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Course overview

You were introduced to the Bayesian approach to statistical inference in MAS2903. This

module showed statistical analysis in a very different light to the frequentist approach

used in other courses. The frequentist approach bases inference on the sampling dis-

tribution of (usually unbiased) estimators; as you may recall, the Bayesian framework

combines information expressed as expert subjective opinion with experimental data. You

have probably realised that the Bayesian approach has many advantages over the fre-

quentist approach. In particular it provides a more natural way of dealing with parameter

uncertainty and inference is far more straightforward to interpret.

Much of the work in this module will be concerned with extending the ideas presented in

MAS2903 to more realistic models with many parameters that you may encounter in real

life situations. These notes are split into four chapters:

• Chapter 1 reviews some of the key results for Bayesian inference of single param-

eter problems studied in Stage 2. It also introduces the idea of a mixture prior

distribution.

• Chapter 2 studies the case of a random sample from a normal population and

determines how to make inferences about the population mean and precision, and

about future values from the population. The Group Project is based on this

material.

• Chapter 3 contains some general results for multi-parameter problems. You will

encounter familiar concepts, such as how to represent vague prior information and

the asymptotic normal posterior distribution.

• Chapter 4 introduces Markov chain Monte Carlo techniques which have truly revo-

lutionised the use of Bayesian inference in applications. Inference proceeds by sim-

ulating realisations from the posterior distribution. The ideas will be demonstrated

using an R library specially written for the module. This material is extended in the

4th year module MAS8951: Modern Bayesian Inference.
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Chapter 1

Single parameter problems

This chapter reviews some of the key results for Bayesian inference of single parameter

problems studied in MAS2903.

1.1 Prior and posterior distributions

Suppose we have data x = (x1, x2, . . . , xn)T which we model using the probability (density)

function f (x |θ), which depends on a single parameter θ. Once we have observed the data,

f (x |θ) is the likelihood function for θ and is a function of θ (for fixed x) rather than of x

(for fixed θ).

Also, suppose we have prior beliefs about likely values of θ expressed by a probability

(density) function π(θ). We can combine both pieces of information using the following

version of Bayes Theorem. The resulting distribution for θ is called the posterior distri-

bution for θ as it expresses our beliefs about θ after seeing the data. It summarises all

our current knowledge about the parameter θ.

Using Bayes Theorem, the posterior probability (density) function for θ is

π(θ|x) =
π(θ) f (x |θ)

f (x)

where

f (x) =


∫

Θ
π(θ) f (x |θ) dθ if θ is continuous,

∑
Θ π(θ) f (x |θ) if θ is discrete.

Also, as f (x) is not a function of θ, Bayes Theorem can be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)

i .e. posterior ∝ prior× likelihood.

1
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Example 1.1

Table 1.1 shows some data on the number of cases of foodbourne botulism in England

and Wales. It is believed that cases occur at random at a constant rate θ in time (a

Poisson process) and so can be modelled as a random sample from a Poisson distribution

with mean θ.

Year 1998 1999 2000 2001 2002 2003 2004 2005

Cases 2 0 0 0 1 0 2 1

Table 1.1: Number of cases of foodbourne botulism in England and Wales, 1998–2005

An expert in the epidemiology of similar diseases gives their prior distribution for the rate θ

as a Ga(2, 1) distribution, with density

π(θ) = θ e−θ, θ > 0, (1.1)

and mean E(θ) = 2 and variance V ar(θ) = 2. Determine the posterior distribution for θ.

Solution

The data are observations on Xi |θ ∼ Po(θ), i =
1, 2, . . . , 8 (independent). Therefore, the likelihood
function for θ is

f (x |θ) =

8∏
i=1

θxie−θ

xi!
, θ > 0

=
θ2+0+···+1e−8θ

2!× 0!× · · · × 1!
, θ > 0

=
θ6e−8θ

4
, θ > 0. (1.2)

Bayes Theorem combines the expert opinion with the
observed data, and gives the posterior density function
as
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π(θ|x) ∝ π(θ) f (x |θ)

∝ θe−θ ×
θ6e−8θ

4
, θ > 0

= k θ7e−9θ, θ > 0. (1.3)

The only continuous distribution with density of the
form kθg−1e−hθ, θ > 0 is the Ga(g, h) distribution.
Therefore, the posterior distribution must be θ|x ∼
Ga(8, 9).
Thus the data have updated our beliefs about θ from a Ga(2, 1) distribution to a Ga(8, 9)

distribution. Plots of these distributions are given in Figure 1.1, and Table 1.2 gives a

summary of the main changes induced by incorporating the data — a Ga(g, h) distribution

has mean g/h, variance g/h2 and mode (g − 1)/h.
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Figure 1.1: Prior (dashed) and posterior (solid) densities for θ

Notice that, as the mode of the likelihood function is close to that of the prior distribution,

the information in the data is consistent with that in the prior distribution. Also there

is a reduction in variability from the prior to the posterior distributions. The similarity

between the prior beliefs and the data has reduced the uncertainty we have about the

rate θ at which cases occur.
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Prior Likelihood Posterior

(1.1) (1.2) (1.3)

Mode(θ) 1.00 0.75 0.78

E(θ) 2.00 – 0.89

SD(θ) 1.41 – 0.31

Table 1.2: Changes in beliefs about θ

Example 1.2

Consider now the general case of Example 1.1: suppose Xi |θ ∼ Po(θ), i = 1, 2, . . . , n

(independent) and our prior beliefs about θ are summarised by a Ga(g, h) distribution

(with g and h known), with density

π(θ) =
hg θg−1e−hθ

Γ(g)
, θ > 0. (1.4)

Determine the posterior distribution for θ.

Solution

The likelihood function for θ is

f (x |θ) =

n∏
i=1

θxie−θ

xi!
, θ > 0

∝ θnx̄e−nθ, θ > 0. (1.5)

Using Bayes Theorem, the posterior density function
is

π(θ|x) ∝ π(θ) f (x |θ)

∝
hg θg−1e−hθ

Γ(g)
× θnx̄e−nθ, θ > 0

i.e. π(θ|x) = kθg+nx̄−1e−(h+n)θ, θ > 0 (1.6)

where k is a constant that does not depend on
θ. Therefore, the posterior density takes the form
kθG−1e−Hθ, θ > 0 and so the posterior must be a
gamma distribution. Thus we have θ|x ∼ Ga(G =
g + nx̄, H = h + n).
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Summary:

If we have a random sample from a Po(θ) distribution and our prior beliefs about θ follow

a Ga(g, h) distribution then, after incorporating the data, our (posterior) beliefs about θ

follow a Ga(g + nx̄, h + n) distribution.

The changes in our beliefs about θ are summarised in Table 1.3, taking g ≥ 1. Notice

Prior Likelihood Posterior

(1.4) (1.5) (1.6)

Mode(θ) (g − 1)/h x̄ (g + nx̄ − 1)/(h + n)

E(θ) g/h – (g + nx̄)/(h + n)

SD(θ)
√
g/h –

√
g + nx̄/(h + n)

Table 1.3: Changes in beliefs about θ

that the posterior mean is greater than the prior mean if and only if the likelihood mode

is greater than the prior mean, that is,

E(θ|x) > E(θ) ⇐⇒ Modeθ{f (x |θ)} > E(θ).

The standard deviation of the posterior distribution is smaller than that of the prior

distribution if and only if the sample mean is not too large, that is

SD(θ|x) < SD(θ) ⇐⇒ Modeθ{f (x |θ)} <
(

2 +
n

h

)
E(θ),

and this will be true in large samples.

Example 1.3

Suppose we have a random sample from a normal distribution. In Bayesian statistics, when

dealing with the normal distribution, the mathematics is more straightforward working

with the precision (= 1/variance) of the distribution rather than the variance itself.

So we will assume that this population has unknown mean µ but known precision τ :

Xi |µ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent), where τ is known. Suppose our prior

beliefs about µ can be summarised by a N(b, 1/d) distribution, with probability density

function

π(µ) =

(
d

2π

)1/2

exp

{
−
d

2
(µ− b)2

}
. (1.7)

Determine the posterior distribution for µ.

Hint:

d(µ− b)2 + nτ(x̄ − µ)2 = (d + nτ)

{
µ−

(
db + nτx̄

d + nτ

)}2

+ c

where c does not depend on µ.
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Solution

The likelihood function for µ is

f (x |µ) =

n∏
i=1

( τ
2π

)1/2

exp
{
−
τ

2
(xi − µ)2

}
=
( τ

2π

)n/2

exp

{
−
τ

2

n∑
i=1

(xi − µ)2

}
.

Now

n∑
i=1

(xi − µ)2 =

n∑
i=1

(xi − x̄ + x̄ − µ)2

=

n∑
i=1

{(xi − x̄)2 + (x̄ − µ)2 + 2(xi − x̄)(x̄ − µ)}

=

n∑
i=1

{(xi − x̄)2 + (x̄ − µ)2}+ 2(x̄ − µ)

n∑
i=1

(xi − x̄)

=

n∑
i=1

(xi − x̄)2 + n(x̄ − µ)2.

