, but just come along and give
me a knock!



Assessment

Assessment is by:

End of semester exam in May/June (85%)

In course assessment (15%), including:

– One group project (10%)
– Three group homework exercises (5% in total)

The homework exercises will be taken from the questions at the back
of the lectures notes; we will work through unassessed questions in
problems classes



Recommended textbooks

“Bayes’ Rule: A Tutorial Introduction to Bayesian Analysis” - James
Stone

“Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan”
- John Krushke

“Bayesian Statistics: An Introduction” - Peter Lee

“Bayes’ rule” is a good introduction to the main concepts in Bayesian
statistics but doesn’t cover everything in this course. The other books are
broader references which go well beyond the contents of this course.



Other stuff

Notes (with gaps) will be handed out in lectures – you should fill in
the gaps during lectures

A (very!) summarised version of the notes will be used in lectures as
slides

These notes and slides will be posted on the course website and/or
BlackBoard after each topic is finished, along with any other course
material – such as problems sheets, model solutions to assignment
questions, supplementary handouts etc.



Chapter 1

Single parameter problems



Chapter 1. Single parameter problems

1.1 Prior and posterior distributions

Data: x = (x1, x2, . . . , xn)T

Model: pdf/pf f (x |θ) depends on a single parameter θ
→ Likelihood function f (x |θ)

considered as a function of θ for known x

Prior beliefs: pdf/pf π(θ)

Combine using Bayes Theorem

Posterior beliefs: pdf/pf π(θ|x)

Posterior distribution summarises all our current knowledge about the
parameter θ



Bayes Theorem

The posterior probability (density) function for θ is

π(θ|x) =
π(θ) f (x |θ)

f (x)

where

f (x) =


∫

Θ π(θ) f (x |θ) dθ if θ is continuous,

∑
Θ π(θ) f (x |θ) if θ is discrete.

As f (x) is not a function of θ, Bayes Theorem can be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)

i.e. posterior ∝ prior× likelihood



Example 1.1

Data

Year 1998 1999 2000 2001 2002 2003 2004 2005
Cases 2 0 0 0 1 0 2 1

Table: Number of cases of foodbourne botulism in England and Wales,
1998–2005

Assume that cases occur at random at a constant rate θ in time

This means the data are from a Poisson process and so are a random
sample from a Poisson distribution with rate θ

Prior θ ∼ Ga(2, 1), with density

π(θ) = θ e−θ, θ > 0, (1.1)

and mean E (θ) = 2 and variance Var(θ) = 2

Determine the posterior distribution for θ



Solution

. . .
(1.2)

(1.3)



Summary

Model: Xi |θ ∼ Po(θ), i = 1, 2, . . . , 8 (independent)

Prior: θ ∼ Ga(2, 1)

Data: in Table above

Posterior: θ|x ∼ Ga(8, 9)
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Figure: Prior (dashed) and posterior (solid) densities for θ



Prior Likelihood Posterior
(1.1) (1.2) (1.3)

Mode(θ) 1.00 0.75 0.78
E (θ) 2.00 – 0.89
SD(θ) 1.41 – 0.31

Table: Changes in beliefs about θ

Likelihood mode < prior mode → posterior mode moves in direction
of likelihood mode → posterior mode < prior mode

Reduction in variability from the prior to the posterior



Example 1.2

We now consider the general case (of Example 1.1). Suppose
Xi |θ ∼ Po(θ), i = 1, 2, . . . , n (independent) and our prior beliefs about θ
are summarised by a Ga(g , h) distribution (with g and h known), with
density

π(θ) =
hg θg−1e−hθ

Γ(g)
, θ > 0. (1.4)

Determine the posterior distribution for θ.