Let s2 =
1

n

n∑
i=1

(xi − x̄)2 and so

n∑
i=1

(xi − µ)2 = n
[
s2 + (x̄ − µ)2

]
.
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Therefore

f (x |µ) =
( τ

2π

)n/2

exp
{
−
nτ

2

[
s2 + (x̄ − µ)2

]}
.

(1.8)

Using Bayes Theorem, the posterior density function
is, for µ ∈ R

π(µ|x) ∝ π(µ) f (x |µ)

∝
(
d

2π

)1/2

exp

{
−
d

2
(µ− b)2

}
×
( τ

2π

)n/2

exp
{
−
nτ

2

[
s2 + (x̄ − µ)2

]}
∝ exp

{
−

1

2

[
d(µ− b)2 + nτ(x̄ − µ)2

]}
∝ exp

{
−

1

2

[
(d + nτ)

{
µ−

(
db + nτx̄

d + nτ

)}2

+ c

]}
using the hint

∝ exp

{
−

1

2

[
(d + nτ)

{
µ−

(
db + nτx̄

d + nτ

)}2
]}

as c does not depend on µ. Let

B =
db + nτx̄

d + nτ
and D = d + nτ. (1.9)

Then

π(µ|x) = k exp

{
−
D

2
(µ− B)2

}
, (1.10)
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where k is a constant that does not depend on
µ. Therefore, the posterior density takes the form
k exp{−D(µ − B)2/2}, µ ∈ R and so the posterior
distribution must be a normal distribution: we have
µ|x ∼ N(B, 1/D).



1.1. PRIOR AND POSTERIOR DISTRIBUTIONS 9

Summary:

If we have a random sample from a N(µ, 1/τ) distribution (with τ known) and our prior

beliefs about µ follow a N(b, 1/d) distribution then, after incorporating the data, our

(posterior) beliefs about µ follow a N(B, 1/D) distribution.

The changes in our beliefs about µ are summarised in Table 1.4. Notice that the posterior

Prior Likelihood Posterior

(1.7) (1.8) (1.10)

Mode(µ) b x̄ (db + nτx̄)/(d + nτ)

E(µ) b – (db + nτx̄)/(d + nτ)

P recision(µ) d – d + nτ

Table 1.4: Changes in beliefs about µ

mean is greater than the prior mean if and only if the likelihood mode (sample mean) is

greater than the prior mean, that is

E(µ|x) > E(µ) ⇐⇒ Modeµ{f (x |µ)} > E(µ).

Also, the standard deviation of the posterior distribution is smaller than that of the prior

distribution.

Example 1.4

The 18th century physicist Henry Cavendish made 23 experimental determinations of the

earth’s density, and these data (in g/cm3) are given below.

5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29

5.44 5.34 5.79 5.10 5.27 5.39 5.42 5.47

5.63 5.34 5.46 5.30 5.78 5.68 5.85

Suppose that Cavendish asserts that the error standard deviation of these measurements

is 0.2 g/cm3, and assume that they are normally distributed with mean equal to the

true earth density µ. Using a normal prior distribution for µ with mean 5.41 g/cm3 and

standard deviation 0.4 g/cm3, derive the posterior distribution for µ.

Solution

From the data we calculate x̄ = 5.4848 and s =
0.1882. Therefore, the assumed standard deviation
σ = 0.2 is probably okay. We also have τ = 1/0.22,
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b = 5.41, d = 1/0.42 and n = 23. There-
fore, using Example 1.3, the posterior distribution is
µ|x ∼ N(B, 1/D), where

B =
db + nτx̄

d + nτ
=

5.41/0.42 + 23× 5.4848/0.22

1/0.42 + 23/0.22
= 5.4840

and

D = d + nτ =
1

0.42
+

23

0.22
=

1

0.04152
.

Therefore the posterior distribution is µ|x ∼
N(5.484, 0.04152) and is shown in Figure 1.2.

The actual mean density of the earth is 5.515 g/cm3 (Wikipedia). We can determine the

(posterior) probability that the mean density is within 0.1 of this value as follows. The

posterior distribution is µ|x ∼ N(5.484, 0.04152) and so

P r(5.415 < µ < 5.615|x) = 0.9510,

calculated using the R command pnorm(5.615,5.484,0.0415)-pnorm(5.415,5.484,0.0415).

Without the data, the only basis for determining the earth’s density is via the prior

distribution. Here the prior distribution is µ ∼ N(5.4, 0.42) and so the (prior) probability

that the mean density is within 0.2 of the (now known) true value is

P r(5.315 < µ < 5.715) = 0.1896,

calculated using the R command pnorm(5.615,5.4,0.4)-pnorm(5.415,5.4,0.4).
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Figure 1.2: Prior (dashed) and posterior (solid) densities for the earth’s density
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1.2 Different levels of prior knowledge

1.2.1 Substantial prior knowledge

We have substantial prior information for θ when the prior distribution dominates the

posterior distribution, that is π(θ|x) ∼ π(θ).

When we have substantial prior information there can be some difficulties:

1. the intractability of the mathematics in deriving the posterior distribution — though

with modern computing facilities this is less of a problem,

2. the practical formulation of the prior distribution — coherently specifying prior

beliefs in the form of a probability distribution is far from straightforward.

1.2.2 Limited prior knowledge

When prior information about θ is limited, the pragmatic approach is to choose a distri-

bution which makes the Bayes updating from prior to posterior mathematically straight-

forward, and use what prior information is available to determine the parameters of this

distribution. For example

• Poisson random sample, Gamma prior distribution−→ Gamma posterior distribution

• Normal random sample (known variance), Normal prior distribution −→ Normal

posterior distribution

In these examples, the prior distribution and the posterior distribution come from the

same family. This leads us to the following definition.

Definition 1.1

Suppose that data x are to be observed with distribution f (x |θ). A family F of prior

distributions for θ is said to be conjugate to f (x |θ) if for every prior distribution π(θ) ∈ F,

the posterior distribution π(θ|x) is also in F.

Notice that the conjugate family depends crucially on the model chosen for the data x .

For example, the only family conjugate to the model “random sample from a Poisson

distribution” is the Gamma family.

1.2.3 Vague prior knowledge

If we have very little or no prior information about the model parameters θ, we must

still choose a prior distribution in order to operate Bayes Theorem. Obviously, it would
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be sensible to choose a prior distribution which is not concentrated about any particular

value, that is, one with a very large variance. In particular, most of the information

about θ will be passed through to the posterior distribution via the data, and so we have

π(θ|x) ∼ f (x |θ).

We represent vague prior knowledge by using a prior distribution which is conjugate to

the model for x and which is as diffuse as possible, that is, has as large a variance as

possible.

Example 1.5

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ known). De-

termine the posterior distribution assuming a vague prior for µ.

Solution

The conjugate prior distribution is a normal distri-
bution. We have already seen that if the prior is
µ ∼ N(b, 1/d) then the posterior distribution is
µ|x ∼ N(B, 1/D) where

B =
db + nτx̄

d + nτ
and D = d + nτ.

If we now make our prior knowledge vague about µ by
letting the prior variance tend to infinity (d → 0), we
obtain

B → x̄ and D → nτ.

Therefore, assuming vague prior knowledge for µ re-
sults in a N{x̄ , 1/(nτ)} posterior distribution.

Notice that the posterior mean is the sample mean
(the likelihood mode) and that the posterior variance
1/(nτ)→ 0 as n →∞.
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Example 1.6

Suppose we have a random sample from a Poisson distribution, that is, Xi |θ ∼ Po(θ),

i = 1, 2, . . . , n (independent). Determine the posterior distribution assuming a vague

prior for θ.

Solution

The conjugate prior distribution is a Gamma distribution. Recall that a Ga(g, h) dis-

tribution has mean m = g/h and variance v = g/h2. Rearranging these formulae we

obtain

g =
m2

v
and h =

m

v
.

Clearly g → 0 and h → 0 as v →∞ (for fixed m). We have seen how taking a Ga(g, h)

prior distribution results in a Ga(g + nx̄, h + n) posterior distribution. Therefore, taking

a vague prior distribution will give a Ga(nx̄, n) posterior distribution.

Note that the posterior mean is x̄ (the likelihood mode) and that the posterior variance

x̄/n → 0 and n →∞.

1.3 Asymptotic posterior distribution

If we have a statistical model f (x |θ) for data x = (x1, x2, . . . , xn)T , together with a prior

distribution π(θ) for θ then√
J(θ̂) (θ − θ̂)|x D−→ N(0, 1) as n →∞,

where θ̂ is the likelihood mode and J(θ) is the observed information

J(θ) = −
∂2

∂θ2
log f (x |θ).

This means that, with increasing amounts of data, the posterior distribution looks more

and more like a normal distribution. The result also gives us a useful approximation to

the posterior distribution for θ when n is large:

θ|x ∼ N{θ̂, J(θ̂)−1} approximately.

Note that this limiting result is similar to one used in Frequentist statistics for the distri-

bution of the maximum likelihood estimator, namely√
I(θ) (θ̂ − θ)

D−→ N(0, 1) as n →∞,

where Fisher’s information I(θ) is the expected value of the observed information, where

the expectation is taken over the distribution of X|θ, that is, I(θ) = EX|θ[J(θ)]. You may

also have seen this result written as an approximation to the distribution of the maximum

likelihood estimator in large samples, namely

θ̂ ∼ N{θ, I(θ)−1} approximately.



14 CHAPTER 1. SINGLE PARAMETER PROBLEMS

Example 1.7

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ known). De-

termine the asymptotic posterior distribution for µ.

Recall that

f (x |µ) =
( τ

2π

)n/2

exp

{
−
τ

2

n∑
i=1

(xi − µ)2

}
,

and therefore

log f (x |µ) =
n

2
log τ −

n

2
log(2π)−

τ

2

n∑
i=1

(xi − µ)2

⇒
∂

∂µ
log f (x |µ) = −

τ

2
×

n∑
i=1

−2(xi − µ) = τ

n∑
i=1

(xi − µ) = nτ(x̄ − µ)

⇒
∂2

∂µ2
log f (x |µ) = −nτ ⇒ J(µ) = −

∂2

∂µ2
log f (x |µ) = nτ.

Solution

We have

∂

∂µ
log f (x |µ) = 0 =⇒ µ̂ = x̄

=⇒ J(µ̂) = nτ

=⇒ J(µ̂)−1 =
1

nτ
.

Therefore, for large n, the (approximate) posterior dis-
tribution for µ is

µ|x ∼ N
(
x̄ ,

1

nτ

)
.

Here the asymptotic posterior distribution is the same as the posterior distribution under

vague prior knowledge.
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1.4 Bayesian inference

The posterior distribution π(θ|x) summarises all our information about θ to date. How-

ever, sometimes it is helpful to reduce this distribution to a few key summary measures.

1.4.1 Estimation

Point estimates

There are many useful summaries for a typical value of a random variable with a particular

distribution; for example, the mean, mode and median. The mode is used more often as

a summary than is the case in frequentist statistics.

Confidence intervals/regions

A more useful summary of the posterior distribution is one which also reflects its variation.

For example, a 100(1 − α)% Bayesian confidence interval for θ is any region Cα that

satisfies P r(θ ∈ Cα|x) = 1 − α. If θ is a continuous quantity with posterior probability

density function π(θ|x) then ∫
Cα

π(θ|x) dθ = 1− α.

The usual correction is made for discrete θ, that is, we take the largest region Cα such

that P r(θ ∈ Cα|x) ≤ 1− α. Bayesian confidence intervals are sometimes called credible

regions or plausible regions. Clearly these intervals are not unique, since there will be

many intervals with the correct probability coverage for a given posterior distribution.

A 100(1− α)% highest density interval (HDI) for θ is the region

Cα = {θ : π(θ|x) ≥ γ}

where γ is chosen so that P r(θ ∈ Cα|x) = 1 − α. This region is sometimes called

a most plausible Bayesian confidence interval. If the posterior distribution has many

modes then it is possible that the HDI will be the union of several disjoint regions.

Also, if the posterior distribution is unimodal (has one mode) and symmetric about its

mean then the HDI is an equi-tailed interval, that is, takes the form Cα = (a, b), where

P r(θ < a|x) = P r(θ > b|x) = α/2; see Figure 1.3.
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Figure 1.3: Construction of an HDI for a symmetric posterior density

Interpretation of confidence intervals/regions

Suppose CB is a 95% Bayesian confidence interval for θ and CF is a 95% frequentist

confidence interval for θ. These intervals do not have the same interpretation:

• the probability that CB contains θ is 0.95;

• the probability that CF contains θ is either 0 or 1 — since θ does not have a

(non-degenerate) probability distribution;

• the interval CF covers the true value θ on 95% of occasions — in repeated appli-

cations of the formula.

Example 1.8

Suppose we have a random sample x = (x1, x2, . . . , xn)T from a N(µ, 1/τ) distribution

(where τ is known). We have seen that, assuming vague prior knowledge, the posterior

distribution is µ|x ∼ N{x̄ , 1/(nτ)}. Determine the 100(1− α)% HDI for µ.

Solution

This distribution has a symmetric bell shape and so
the HDI is an equi-tailed interval Cα = (a, b) with
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P r(µ < a|x) = α/2 and P r(µ > b|x) = α/2, that
is,

a = x̄ −
zα/2√
nτ

and b = x̄ +
zα/2√
nτ
,

where zα is the upper α-quantile of the N(0, 1) distri-
bution. For example, the 95% HDI for µ is(

x̄ −
1.96√
nτ
, x̄ +

1.96√
nτ

)
.

Note that this interval is numerically identical to the 95% frequentist confidence interval

for the (population) mean of a normal random sample with known variance. However,

the interpretation is very different.

Example 1.9

Recall Example 1.1 on the number of cases of foodbourne botulism in England and

Wales. The data were modelled as a random sample from a Poisson distribution with

mean θ. Using a Ga(2, 1) prior distribution, we found the posterior distribution to be

θ|x ∼ Ga(8, 9). This posterior density is shown in Figure 1.4. Determine the 100(1−α)%

HDI for θ.

Solution

The HDI must take the form Cα = (a, b) if it is to
include the values of θ with the highest probability den-
sity. Suppose that F (·) and f (·) are the posterior dis-
tribution and density functions. Then the end-points a
and b must satisfy

P r(a < θ < b|x) = F (b)− F (a) = 1− α
and

π(θ = a|x)− π(θ = b|x) = f (a)− f (b) = 0.
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Figure 1.4: Posterior density for θ

Unfortunately, there is no simple analytical solution to
these equations and so numerical methods have to be
employed to determine a and b. However, if we have
the quantile function F−1(·) for θ|x then we can find
the solution by noticing that we can write b in terms
of a:

b = F−1{1− α+ F (a)},
for 0 < a < F−1(α). Therefore, we can determine
the correct choice of a by minimising the function

g(a) =
(
f (a)− f [F−1{1− α+ F (a)}]

)2
.

within the range 0 < a < F−1(α). The values of a
and b can be determined using the optimizer function
optimize in R.
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The R package nclbayes contains functions to determine the HDI for several distribu-

tions. The function for the Gamma distribution is hdiGamma and we can calculate the

95% HDI for the Ga(8, 9) posterior distribution by using the commands

library(nclbayes)

hdiGamma(p=0.95,a=8,b=9)

Taking 1 − α = 0.95 and using such R code gives a = 0.3304362 and b = 1.5146208.

To check this answer, R gives P r(a < θ < b|x) = 0.95, π(θ = b|x) = 0.1877215 and

π(θ = a|x) = 0.1877427. Thus the 95% HDI is (0.3304362, 1.514621).

The package also has functions hdiBeta for the Beta distribution and hdiInvchi for the

Inv-Chi distribution (introduced in Chapter 2).

1.4.2 Prediction

Much of statistical inference (both Frequentist and Bayesian) is aimed towards making

statements about a parameter θ. Often the inferences are used as a yardstick for sim-

ilar future experiments. For example, we may want to predict the outcome when the

experiment is performed again.

Clearly there will be uncertainty about the future outcome of an experiment. Suppose

this future outcome Y is described by a probability (density) function f (y |θ). There are

several ways we could make inferences about what values of Y are likely. For example, if

we have an estimate θ̂ of θ we might base our inferences on f (y |θ = θ̂). Obviously this

is not the best we can do, as such inferences ignore the fact that it is very unlikely that

θ = θ̂.

Implicit in the Bayesian framework is the concept of the predictive distribution. This

distribution describes how likely are different outcomes of a future experiment. The

predictive probability (density) function is calculated as

f (y |x) =

∫
Θ

f (y |θ)π(θ|x) dθ

when θ is a continuous quantity. From this equation, we can see that the predictive

distribution is formed by weighting the possible values of θ in the future experiment

f (y |θ) by how likely we believe they are to occur π(θ|x).

If the true value of θ were known, say θ0, then any prediction can do no better than one

based on f (y |θ = θ0). However, as (generally) θ is unknown, the predictive distribution

is used as the next best alternative.

We can use the predictive distribution to provide a useful range of plausible values for the

outcome of a future experiment. This prediction interval is similar to a HDI interval. A

100(1 − α)% prediction interval for Y is the region Cα = {y : f (y |x) ≥ γ} where γ is

chosen so that P r(Y ∈ Cα|x) = 1− α.



20 CHAPTER 1. SINGLE PARAMETER PROBLEMS

Example 1.10

Recall Example 1.1 on the number of cases of foodbourne botulism in England and Wales.

The data for 1998–2005 were modelled by a Poisson distribution with mean θ. Using

a Ga(2, 1) prior distribution, we found the posterior distribution to be θ|x ∼ Ga(8, 9).