Solution

. . .
(1.5)

(1.6)



Summary

Model: Xi |θ ∼ Po(θ), i = 1, 2, . . . , n (independent)

Prior: θ ∼ Ga(g , h)

Data: observe x

Posterior: θ|x ∼ Ga(g + nx̄ , h + n)

Taking g ≥ 1

Prior Likelihood Posterior
(1.4) (1.5) (1.6)

Mode(θ) (g − 1)/h x̄ (g + nx̄ − 1)/(h + n)
E (θ) g/h – (g + nx̄)/(h + n)
SD(θ)

√
g/h –

√
g + nx̄/(h + n)

Table: Changes in beliefs about θ



Comments

Posterior mean is greater than the prior mean if and only if the
likelihood mode is greater than the prior mean, that is,

E (θ|x) > E (θ) ⇐⇒ Modeθ{f (x |θ)} > E (θ)

Standard deviation of the posterior distribution is smaller than that of
the prior distribution if and only if the sample mean is not too large,
that is

SD(θ|x) < SD(θ) ⇐⇒ Modeθ{f (x |θ)} <
(

2 +
n

h

)
E (θ),

and that this will be true in large samples.



Example 1.3

Suppose we have a random sample from a normal distribution with
unknown mean µ but known precision τ : Xi |µ ∼ N(µ, 1/τ), i = 1, 2, . . . , n
(independent).

Suppose our prior beliefs about µ can be summarised by a N(b, 1/d)
distribution, with probability density function

π(µ) =

(
d

2π

)1/2

exp

{
−d

2
(µ− b)2

}
. (1.7)

Determine the posterior distribution for µ.

Hint:

d(µ− b)2 + nτ(x̄ − µ)2 = (d + nτ)

{
µ−

(
db + nτ x̄

d + nτ

)}2

+ c

where c does not depend on µ.



Solution

. . .
(1.8)

(1.9)

(1.10)



Summary

Model: Xi |µ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent), with
τ known

Prior: µ ∼ N(b, 1/d)

Data: observe x

Posterior: µ|x ∼ N(B, 1/D), where

B =
db + nτ x̄

d + nτ
and D = d + nτ



Prior Likelihood Posterior
(1.7) (1.8) (1.10)

Mode(µ) b x̄ (db + nτ x̄)/(d + nτ)
E (µ) b – (db + nτ x̄)/(d + nτ)
Precision(µ) d – d + nτ

Table: Changes in beliefs about µ

Posterior mean is greater than the prior mean if and only if the
likelihood mode (sample mean) is greater than the prior mean, that is

E (µ|x) > E (µ) ⇐⇒ Modeµ{f (x |µ)} > E (µ)

Standard deviation of the posterior distribution is smaller than that of
the prior distribution, that is

SD(µ|x) < SD(µ)



Example 1.4

The 18th century physicist Henry Cavendish made 23 experimental
determinations of the earth’s density, and these data (in g/cm3) are

5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29
5.44 5.34 5.79 5.10 5.27 5.39 5.42 5.47
5.63 5.34 5.46 5.30 5.78 5.68 5.85



Example 1.4

Cavendish asserts that the error standard deviation of these
measurements is 0.2 g/cm3

Assume that they are normally distributed with mean equal to the
true earth density µ, that is, Xi |µ ∼ N(µ, 0.22), i = 1, 2, . . . , 23

Use a normal prior distribution for µ with mean 5.41 g/cm3 and
standard deviation 0.4 g/cm3

Derive the posterior distribution for µ

Solution

. . .



Summary

Small increase in mean from prior to posterior

Large decrease in uncertainty from prior to posterior
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Figure: Prior (dashed) and posterior (solid) densities for the earth’s density



1.2 Different levels of prior knowledge

1.2.1 Substantial Prior Knowledge

We have substantial prior information for θ when the prior distribution
dominates the likelihood function, that is π(θ|x) ∼ π(θ)

Difficulties:
1 Intractability of mathematics in deriving the posterior
2 Practical formulation of the prior distribution – coherently specifying

prior beliefs in the form of a probability distribution is far from
straightforward, let alone reconciling differences between experts!