Determine the predictive distribution for the number of cases for the following year (2006).

Solution

Suppose the number of cases in 2006 is Y , with Y |θ ∼
Po(θ). The predictive probability function of Y is, for
y = 0, 1, . . .

f (y |x) =

∫
Θ

f (y |θ)π(θ|x) dθ

=

∫ ∞
0

θye−θ

y !
×

98θ7e−9θ

Γ(8)
dθ

=
98

y !Γ(8)

∫ ∞
0

θy+7e−10θ dθ

=
98

y !Γ(8)
×

Γ(y + 8)

10y+8

=
(y + 7)!

y !7!
× 0.98 × 0.1y

=

(
y + 7

7

)
× 0.98 × 0.1y .

You may not recognise this probability function but it is related to that of a negative

binomial distribution. Suppose Z ∼ NegBin(r, p) with probability function

P r(Z = z) =

(
z − 1

r − 1

)
pr(1− p)z−r , z = r, r + 1, . . . .

Then W = Z − r has probability function

P r(W = w) = P r(Z = w + r) =

(
w + r − 1

r − 1

)
pr(1− p)w , w = 0, 1, . . . .
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This is the same probability function as our predictive probability function, with r = 8

and p = 0.9. Therefore Y |x ∼ NegBin(8, 0.9) − 8. Note that, unfortunately R also

calls the distribution of W a negative binomial distribution with parameters r and p. To

distinguish between this distribution and the NegBin(r, p) distribution used above, we

shall denote the distribution of W as a NegBinR(r, p) distribution – it has mean r(1−p)/p

and variance r(1− p)/p2. Thus Y |x ∼ NegBinR(8, 0.9).

We can compare this predictive distribution with a naive predictive distribution based on

an estimate of θ. Here we shall base our naive predictive distribution on the maximum

likelihood estimate θ̂ = 0.75, that is, use the distribution Y |θ = θ̂ ∼ Po(0.75). Thus,

the naive predictive probability function is

f (y |θ = θ̂) =
0.75y e−0.75

y !
, y = 0, 1, . . . .

Numerical values for the predictive and naive predictive probability functions are given in

Table 1.5.

correct naive

y f (y |x) f (y |θ = θ̂)

0 0.430 0.472

1 0.344 0.354

2 0.155 0.133

3 0.052 0.033

4 0.014 0.006

5 0.003 0.001

≥ 6 0.005 0.002

Table 1.5: Predictive and naive predictive probability functions

Again, the naive predictive distribution is a predictive distribution which, instead of us-

ing the correct posterior distribution, uses a degenerate posterior distribution π∗(θ|x)

which essentially allows only one value: P rπ∗(θ = 0.75|x) = 1 and standard deviation

SDπ∗(θ|x) = 0. Note that the correct posterior standard deviation of θ is SDπ(θ|x) =√
8/9 = 0.314. Using a degenerate posterior distribution results in the naive predictive

distribution having too small a standard deviation:

SD(Y |x = 1) =

{
0.994 using the correct π(θ|x)

0.866 using the naive π∗(θ|x),

these values being calculated from NegBinR(8, 0.9) and Po(0.75) distributions.

Using the numerical table of predictive probabilities, we can see that {0, 1, 2} is a 92.9%

prediction set/interval. This is to be contrasted with the more “optimistic” calculation

using the naive predictive distribution which shows that {0, 1, 2} is a 95.9% prediction

set/interval.
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Candidate’s formula

In the previous example, a non-trivial integral had to be evaluated. However, when the

past data x and future data y are independent (given θ) and we use a conjugate prior

distribution, another (easier) method can be used to determine the predictive distribution.

Using Bayes Theorem, the posterior density for θ given x and y is

π(θ|x , y) =
π(θ)f (x , y |θ)

f (x , y)

=
π(θ)f (x |θ)f (y |θ)

f (x)f (y |x)
since X and Y are independent given θ

=
π(θ|x) f (y |θ)

f (y |x)
.

Rearranging, we obtain

f (y |x) =
f (y |θ)π(θ|x)

π(θ|x , y)
.

This is known as Candidate’s formula. The right-hand-side of this equation looks as if it

depends on θ but, in fact, any terms in θ will be cancelled between the numerator and

denominator.

Example 1.11

Rework Example 1.10 using Candidate’s formula to determine the number of cases in

2006.

Solution

Let Y denote the number of cases in 2006. We know
that θ|x ∼ Ga(8, 9) and Y |θ ∼ Po(θ). Using Exam-
ple 1.2 we obtain

θ|x , y ∼ Ga(8 + y , 10).

Therefore the predictive probability function of Y is,
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for y = 0, 1, . . .

f (y |x) =
f (y |θ)π(θ|x)

π(θ|x , y)

=

θy e−θ

y !
×

98θ7e−9θ

Γ(8)

108+yθ7+ye−10θ

Γ(8 + y)

=
Γ(8 + y)

y !Γ(8)
×

98

108+y

=
(y + 7)!

y !7!
× 0.98 × 0.1y

=

(
y + 7

7

)
× 0.98 × 0.1y .
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1.5 Mixture prior distributions

Sometimes prior beliefs cannot be adequately represented by a simple distribution, for ex-

ample, a normal distribution or a beta distribution. In such cases, mixtures of distributions

can be useful.

Example 1.12

Investigations into infants suffering from severe idiopathic respiratory distress syndrome

have shown that whether the infant survives may be related to their weight at birth.

Suppose that you are interested in developing a prior distribution for the mean birth

weight µ of such infants. You might have a normal N(2.3, 0.522) prior distribution for

the mean birth weight (in kg) of infants who survive and a normal N(1.7, 0.662) prior

distribution for infants who die. If you believe that the proportion of infants that survive is

0.6, what is your prior distribution of birth weights of infants suffering from this syndrome?

Solution

Let T = 1, 2 denote whether the infant survives or
dies. Then the information above tells us

µ|T = 1 ∼ N(2.3, 0.522) and µ|T = 2 ∼ N(1.7, 0.662).

In terms of density functions, we have

π(µ|T = 1) = φ
(
µ|2.3, 0.522

)
and π(µ|T = 2) = φ

(
µ|1.7, 0.662

)
,

where φ(·|a, b2) is the normal N(a, b2) density func-
tion.

The prior distribution of birth weights of infants suf-
fering from this syndrome is the (marginal) distribution
of µ. Using the Law of Total Probability, the marginal
density of µ is

π(µ) = P r(T = 1)× π(µ|T = 1) + P r(T = 2)× π(µ|T = 2)

= 0.6φ
(
µ|2.3, 0.522

)
+ 0.4φ

(
µ|1.7, 0.662

)
.
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We write this as

µ ∼ 0.6N(2.3, 0.522) + 0.4N(1.7, 0.662).
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This prior distribution is a mixture of two normal distributions. Figure 1.5 shows the

overall (mixture) prior distribution π(µ) and the “component” distributions describing

prior beliefs about the mean weights of those who survive and those who die. Notice that,

in this example, although the mixture distribution is a combination of two distributions,

each with one mode, this mixture distribution has only one mode. Also, although the

component distributions are symmetric, the mixture distribution is not symmetric.
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Figure 1.5: Plot of the mixture density (solid) with its component densities (survive –

dashed; die – dotted)

Definition 1.2

A mixture of the distributions πi(θ) with weights pi (i = 1, 2, . . . , m) has probability

(density) function

π(θ) =

m∑
i=1

piπi(θ). (1.11)

Figure 1.6 contains a plot of two quite different mixture distributions. One mixture

distribution has a single mode and the other has two modes. In general, a mixture

distribution whose m component distributions each have a single mode will have at most

m modes.
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Figure 1.6: Plot of two mixture densities: solid is 0.6N(1, 1) + 0.4N(2, 1); dashed is

0.9Exp(1) + 0.1N(2, 0.252)

In order for a mixture distribution to be proper, we must have

1 =

∫
Θ

π(θ) dθ

=

∫
Θ

m∑
i=1

piπi(θ) dθ

=

m∑
i=1

pi

∫
Θ

πi(θ) dθ

=

m∑
i=1

pi ,

that is, the sum of the weights must be one.

We can calculate the mean and variance of a mixture distribution as follows. We will

assume, for simplicity, that θ is a scalar. Let Ei(θ) and V ari(θ) be the mean and variance

of the distribution for θ in component i , that is,

Ei(θ) =

∫
Θ

θ πi(θ) dθ and V ari(θ) =

∫
Θ

{θ − Ei(θ)}2
πi(θ) dθ.

It can be shown that the mean of the mixture distribution is

E(θ) =

m∑
i=1

piEi(θ). (1.12)
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We also have

E(θ2) =

m∑
i=1

piEi(θ
2)

=

m∑
i=1

pi
{
V ari(θ) + Ei(θ)2

}
(1.13)

from which we can calculate the variance of the mixture distribution using

V ar(θ) = E(θ2)− E(θ)2.

Combining a mixture prior distribution with data x using Bayes Theorem produces the

posterior density

π(θ|x) =
π(θ) f (x |θ)

f (x)

=

m∑
i=1

piπi(θ) f (x |θ)

f (x)
(1.14)

where f (x) is a constant with respect to θ. Now if the prior density were πi(θ) (instead

of the mixture distribution), using Bayes Theorem, the posterior density would be

πi(θ|x) =
πi(θ) f (x |θ)

fi(x)

where fi(x), i = 1, 2, . . . , m are constants with respect to θ, that is πi(θ) f (x |θ) =

fi(x)πi(θ|x). Substituting this in to (1.14) gives

π(θ|x) =

m∑
i=1

pi fi(x)

f (x)
πi(θ|x).

Thus the posterior distribution is a mixture distribution of component distributions πi(θ|x)

with weights p∗i = pi fi(x)/f (x). Now

m∑
i=1

p∗i = 1 ⇒
m∑
i=1

pi fi(x)

f (x)
= 1 ⇒ f (x) =

m∑
i=1

pi fi(x)

and so

p∗i =
pi fi(x)
m∑
j=1

pj fj(x)

, i = 1, 2, . . . , m.

Hence, combining data x with a mixture prior distribution (pi , πi(θ)) produces a posterior

mixture distribution (p∗i , πi(θ|x)). The effect of introducing the data is to “update” the

mixture weights (pi → p∗i ) and the component distributions (πi(θ)→ πi(θ|x)).
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Example 1.13

Suppose we have a random sample of size 20 from an exponential distribution, that is,

Xi |θ ∼ Exp(θ), i = 1, 2, . . . , 20 (independent). Also suppose that the prior distribution

for θ is the mixture distribution

θ ∼ 0.6Ga(5, 10) + 0.4Ga(15, 10),

as shown in Figure 1.7. Here the component distributions are π1(θ) = Ga(5, 10) and

π2(θ) = Ga(15, 10), with weights p1 = 0.6 and p2 = 0.4.
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Figure 1.7: Plot of the mixture prior density

Using (1.12), the prior mean is

E(θ) = 0.6×
5

10
+ 0.4×

15

10
= 0.9

and, using (1.13), the prior second moment for θ is

E(θ2) = 0.6×
5× 6

102
+ 0.4×

15× 16

102
= 1.14

from which we calculate the prior variance as

V ar(θ) = E(θ2)− E(θ)2 = 1.14− 0.92 = 0.33

and prior standard deviation as

SD(θ) =
√
V ar(θ) =

√
0.33 = 0.574.

We have already seen that combining a random sample of size 20 from an exponential

distribution with a Ga(g, h) prior distribution results in a Ga(g + 20, h + 20x̄) posterior
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distribution. Therefore, the (overall) posterior distribution will be a mixture distribution

with component distributions

π1(θ|x) = Ga(25, 10 + 20x̄) and π2(θ|x) = Ga(35, 10 + 20x̄).

We now calculate new values for the weights p∗1 and p∗2 = 1 − p∗1, which will depend on

both prior information and the data. We have

p∗1 =
0.6f1(x)

0.6f1(x) + 0.4f2(x)

from which

(p∗1)−1 − 1 =
0.4f2(x)

0.6f1(x)
.

In general, the functions

fi(x) =

∫
Θ

πi(θ) f (x |θ) dθ

are potentially complicated integrals (solved either analytically or numerically). However,

as with Candidates formula, these calculations become much simpler when we have a

conjugate prior distribution: rewriting Bayes Theorem, we obtain

f (x) =
π(θ) f (x |θ)

π(θ|x)

and so when the prior and posterior densities have a simple form (as they do when using a

conjugate prior), it is straightforward to determine f (x) using algebra rather than having

to use calculus.

In this example we know that the gamma distribution is the conjugate prior distribution:

using a random sample of size n with mean x̄ and a Ga(g, h) prior distribution gives a

Ga(g + n, h + nx̄) posterior distribution, and so

f (x) =
π(θ) f (x |θ)

π(θ|x)

=

hgθg−1e−hθ

Γ(g)
× θne−nx̄θ

(h + nx̄)g+nθg+n−1e−(h+nx̄)θ

Γ(g + n)

=
hg Γ(g + n)

Γ(g)(h + nx̄)g+n
.

Therefore

(p∗1)−1 − 1 =
0.4× 1015 Γ(35)

Γ(15)(10 + 20x̄)35

/
0.6× 105 Γ(25)

Γ(5)(10 + 20x̄)25

=
2Γ(35)Γ(5)

3Γ(25)Γ(15)(1 + 2x̄)10

=
611320

7(1 + 2x̄)10
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and so

p∗1 =
1

1 +
611320

7(1 + 2x̄)10

, p∗2 = 1− p∗1.

Hence the posterior distribution is the mixture distribution

1

1 +
611320

7(1 + 2x̄)10

× Ga(25, 10 + 20x̄) +

1−
1

1 +
611320

7(1 + 2x̄)10

× Ga(35, 10 + 20x̄).

Recall that the most likely value of θ from the data alone, the likelihood mode, is 1/x̄ .

Therefore, large values of x̄ indicate that θ is small and vice versa. With this in mind,

it is not surprising that the weight p∗1 (of the component distribution with the smallest

mean) is increasing in x̄ , and p∗1 → 1 as x̄ →∞. Using (1.12), the posterior mean is

E(θ|x) =
1

1 +
611320

7(1 + 2x̄)10

×
25

10 + 20x̄
+

1−
1

1 +
611320

7(1 + 2x̄)10

× 35

10 + 20x̄

= · · ·

=
1

2(1 + 2x̄)

7−
2

1 +
611320

7(1 + 2x̄)10

 .
The posterior standard deviation can be calculated using (1.12) and (1.13).

Table 1.6 shows the posterior distributions which result when various sample means x̄

are observed together with the posterior mean and the posterior standard deviation.

Graphs of these posterior distributions, together with the prior distribution, are given in

Figure 1.8. When considering the effect on beliefs of observing the sample mean x̄ , it

is important to remember that large values of x̄ indicate that θ is small and vice versa.

Plots of the posterior mean against the sample mean reveal that the posterior mean lies

between the prior mean and the likelihood mode only for x̄ ∈ (0, 0.70)∪ (1.12,∞). Note

that observing the data has focussed our beliefs about θ in the sense that the posterior

standard deviation is less than the prior standard deviation – and considerably less in some

cases.
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x̄ θ̂ = 1/x̄ Posterior mixture distribution E(θ|x) SD(θ|x)

4 0.25 0.99997Ga(25, 90) + 0.00003Ga(35, 90) 0.278 0.056

2 0.5 0.9911Ga(25, 50) + 0.0089Ga(35, 50) 0.502 0.102

1.2 0.8 0.7027Ga(25, 34) + 0.2973Ga(35, 34) 0.823 0.206

1 1.0 0.4034Ga(25, 30) + 0.5966Ga(35, 30) 1.032 0.247

0.8 1.25 0.1392Ga(25, 26) + 0.8608Ga(35, 26) 1.293 0.260

0.5 2.0 0.0116Ga(25, 20) + 0.9884Ga(35, 20) 1.744 0.300

Table 1.6: Posterior distributions (with summaries) for various sample means x̄
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Figure 1.8: Plot of the prior distribution and various posterior distributions
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1.6 Learning objectives

By the end of this chapter, you should be able to:

• determine the likelihood function using a random sample from any distribution

• combine this likelihood function with any prior distribution to obtain the posterior

distribution

• name the posterior distribution if it is a “standard” distribution listed in these notes

or on the exam paper – this list may well include distributions that are standard

within the subject but which you have not met before. If the posterior distribution

is not a “standard” distribution then it is okay just to give its density (or probability

function) up to a constant.

• do all the above for a particular data set or for a general case with random sample

x1, . . . , xn

• describe the different levels of prior information; determine and use conjugate priors

and vague priors

• determine the asymptotic posterior distribution

• determine the predictive distribution, particularly when having a random sample

from any distribution and a conjugate prior via Candidate’s formula

• describe and calculate the confidence intervals, HDIs and prediction intervals

• determine posterior distributions when the prior is a mixture of conjugate distribu-

tions
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Chapter 2

Inference for a normal population

This chapter shows how to make inferences for the mean and variance of a normal

population using a conjugate prior distribution. First we need the multi-parameter version

of Bayes Theorem.

2.1 Bayes Theorem for many parameters

Suppose that now the probability (density) function we used to describe the data depends

on many parameters, that is, f (x |θ) where θ = (θ1, θ2, . . . , θp)T . After observing the

data, the likelihood function for θ is f (x |θ). Prior beliefs about θ are represented through

a probability (density) function π(θ). Therefore, using Bayes Theorem, the posterior

probability (density) function for θ is

π(θ|x) =
π(θ) f (x |θ)

f (x)

where

f (x) =


∫

Θ
π(θ) f (x |θ) dθ if θ is continuous,

∑
Θ π(θ) f (x |θ) if θ is discrete.