1.2.2 Limited prior information

Pragmatic approach:

Uniform distribution

Choose a distribution which makes the Bayes updating from prior to
posterior mathematically straightforward

Use what prior information is available to determine the parameters of
this distribution

Previous examples:

1 Poisson random sample, Gamma prior distribution −→ Gamma
posterior distribution

2 Normal random sample (known variance), Normal prior distribution
−→ Normal posterior distribution

In these examples, the prior distribution and the posterior distribution
come from the same family



Definition 1.1 (Conjugate priors)

Suppose that data x are to be observed with distribution f (x |θ). A family
F of prior distributions for θ is said to be conjugate to f (x |θ) if for every
prior distribution π(θ) ∈ F, the posterior distribution π(θ|x) is also in F.

Comment

The conjugate family depends crucially on the model chosen for the
data x .

For example, the only family conjugate to the model “random sample from
a Poisson distribution” is the Gamma family. Here, the likelihood is
f (x |θ) ∝ θnx̄e−nθ, θ > 0. Therefore we need a family with density f (θ|a)
and parameters a such that

f (θ|A) ∝ f (θ|a)× θnx̄e−nθ, θ > 0

=⇒ f (θ|a) ∝ θa1e−a2θ, θ > 0

that is, the Gamma family of distributions



1.2.3 Vague Prior Knowledge

Have very little or no prior information about θ

Still must choose a prior distribution

Sensible to choose a prior distribution which is not concentrated
about any particular value, that is, one with a very large variance

Most of the information about θ will be passed through to the
posterior distribution via the data, and so we have π(θ|x) ∼ f (x |θ)

Improper uniform distribution with support in an unbounded region

Represent vague prior knowledge by using a prior distribution which is
conjugate to the model for x and which has as large a variance as
possible



Example 1.5

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ
known). Determine the posterior distribution assuming a vague prior for µ.

Solution

. . .



Example 1.6

Suppose we have a random sample from an Poisson distribution, that is,
Xi |θ ∼ Po(θ), i = 1, 2, . . . , n (independent). Determine the posterior
distribution assuming a vague prior for θ.

Solution

The conjugate prior distribution is a Gamma distribution

The Ga(g , h) distribution has mean m = g/h and variance v = g/h2

Rearranging gives g = m2/v and h = m/v

Clearly g → 0 and h→ 0 as v →∞ (for fixed m)

We have seen that, for this model, using a Ga(g , h) prior distribution
results in a Ga(g + nx̄ , h + n) posterior distribution

Therefore, taking a vague prior distribution will give a Ga(nx̄ , n)
posterior distribution

Note that the posterior mean is x̄ (the likelihood mode) and that the
posterior variance x̄/n→ 0 and n→∞.



1.3 Asymptotic Posterior Distribution

Background

There are many asymptotic results in Statistics

The Central Limit Theorem is a statement about the asymptotic
distribution of X̄n as the sample size n→∞, where the Xi are i.i.d.
with known mean µ and known (finite) variance σ2

Under different distributions of Xi , X̄n has the same moments,
E (X̄n) = µ and Var(X̄n) = σ2/n, but its distribution varies

The CLT says that as n→∞, regardless of the distribution of Xi ,

√
n(X̄n − µ)

σ

D−→ N(0, 1)



Theorem

Suppose we have a statistical model f (x |θ) for data x = (x1, x2, . . . , xn)T ,
together with a prior distribution π(θ) for θ. Then√

J(θ̂) (θ − θ̂)|x D−→ N(0, 1) as n→∞,

where θ̂ is the likelihood mode and J(θ) is the observed information

J(θ) = − ∂2

∂θ2
log f (x |θ)

Usage

In large samples,

θ|x ∼ N
(
θ̂, J(θ̂)−1

)
, approximately.

In large samples (n large), how the prior distribution is specified does
not matter.



Example 1.7

Suppose we have a random sample from a N(µ, 1/τ) distribution (with
τ known). Determine the asymptotic posterior distribution for µ.
Recall that

f (x |µ) =
( τ

2π

)n/2

exp

{
−τ

2

n∑
i=1

(xi − µ)2

}
,

and therefore

log f (x |µ) =
n

2
log τ − n

2
log(2π)− τ

2

n∑
i=1

(xi − µ)2

⇒ ∂

∂µ
log f (x |µ) = −τ

2
×

n∑
i=1

−2(xi − µ) = τ

n∑
i=1

(xi − µ) = nτ(x̄ − µ)

⇒ ∂2

∂µ2
log f (x |µ) = −nτ ⇒ J(µ) = − ∂2

∂µ2
log f (x |µ) = nτ.

Solution

. . .

Here the asymptotic posterior distribution is the same as the posterior
distribution under vague prior knowledge



1.4 Bayesian inference

The posterior distribution π(θ|x) summarises all our information
about θ to date

It can answer the questions: How to estimate the value of θ, and
what is the uncertainty of the estimator?

1.4.1 Estimation

Point estimates

Many useful summaries, such as

the mean: E (θ|x)

the mode: Mode(θ|x)

the median: Median(θ|x)



Interval Estimates

A more useful summary of the posterior distribution is one which also
reflects its variation

A 100(1− α)% Bayesian confidence interval for θ is any region Cα
that satisfies Pr(θ ∈ Cα|x) = 1− α
If θ is continuous with posterior density π(θ|x) then∫

Cα

π(θ|x) dθ = 1− α

The usual correction is made for discrete θ, that is, we take the
largest region Cα such that Pr(θ ∈ Cα|x) ≤ 1− α
Bayesian confidence intervals are sometimes called credible regions or
plausible regions

Clearly these intervals are not unique, since there will be many
intervals with the correct probability coverage for a given posterior
distribution



Highest density intervals

A 100(1− α)% highest density interval (HDI) for θ is the region

Cα = {θ : π(θ|x) ≥ γ}

where γ is chosen so that Pr(θ ∈ Cα|x) = 1− α
It is a 100(1− α)% Bayesian confidence interval but only includes the
most likely values of θ

This region is sometimes called a most plausible Bayesian confidence
interval

If the posterior distribution has many modes then it is possible that
the HDI will be the union of several disjoint regions



Highest density intervals

If the posterior distribution is unimodal (has one mode) and
symmetric about its mean then the HDI is an equi-tailed interval, that
is, takes the form Cα = (a, b), where

Pr(θ < a|x) = Pr(θ > b|x) = α/2

θ

de
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ity

a b

γ

Figure: HDI for θ



Example 1.8

Suppose we have a random sample x = (x1, x2, . . . , xn)T from a N(µ, 1/τ)
distribution (where τ is known). We have seen that, assuming vague prior
knowledge, the posterior distribution is µ|x ∼ N{x̄ , 1/(nτ)}. Determine
the 100(1− α)% HDI for µ.

Solution

. . .

Comment

Note that this interval is numerically identical to the 95% frequentist
confidence interval for the (population) mean of a normal random sample
with known variance. However, the interpretation is very different.



Interpretation of confidence intervals

CB is a 95% Bayesian confidence interval for θ

CF is a 95% frequentist confidence interval for θ

These intervals do not have the same interpretation:

the probability that CB contains θ is 0.95

the probability that CF contains θ is either 0 or 1

the interval CF covers the true value θ on 95% of occasions — in
repeated applications of the formula



Example 1.9

Recall Example 1.1 on the number of cases of foodbourne botulism in
England and Wales. The data were modelled as a random sample from a
Poisson distribution with mean θ. Using a Ga(2, 1) prior distribution, we
found the posterior distribution to be θ|x ∼ Ga(8, 9), with density
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Figure: Posterior density for θ

Determine the 95% HDI for θ.

Solution

. . .