As in Chapter 1, this can be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)

i .e. posterior ∝ prior× likelihood.

Next we introduce a new distribution which will be useful later on.

35
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Example 2.1

If X has a generalised ta(b, c) distribution (see page ??) then show that Y = (X −
b)/
√
c ∼ ta ≡ ta(0, 1).

Recall the general result: if X is a random variable with probability density function fX(x)

and g is a bijective (1–1) function then the random variable Y = g(X) has probability

density function

fY (y) = fX
{
g−1(y)

} ∣∣∣∣ ddy g−1(y)

∣∣∣∣ . (2.1)

Solution

Here we take Y = g(X) = (X − b)/
√
c from which

we obtain X = g−1(Y ) = b +
√
c Y . Therefore using

(2.1) we have

fY (y) = fX
{
g−1(y)

} ∣∣∣∣ ddy g−1(y)

∣∣∣∣
= fY

(
b +
√
c y
)
×
√
c

=
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) (1 +
y 2

a

)−a+1
2

×
√
c, y ∈ R

=
Γ
(
a+1

2

)
√
aπ Γ

(
a
2

) (1 +
y 2

a

)−a+1
2

, y ∈ R.

This is the ta density and so Y = (X − b)/
√
c ∼ ta.

Comment

Values for the density function fY (y) and the distribution function FY (y) can be obtained

by using the R functions dgt and pgt in the package nclbayes.

It is clear that ta(0, 1) ≡ ta by examining their densities. Therefore, it makes sense

to think of the ta distribution as the standard ta–distribution and make all calculations

for the generalised ta(b, c) distribution from this standard distribution. The relationship

between this standard and generalised version of the t-distribution is directly analogous
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to that between the standard normal N(0, 1) distribution and its more general version:

the N(b, c) distribution. In both cases the relationship is one of location and scale:

Y ∼ N(b, c) =⇒
Y − b√
c
∼ N(0, 1)

Y ∼ ta(b, c) =⇒
Y − b√
c
∼ ta.

2.2 Prior to posterior analysis

Suppose we have a random sample from a normal distribution in which both the mean µ

and the precision τ are unknown, that is, Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (indepen-

dent). We shall adopt a (joint) prior distribution for µ and τ for which

µ|τ ∼ N
(
b,

1

cτ

)
and τ ∼ Ga(g, h)

for known values b, c , g and h. This distribution has density function

π(µ, τ) = π(µ|τ)π(τ)

=
(cτ

2π

)1/2

exp
{
−
cτ

2
(µ− b)2

}
×
hgτg−1e−hτ

Γ(g)
, µ ∈ R, τ > 0

∝ τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
, µ ∈ R, τ > 0. (2.2)

We will use the notation NGa(b, c, g, h) for this distribution. Thus we take the prior

distribution (
µ

τ

)
∼ NGa(b, c, g, h).

Determine the posterior distribution for

(
µ

τ

)
.

Hint:

c(µ− b)2 + n(x̄ − µ)2 = (c + n)

{
µ−

(
cb + nx̄

c + n

)}2

+
nc(x̄ − b)2

c + n
.

Solution

From (1.8), the likelihood function is

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
.
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Using Bayes Theorem, the posterior density is

π(µ, τ |x) ∝ π(µ, τ) f (x |µ, τ)

and so, for µ ∈ R, τ > 0

π(µ, τ |x) ∝ τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
× τ

n
2 exp

[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
∝ τg+n

2−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + n(x̄ − µ)2 + 2h + ns2

]}
∝ τg+n

2−
1
2 exp

{
−
τ

2

[
(c + n)

{
µ−

(
cb + nx̄

c + n

)}2

+
nc(x̄ − b)2

c + n
+ 2h + ns2

]}
using the hint. Let

B =
bc + nx̄

c + n
, C = c + n,

G = g +
n

2
, H = h +

cn(x̄ − b)2

2(c + n)
+
ns2

2
.

(2.3)

Then the posterior density is

π(µ, τ |x) ∝ τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
,

µ ∈ R, τ > 0

Notice that this posterior density is of the same form
as the prior density (2.2). Therefore, we can conclude
that the posterior distribution is(

µ
τ

)∣∣∣∣ x ∼ NGa(B,C,G,H).

Thus, the NGa distribution is conjugate to this data
model.
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2.2.1 Marginal distributions

Suppose (µ, τ)T ∼ NGa(b, c, g, h). From the definition of the NGa distribution we know

that τ ∼ Ga(g, h). This also means that σ = 1/
√
τ ∼ Inv-Chi(g,h); see page ??.

The (marginal) density for µ is, for µ ∈ R

π(µ) =

∫ ∞
0

π(µ, τ) dτ

∝
∫ ∞

0

τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
dτ.

Now, as the integral of a gamma density over its entire range is one, we have∫ ∞
0

baθa−1e−bθ

Γ(a)
dθ = 1 =⇒

∫ ∞
0

θa−1e−bθ dθ =
Γ(a)

ba
.

Therefore, for µ ∈ R

π(µ) ∝
∫ ∞

0

τg+ 1
2
−1 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
dτ

∝
Γ
(
g + 1

2

)
[{c(µ− b)2 + 2h}/2}]g+ 1

2

∝ h−g−1/2

{
1 +

c(µ− b)2

2h

}−g−1/2

∝
{

1 +
c(µ− b)2

2h

}− 2g+1
2

.

Comparing this density with that of the generalised t–distribution (on page ??) gives

µ ∼ t2g

(
b,
h

gc

)
. (2.4)

Thus, marginally, the prior distribution for µ is a t–distribution.

Similar calculations can be used to determine the (marginal) posterior distributions.

Summary of marginal distributions

The prior

(
µ

τ

)
∼ NGa(b, c, g, h) has marginal distributions

• µ ∼ t2g

(
b, h

gc

)
• τ ∼ Ga(g, h)
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Also σ = 1/
√
τ ∼ Inv-Chi(g, h).

The posterior

(
µ

τ

)∣∣∣∣ x ∼ NGa(B,C,G,H) has marginal distributions

• µ|x ∼ t2G

(
B, H

GC

)
• τ |x ∼ Ga(G,H)

Also σ|x ∼ Inv-Chi(G,H).

It can be shown that the posterior mean of µ is greater than its prior mean if and only if

the sample mean (likelihood mode) is greater than its prior mean, that is,

E(µ|x) > E(µ) ⇐⇒ x̄ > b.

The relationships between the prior and posterior variance of µ and mean and variance

of τ and of σ are rather more complex.

Example 2.2

Recall Example 1.4 on the earth’s density. Previously we assumed that the measurements

followed a N(µ, 0.22) distribution, that is, the standard deviation of the measurements

was known to be 0.2 g/cm3. Now we consider the case where this standard deviation is

unknown and determine posterior distributions using the theory in section 2.2.

Before we can proceed, we must specify the parameters in the NGa(b, c, g, h) prior distri-

bution for (µ, τ). In the previous analysis, we assumed that the population measurement

precision was τ = 1/0.22 = 25 and assumed a N(5.41, 0.42) prior distribution for the

population mean, that is, µ|τ = 25 ∼ N(5.41, 0.42).

Choice of b and c : the conditional prior distribution for µ is µ|τ ∼ N{b, 1/(cτ)} and so

matching the prior distributions for µ (when τ = 25) gives b = 5.41 and c = 0.25.

Choice of g and h: the marginal prior distribution for τ is τ ∼ Ga(g, h). Previously, we

assumed τ = 25 (with V ar(τ) = 0) and so take this value as the prior mean: E(τ) = 25.

Suppose we also decide that V ar(τ) = 250. These two requirements give g = 2.5 and

h = 0.1. Therefore, we will assume the prior distribution(
µ

τ

)
∼ NGa(5.41, 0.25, 2.5, 0.1).

We have seen that if (µ, τ)T ∼ NGa(b, c, g, h) then the marginal distribution of µ is

µ ∼ t2g

{
b, h/(gc)

}
. Therefore, with this choice of prior distribution, the marginal prior

distribution for µ is

µ ∼ t5(5.41, 0.16).

Figure 2.1 shows the close match between the new (marginal) prior distribution for µ and

that used previously.