Simple way to calculate the HDI

Use the R function hdiGamma in the package nclbayes

It calculates the HDI for any Gamma distribution

Here we use
library(nclbayes)

hdiGamma(p=0.95,a=8,b=9)

The package also has functions

hdiBeta for the Beta distribution
hdiInvchi for the Inv-Chi distribution (introduced in Chapter 3)



1.4.2 Prediction

Much of statistical inference (both Frequentist and Bayesian) is aimed
towards making statements about a parameter θ

Often the inferences are used as a yardstick for similar future
experiments

For example, we may want to predict the outcome when the
experiment is performed again

Predicting the future

There will be uncertainty about the future outcome of an experiment

Suppose this future outcome Y is described by a probability (density)
function f (y |θ)

If θ were known, say θ0, then any prediction can do no better than
one based on f (y |θ = θ0)

What if θ is unknown?



Frequentist solution

Get estimate θ̂ and use f (y |θ = θ̂) but this ignores uncertainty on θ̂

Better: use Eθ̂{f (y |θ = θ̂)} to average over uncertainty on θ̂

Bayesian solution

Use the predictive distribution, with density

f (y |x) =

∫
Θ
f (y |θ)π(θ|x) dθ

when θ is a continuous quantity

Notice this could be rewritten as

f (y |x) = Eθ|x{f (y |θ)}

Uses f (y |θ) but weights each θ by our posterior beliefs



Prediction interval

Useful range of plausible values for the outcome of a future
experiment

Similar to a HDI interval

A 100(1− α)% prediction interval for Y is the region

Cα = {y : f (y |x) ≥ γ}

where γ is chosen so that Pr(Y ∈ Cα|x) = 1− α



Example 1.10

Recall Example 1.1 on the number of cases of foodbourne botulism in
England and Wales.

The data for 1998–2005 were modelled as a random sample from a
Poisson distribution with mean θ.

Using a Ga(2, 1) prior distribution, we found the posterior distribution to
be θ|x ∼ Ga(8, 9).

Determine the predictive distribution for the number of cases for the
following year (2006).

Solution

. . .



Comments

This predictive probability function is related to that of a negative
binomial distribution

If Z ∼ NegBin(r , p) then

Pr(Z = z) =

(
z − 1

r − 1

)
pr (1− p)z−r , z = r , r + 1, . . .

and so W = Z − r has probability function

Pr(W = w) = Pr(Z = w+r) =

(
w + r − 1

r − 1

)
pr (1−p)w , w = 0, 1, . . .

This is the same probability function as our predictive probability
function, with r = 8 and p = 0.9

Therefore Y |x ∼ NegBin(8, 0.9)− 8

Note that, unfortunately, R also calls the distribution of W a negative
binomial distribution with parameters r and p: dnbinom(r,p)



To distinguish between this distribution and the NegBin(r , p)
distribution used above, we shall denote the distribution of W as a
NegBinR(r , p) distribution – it has mean r(1− p)/p and variance
r(1− p)/p2

Thus Y |x ∼ NegBinR(8, 0.9)



Comparison between predictive and naive predictive distributions

Can compare the predictive distribution Y |x with a naive predictive
Y |θ = θ̂ ∼ Po(0.75) where

f (y |θ = θ̂) =
0.75y e−0.75

y !
, y = 0, 1, . . . .

Probability functions:

correct naive

y f (y |x) f (y |θ = θ̂)

0 0.430 0.472
1 0.344 0.354
2 0.155 0.133
3 0.052 0.033
4 0.014 0.006
5 0.003 0.001

≥ 6 0.005 0.002



The naive predictive distribution is a predictive distribution which
uses a degenerate posterior distribution π∗(θ|x)

Here Prπ∗(θ = 0.75|x) = 1 and standard deviation SDπ∗(θ|x) = 0

The correct posterior standard deviation of θ is
SDπ(θ|x) =

√
8/9 = 0.314

Using a degenerate posterior distribution results in the naive
predictive distribution having too small a standard deviation:

SD(Y |x = 1) =

{
0.994 using the correct π(θ|x)

0.866 using the naive π∗(θ|x),

these values being calculated from NegBinR(8, 0.9) and Po(0.75)
distributions

{0, 1, 2} is a 92.9% prediction set/interval

{0, 1, 2} is a 95.9% prediction set/interval using the the more
“optimistic” naive predictive distribution



Predictive distribution (general case)

Generally requires calculation of a non-trivial integral (or sum)

f (y |x) =

∫
Θ
f (y |θ)π(θ|x) dθ

Easier method available when using a conjugate prior distribution

Suppose θ is a continuous quantity and X and Y are independent
given θ

Using Bayes Theorem, the posterior distribution for θ given x and y is

π(θ|x , y) =
π(θ)f (x , y |θ)

f (x , y)

=
π(θ)f (x |θ)f (y |θ)

f (x)f (y |x)
since X and Y are indep given θ

=
π(θ|x) f (y |θ)

f (y |x)
.

Rearranging, we obtain . . .



Candidate’s formula

The predictive p(d)f is

f (y |x) =
f (y |θ)π(θ|x)

π(θ|x , y)

The RHS looks as if it depends on θ but it doesn’t: all terms in θ
cancel

For this formula to be useful, we have to be able to work out θ|x and
θ|x , y fairly easily

This is the case when using conjugate priors



Example 1.11

Rework Example 1.10 using Candidate’s formula to determine the number
of cases in 2006.

Solution

. . .



1.5 Mixture Prior Distributions

Sometimes prior beliefs cannot be adequately represented by a simple
distribution, for example, a normal distribution or a beta distribution. In
such cases, mixtures of distributions can be useful.

Example 1.12

Investigations into infants suffering from severe idiopathic respiratory
distress syndrome have shown that whether the infant survives may be
related to their weight at birth. Suppose that the distribution of birth
weights (in kg) of infants who survive is a normal N(2.3, 0.522)
distribution and that of infants who die is a normal N(1.7, 0.662)
distribution. Also the proportion of infants that survive is 0.6. What is the
distribution of birth weights of infants suffering from this syndrome?

Solution

. . .



This distribution is a mixture of two normal distributions
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Figure: Plot of the mixture density (solid) with its component densities (survive –
dashed; die – dotted)



Definition 1.2 (Mixture distribution)

A mixture of the distributions πi (θ) with weights pi (i = 1, 2, . . . ,m) has
probability (density) function

π(θ) =
m∑
i=1

piπi (θ) (1.11)
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Figure: Plot of two mixture densities: solid is 0.6N(1, 1) + 0.4N(2, 1); dashed is
0.9Exp(1) + 0.1N(2, 0.252)



Properties of mixture distributions

In order for a mixture distribution to be proper, we must have

1 =

∫
Θ
π(θ) dθ

=

∫
Θ

m∑
i=1

piπi (θ) dθ

=
m∑
i=1

pi

∫
Θ
πi (θ) dθ

=
m∑
i=1

pi ,

that is, the sum of the weights must be one



Mean and Variance

Suppose the mean and variance of the distribution for θ in component i are

Ei (θ) =

∫
Θ
θ πi (θ) dθ and Vari (θ) =

∫
Θ
{θ − Ei (θ)}2 πi (θ) dθ

Then

E (θ) =
m∑
i=1

piEi (θ), (1.12)

E (θ2) =
m∑
i=1

piEi (θ
2)

=
m∑
i=1

pi
{
Vari (θ) + Ei (θ)2

}
(1.13)

and use Var(θ) = E (θ2)− E (θ)2



Posterior distribution

Using Bayes Theorem gives

π(θ|x) =
π(θ) f (x |θ)

f (x)

=
m∑
i=1

piπi (θ) f (x |θ)

f (x)
(1.14)

where f (x) is a constant with respect to θ.

Component posterior distributions

If the prior distribution were πi (θ) (instead of the mixture distribution)
then, using Bayes Theorem, the posterior distribution would be

πi (θ|x) =
πi (θ) f (x |θ)

fi (x)

where fi (x) i = 1, 2, . . . ,m are constants with respect to θ.



Substituting this in to (1.14) gives

π(θ|x) =
m∑
i=1

pi fi (x)

f (x)
πi (θ|x).