Determine the posterior distribution for (µ, τ)T . Also determine the marginal prior dis-

tribution for τ and for σ, and the marginal posterior distribution for each of µ, τ and σ.
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Figure 2.1: Marginal prior density for µ: new version (solid) and previous version (dashed)

Solution

We can combine the information in the
NGa(5.41, 0.25, 2.5, 0.1) prior distribution for (µ, τ)T

with that in the data (n = 23, x̄ = 5.4848,
s = 0.1882) using the results in section 2.2 to
obtain a NGa(B,C,G,H) posterior distribution,
where

B =
bc + nx̄

c + n
=

(5.41× 0.25) + (23× 5.4848)

23.25
= 5.4840,

C = c + n = 23.25,

G = g +
n

2
= 14,

H = h +
cn(x̄ − b)2

2(c + n)
+
ns2

2
= 0.1 +

5.75

46.5
(5.4848− 5.41)2 + 11.5× 0.18822 = 0.5080.
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The marginal prior distributions for τ and σ are

τ ∼ Ga(g, h) ≡ Ga(2.5, 0.1)

σ ∼ Inv-Chi(g, h) ≡ Inv-Chi(2.5, 0.1)

Also the marginal posterior distributions for µ, τ and
σ are

µ|x ∼ t2G

(
B,

H

GC

)
≡ t28(5.4840, 0.001561)

τ |x ∼ Ga(G,H) ≡ Ga(14, 0.5080)

σ|x ∼ Inv-Chi(G,H) ≡ Inv-Chi(14, 0.5080)

Plots of the (marginal) prior and posterior distributions of µ, τ and σ are given in Fig-

ure 2.2. Note that the (marginal) prior and posterior distributions for σ can be determined

from that of τ . We can also examine the joint prior and posterior distributions for (µ, τ)T

via the contour plots of their densities to see if there is any change in the dependence

structure; see Figure 2.3. This figure is produced by using the R command NGacontour

in the nclbayes package as follows:

mu=seq(4.5,6.5,len=1000)

tau=seq(0,71,len=1000)

NGacontour(mu,tau,b,c,g,h,lty=3)

NGacontour(mu,tau,B,C,G,H,add=TRUE)

in which the variables b,c,g,h,B,C,G,H have already been set to their prior/posterior

values. A careful look at the values of the contour levels plotted shows that the highest

contour level plotted for the prior density is 0.024 and the lowest level for the posterior

density is 0.05. From this we can conclude that the posterior distribution is far more
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Figure 2.2: Prior (dashed) and posterior (solid) densities for µ, τ and σ

concentrated than the prior distribution. Also the contours for the posterior distribution

are much more elliptical than those for the prior distribution. This indicates a change

in the dependence structure. However, the main changes shown by the figure are in the

mean and variability of µ and τ .

Wikipedia tells us that the actual mean density of the earth is 5.515 g/cm3. We can

determine the (posterior) probability that the mean density is within 0.1 of this value as

follows. We already know that µ|x ∼ t28(5.484, 0.001561) and so we can calculate

P r(5.415 < µ < 5.615|x) = 0.9529

using pgt(5.615,28,5.484,0.001561)-pgt(5.415,28,5.484,0.001561).

Without the data, the only basis for determining the earth’s density is via the prior

distribution. Here the prior distribution is µ ∼ t5(5.41, 0.16) and so the (prior) probability

that the mean density is within 0.1 of the (now known) true value is

P r(5.415 < µ < 5.615) = 0.1802,

calculated using pgt(5.615,5,5.41,0.16)-pgt(5.415,5,5.41,0.16).

These probability calculations demonstrate that the data have been very informative and

changed our beliefs about the earth’s density.
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Figure 2.3: Contour plot of the prior (dashed) and posterior (solid) densities for (µ, τ)T .

2.3 Confidence intervals and regions

Example 2.3

Determine the 100(1−α)% highest density interval (HDI) for the population mean µ in

terms of quantiles of the standard t-distribution.

Solution

The marginal posterior distribution is µ|x ∼
t2G

(
B, HGC

)
. This is a symmetric distribution and so

the HDI is an equi-tailed interval. Therefore the HDI
(`, u) for µ must satisfy

P r(µ < `|x) = α/2 and P r(µ > u|x) = α/2.
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Now, given the data x

µ− B√
H/(GC)

∼ t2G

and so

P r(µ > u|x) = α/2 ⇒ P r

(
µ− B√
H/(GC)

>
u − B√
H/(GC)

∣∣∣∣∣ x
)

= α/2

⇒
u − B√
H/(GC)

= t2G;α/2

where t2G;p is the upper p point of the t2G distribution.
Therefore

u = B + t2G;α/2

√
H

GC
.

Similar calculations give

` = B + t2G;1−α/2

√
H

GC
= B − t2G;α/2

√
H

GC

since the t distribution is symmetric about zero. Thus
the 100(1− α)% HDI for µ is(

B − t2G;α/2

√
H

GC
, B + t2G;α/2

√
H

GC

)
.

These intervals can be calculated easily using the R function qgt in the package nclbayes.

For example, the prior and posterior 95% HDIs for µ can be calculated using

c(qgt(0.025,2*g,b,h/(g*c)),qgt(0.975,2*g,b,h/(g*c)))

c(qgt(0.025,2*G,B,H/(G*C)),qgt(0.975,2*G,B,H/(G*C)))
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Prior Posterior

µ: (4.3818, 6.4382) (5.4031, 5.5649)

τ : (1.4812, 55.9573) (14.0193, 42.2530) ← HDI

(4.1561, 64.1625) (15.0674, 43.7625)

σ: (0.1062, 0.4246) (0.1466, 0.2505) ← HDI

(0.1248, 0.4905) (0.1512, 0.2576)

Table 2.1: Prior and posterior 95% intervals for the analysis in Example 2.2

Determining a highest density interval (HDI) for the population precision τ or standard

deviation σ is more complicated as their posterior distributions are not symmetric. The

(marginal) posterior for τ is τ |x ∼ Ga(G,H) and the (marginal) posterior for σ is σ|x ∼
Inv-Chi(G,H). HDIs can be found by using the R functions hdiGamma and hdiInvchi

in the package nclbayes. More standard equi-tailed confidence intervals can be found

using the functions qgamma and qinvchi.

For example, the prior and posterior 95% HDIs for τ can be calculated using R com-

mands hdiGamma(0.95,g,h) and hdiGamma(0.95,G,H), and those for σ using com-

mands hdiInvchi(0.95,g,h) and hdiInvchi(0.95,G,H). The 95% equi-tailed confi-

dence intervals are calculated in a similar way to the HDIs for µ above. So for τ , the

prior and posterior intervals are calculated using

c(qgamma(0.025,g,h),qgamma(0.975,g,h))

c(qgamma(0.025,G,H),qgamma(0.975,G,H))

and those for σ using

c(qinvchi(0.025,g,h),qinvchi(0.975,g,h))

c(qinvchi(0.025,G,H),qinvchi(0.975,G,H))

The numerical values for the prior and posterior 95% intervals for the analysis in Exam-

ple 2.2 are given in Table 2.1. Notice that there is little difference between the posterior

HDI and equi-tailed intervals for τ and for σ, whereas the prior intervals are fairly differ-

ent. This is because the prior distributions are quite skewed but the posterior distributions

are fairly symmetric; see Figure 2.2.

In Bayesian inference it can also be useful to determine (joint) confidence regions for

several parameters, in this case, for (µ, τ)T . In general this is a difficult problem to solve

mathematically, and it is in this case.
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Example 2.4

Determine a joint confidence region for (µ, τ)T .

Solution

We know that the (joint) prior distribution for these
parameters is (

µ
τ

)
∼ NGa(b, c, g, h).

Therefore an HDI–type confidence region takes the
form{(

µ
τ

)
: π(µ, τ) > k

}
=

{(
µ
τ

)
: τg−

1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
> k ′

}
=

{(
µ
τ

)
:

(
g −

1

2

)
log τ −

τ

2

[
c(µ− b)2 + 2h

]
> k ′′

}
=

{(
µ
τ

)
:
τc(µ− b)2

2
+ hτ −

(
g −

1

2

)
log τ < kα

}
where kα will depend on the confidence level of the
region. These regions are not difficult to draw. The
difficult part is determining the appropriate value for
kα to get say a 95% confidence region. If we could
determine the distribution of

Y =
τc(µ− b)2

2
+ hτ −

(
g −

1

2

)
log τ



48 CHAPTER 2. INFERENCE FOR A NORMAL POPULATION

when(
µ
τ

)
∼ NGa(b, c, g, h)

then we could get the value for kα. Unfortunately it is
quite difficult to do this mathematically. However, we
can use simulation methods to get a pretty accurate
value for kα (for a given confidence level).

Using an additional argument in the R function NGacontour produces plots of confidence

regions. For example

mu=seq(3.5,7.5,len=1000)

tau=seq(0,80,len=1000)

NGacontour(mu,tau,b,c,g,h,p=c(0.95,0.9,0.8),lty=3)

NGacontour(mu,tau,B,C,G,H,p=c(0.95,0.9,0.8),add=TRUE)

produces a plot containing the 95%, 90% and 80% prior and posterior confidence regions

for (µ, τ)T for the prior and posterior distributions in Example 2.2; see Figure 2.4. The

upper plot shows contours of both prior and posterior densities. The numbers within

the plot are the contour levels. The largest prior confidence region is the 95% region.