Thus the posterior distribution is a mixture distribution of component
distributions πi (θ|x) with weights p∗i = pi fi (x)/f (x). Now

m∑
i=1

p∗i = 1 ⇒
m∑
i=1

pi fi (x)

f (x)
= 1 ⇒ f (x) =

m∑
i=1

pi fi (x)

and so

p∗i =
pi fi (x)

m∑
j=1

pj fj(x)

, i = 1, 2, . . . ,m.



Summary

Likelihood: f (x |θ)

Prior: π(θ) =
m∑
i=1

piπi (θ)

Posterior: π(θ|x) =
m∑
i=1

p∗i πi (θ|x), where

πi (θ)
x−→ πi (θ|x) and p∗i =

pi fi (x)
m∑
j=1

pj fj(x)



Example 1.13

Model: Xj |µ ∼ Exp(θ), j = 1, 2, . . . , 20 (independent)

Prior: mixture distribution with density

π(θ) = 0.6Ga(5, 10) + 0.4Ga(15, 10)

Here the component distributions are π1(θ) = Ga(5, 10) and
π2(θ) = Ga(15, 10), with weights p1 = 0.6 and p2 = 0.4
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Component posterior distributions (General case)

Model: Xj |θ ∼ Exp(θ), j = 1, 2, . . . , n (independent)

Prior: θ ∼ Ga(gi , hi )

Data: observe x

Posterior: θ|x ∼ Ga(gi + n, hi + nx̄)

In this example (n = 20)

Component priors:

π1(θ) = Ga(5, 10) and π2(θ) = Ga(15, 10)

Component posteriors:

π1(θ|x) = Ga(25, 10 + 20x̄) and π2(θ|x) = Ga(35, 10 + 20x̄)



Weights

We have

p∗1 =
0.6f1(x)

0.6f1(x) + 0.4f2(x)
⇒ (p∗1)−1 − 1 =

0.4f2(x)

0.6f1(x)

In general, the functions

fi (x) =

∫
Θ
πi (θ) f (x |θ) dθ

are potentially complicated integrals (solved either analytically or
numerically)

However, as with Candidates formula, these calculations become
much simpler when we have a conjugate prior distribution



Rewriting Bayes Theorem, we obtain

f (x) =
π(θ) f (x |θ)

π(θ|x)

So when the prior and posterior densities have a simple form (as they
do when using a conjugate prior), it is straightforward to determine
f (x) using algebra rather than having to use calculus



In this example . . .

The gamma distribution is the conjugate prior distribution: random
sample of size n with mean x̄ and Ga(g , h) prior → Ga(g + n, h + nx̄)
posterior, and so

f (x) =
π(θ) f (x |θ)

π(θ|x)

=

hgθg−1e−hθ

Γ(g)
× θne−nx̄θ

(h + nx̄)g+nθg+n−1e−(h+nx̄)θ

Γ(g + n)

=
hg Γ(g + n)

Γ(g)(h + nx̄)g+n

Notice that all terms in θ have cancelled



Therefore

(p∗1)−1 − 1 =
p2f2(x)

p1f1(x)

=
0.4× 1015 Γ(35)

Γ(15)(10 + 20x̄)35

/
0.6× 105 Γ(25)

Γ(5)(10 + 20x̄)25

=
2Γ(35)Γ(5)

3Γ(25)Γ(15)(1 + 2x̄)10

=
611320

7(1 + 2x̄)10

=⇒ p∗1 =
1

1 +
611320

7(1 + 2x̄)10

, p∗2 = 1− p∗1



Results for Gamma distribution

If θ ∼ Ga(g , h) then E (θ) = g
h and

E (θ2) = Var(θ) + E (θ)2 =
g

h2
+

g2

h2
=

g(g + 1)

h2

Summaries for π(θ) = 0.6Ga(5, 10) + 0.4Ga(15, 10)

Mean: E (θ) =
2∑

i=1

piEi (θ) = 0.6× 5

10
+ 0.4× 15

10
= 0.9

Second moment:

E (θ2) =
2∑

i=1

piEi (θ
2) = 0.6× 5× 6

102
+ 0.4× 15× 16

102
= 1.14

Variance: Var(θ) = E (θ2)− E (θ)2 = 1.14− 0.92 = 0.33

Standard deviation: SD(θ) =
√

Var(θ) =
√

0.33 = 0.574



Posterior distribution

The posterior distribution is the mixture distribution

1

1 +
611320

7(1 + 2x̄)10

×Ga(25, 10+20x̄)+

1− 1

1 +
611320

7(1 + 2x̄)10

×Ga(35, 10+20x̄)

x̄ θ̂ = 1/x̄ Posterior mixture distribution E (θ|x) SD(θ|x)
No data 0.6Ga(5, 10) + 0.4Ga(15, 10) 0.9 0.574

4 0.25 0.99997Ga(25, 90) + 0.00003Ga(35, 90) 0.278 0.056
2 0.5 0.9911Ga(25, 50) + 0.0089Ga(35, 50) 0.502 0.102

1.2 0.8 0.7027Ga(25, 34) + 0.2973Ga(35, 34) 0.823 0.206
1 1.0 0.4034Ga(25, 30) + 0.5966Ga(35, 30) 1.032 0.247

0.8 1.25 0.1392Ga(25, 26) + 0.8608Ga(35, 26) 1.293 0.260
0.5 2.0 0.0116Ga(25, 20) + 0.9884Ga(35, 20) 1.744 0.300

Table: Posterior distributions (with summaries) for various sample means x̄
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Figure: Plot of the prior distribution (dotted) and various posterior distributions



Comments

Likelihood mode is 1/x̄

→ large values of x̄ indicate that θ is small and vice versa

Component posterior means:

E1(θ|x) =
25

10 + 20x̄
and E2(θ|x) =

35

10 + 20x̄

Component 1 has smallest posterior mean

Recall p∗1 = 1

/(
1 +

611320

7(1 + 2x̄)10

)
p∗1 is increasing in x̄
Comment: as x̄ increases, the posterior gives more weight to the
component with the smallest mean

p∗1 → 1 as x̄ →∞



Posterior summaries

Mean:

E (θ|x) =
2∑

i=1

p∗i Ei (θ|x)

=
1

1 +
611320

7(1 + 2x̄)10

× 25

10 + 20x̄

+

1− 1

1 +
611320

7(1 + 2x̄)10

× 35

10 + 20x̄

= · · ·

=
1

2(1 + 2x̄)

7− 2

1 +
611320

7(1 + 2x̄)10





Second moment: E (θ2|x) =
2∑

i=1

p∗i Ei (θ
2|x) = · · ·

Variance: Var(θ|x) = E (θ2|x)− E (θ|x)2 = · · ·

Standard deviation: SD(θ|x) =
√

Var(θ|x) = · · ·



1.6 Learning objectives

By the end of this chapter, you should be able to:

1. Determine the likelihood function using a random sample from any
distribution

2. Combine this likelihood function with any prior distribution to obtain
the posterior distribution

3. Name the posterior distribution if it is a “standard” distribution listed
in these notes or on the exam paper – this list may well include
distributions that are standard within the subject but which you have
not met before. If the posterior is not a “standard” distribution then
it is okay just to give its density (or probability function) up to a
constant.

4. Do all the above for a particular data set or for a general case with
random sample x1, . . . , xn



5. Describe the different levels of prior information; determine and use
conjugate priors and vague priors

6. Determine the asymptotic posterior distribution

7. Determine the predictive distribution, particularly when having a
random sample from any distribution and a conjugate prior via
Candidate’s formula

8. Describe and calculate the confidence intervals, HDIs and prediction
intervals

9. Calculate the mean and variance of a mixture distribution

10. Determine posterior distributions when the prior is a mixture of
conjugate distributions, including component distributions and
weights
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