The next largest is the 90% prior confidence region and the smallest is the 80% prior

confidence region. The same ordering holds for the posterior confidence regions. The

posterior contours are so concentrated in the middle of the plot that there is no room to

put in the contour levels. However, these can be see on the lower plot which also shows

the contours but focuses the parameter range to highlight the contours of the posterior

density. The values of the contours in this lower plot show that the posterior density is

much more peaked, that is, the posterior has a much reduced variability. The location

of the centre of the central contour for both the prior and posterior densities shows that

there has been little change in the mean/mode.
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Figure 2.4: 95%, 90% and 80% prior (dashed) and posterior (solid) confidence regions

for (µ, τ)T
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2.4 Predictive distribution

Suppose we sample another value y randomly from the population. What values is it

likely to take? This is described by its predictive distribution. We can determine this

distribution by using the definition of the predictive density

f (y |x) =

∫
f (y |µ, τ)π(µ, τ |x) dµ dτ

or by using Candidate’s formula (as this is a conjugate analysis). However, for this

model/prior, there is a more straightforward method to determine the predictive distri-

bution in this model.
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As Y is a random value from the population, we have
that Y |µ, τ ∼ N(µ, 1/τ). We also know that the pos-
terior distribution is (µ, τ)T |x ∼ NGa(B,C,G,H).
Therefore, we can write

Y = µ+ ε,

where

ε|τ ∼ N(0, 1/τ) and µ|x , τ ∼ N
(
B,

1

Cτ

)
.

Hence Y is the sum of two independent normal random
quantities, and so

Y |x , τ ∼ N
(
B,

1

τ
+

1

Cτ

)
≡ N

(
B,

C + 1

Cτ

)
.

Thus, as τ |x ∼ Ga(G,H)(
Y
τ

)∣∣∣∣ x ∼ NGa(B, C

C + 1
, G,H

)
and so, using (2.4)

Y |x ∼ t2G

{
B,
H(C + 1)

GC

}
.

We can determine 100(1 − α)% predictive intervals
by noting that the predictive distribution is symmetric
about its mean and therefore the HDI is(
B − t2G;α/2

√
H(C + 1)

GC
, B + t2G;α/2

√
H(C + 1)

GC

)
.
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These predictive intervals can be calculated easily using the R function qgt. For example,

in Example 2.2, the prior and posterior predictive HDIs for a new value Y from the

population are (4.2604, 6.5596) and (5.0855, 5.8825) respectively, calculated using

c(qgt(0.025,2*g,b,h*(c+1)/(g*c)),qgt(0.975,2*g,b,h*(c+1)/(g*c)))

c(qgt(0.025,2*G,B,H*(C+1)/(G*C)),qgt(0.975,2*G,B,H*(C+1)/(G*C)))

2.5 Summary

Suppose we have a normal random sample with Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n

(independent).

(i) (µ, τ)T ∼ NGa(b, c, g, h) is a conjugate prior distribution.

(ii) The posterior distribution is (µ, τ)T |x ∼ NGa(B,C,G,H) where the posterior pa-

rameters are given by (2.3).

(iii) The marginal prior distributions are µ ∼ t2g{b, h/(gc)}, τ ∼ Ga(g, h), σ = 1/
√
τ ∼

Inv-Chi(g, h).

(iv) The marginal posterior distributions are µ|x ∼ t2G{B,H/(GC)}, τ |x ∼ Ga(G,H),

σ|x ∼ Inv-Chi(G,H).

(v) Prior and posterior means and standard deviations for µ, τ and σ can be calculated

from the properties of the t, Gamma and Inv-Chi distributions.

(vi) Prior and posterior probabilities and densities for µ, τ and σ can be calculated using

the R functions pgt, dgt, pgamma, dgamma, pinvchi, dinvchi.

(vii) HDIs or equi-tailed CIs for µ, τ and σ can be calculated using qgt, hdiGamma,

hdiInvchi, qgamma, qinvchi.

(viii) Contour plots of the prior and posterior densities for (µ, τ)T can be plotted using

the NGacontour function.

(ix) Prior and posterior confidence regions for (µ, τ)T can be plotted using the NGacontour

function.

(x) The predictive distribution for a new observation Y from the population is Y |x ∼
t2G{B,H(C + 1)/(GC)} and its HDI can be calculated using the qgt function.
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2.6 Why do we have so many different distributions?

So far we have used many distributions, some you will have met before and some will be

new. After a while the variety and sheer number of different distributions can become

overwhelming. Why do we need so many distributions and why do we name so many of

them?

Statistics studies the random variation in experiments, samples and processes. The variety

of applications leads to their randomness being described by many different distributions.

In many applications, bespoke distributions will need to be formulated. However, some

distributions come up time and time again for modelling random variation in data and

for describing prior beliefs. It is helpful for us to be able to refer to these distributions –

and so we give each one a name – and also to be able to quote known results for these

distributions such as their mean and variance. In this chapter you have been introduced

to a generalisation of the t-distribution and the inverse chi distribution, and we have been

able to use results for their mean and variance to study prior and posterior distributions

and have been able to plot these distributions using functions in the R package.

You will meet several other new distributions in the remainder of the module. You won’t

be surprised to hear that it is useful to have a working knowledge of each of these

distributions but perhaps not vital to remember all their properties listed in these notes.

To help in this regard, the exam paper will contain a list of all the distributions used in

the exam, together with their density (or probability function) and any useful results such

as their mean and variance (as needed for the exam); see the specimen exam paper at

the back of this booklet.
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2.7 Learning objectives

By the end of this chapter, you should be able to:

• determine the posterior distribution for (µ, τ)T

• determine and use the univariate prior and posterior distributions

• determine confidence intervals, HDIs and confidence regions

• determine the predictive distribution of another value from the population, and its

predictive interval

• determine the predictive distribution of the mean of another random sample from

the population

both in general and for a particular prior and data set. Also you should be able to:

• appreciate the benefit of naming distributions and for having lists of properties for

these distributions



Chapter 3

General results for multi-parameter
problems

In this chapter we will study some general results for multi-parameter problems.

3.1 Different levels of prior knowledge

We have substantial prior information for θ when the prior distribution dominates the

posterior distribution, that is π(θ|x) ∼ π(θ).

When prior information about θ is limited, this is usually represented through the use

of a conjugate prior distribution, with vague prior knowledge represented by making the

conjugate distribution as diffuse as possible.

If we represent prior ignorance for a single parameter θ by using uniform or improper

priors then we have seen (MAS2903, section 3.4) that, in general, the prior for g(θ) is

not constant and so we are not ignorant about g(θ). The same problem occurs when we

have more than one parameter.

Suppose we represent prior ignorance about θ = (θ1, θ2, . . . , θp)T using π(θ) = constant.

Let φi = gi(θ), i = 1, . . . , p and φ = (φ1, . . . , φp)T be a 1–1 transformation. Then, in

general, the prior density for φ is not constant and this suggests that we are not ignorant

about φ. However, if we are ignorant about θ then we must also be ignorant about g(θ).

This contradiction makes it impossible to use this representation of prior ignorance.

55
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Example 3.1

Suppose 0 < θ1 < 1 and 0 < θ2 < 1. If we are ignorant about θ = (θ1, θ2)T then show

that θ1θ2 does not have a constant prior density.

Solution
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Example 3.2

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ unknown).

Determine the Jeffreys prior for this model.

Hint: We have already seen that the likelihood function can be written as

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
where

s2 =
1

n

n∑
i=1

(xi − x̄)2.

Solution
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placeholder
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placeholder
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3.2 Asymptotic posterior distribution

Suppose we have a statistical model for data with likelihood function f (x |θ), where

x = (x1, x2, . . . , xn)T and θ = (θ1, θ2, . . . , θp)T , together with a prior distribution with

density π(θ) for θ. Then

J(θ̂)1/2(θ − θ̂)|x D−→ Np(0, Ip) as n →∞,

where θ̂ is the likelihood mode, Ip is the p × p identity matrix and J(θ) is the observed

information matrix, with (i , j)th element

Ji j = −
∂2

∂θi∂θj
log f (x |θ),

and A1/2 denotes the square root matrix of A.

Comments

1. This asymptotic result can give us a useful approx-
imation to the posterior distribution for θ when n
is large:

θ|x ∼ Np
(
θ̂, J(θ̂)−1

)
approximately.

2. This limiting result is similar to one for the maxi-
mum likelihood estimator in Frequentist Statistics:

I(θ)1/2(θ̂ − θ)
D−→ Np(0, Ip) as n →∞,

where I(θ) = EX|θ[J(θ)] is Fisher’s information
matrix. Note that this statement about the dis-
tribution of θ̂ for fixed (unknown) θ, whereas the
results above is a statement about the distribution
of θ for fixed (known) θ̂.
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Example 3.3

Suppose we now have a random sample from a N(µ, 1/τ) distribution (with unknown

precision). Determine the asymptotic posterior distribution for (µ, τ).

Hint: we have already seen that the likelihood function can be written as

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
where s2 =

∑n
i=1(xi − x̄)2/n.

Solution

We have

log f (x |µ, τ) =
n

2
log τ −

n

2
log(2π)−

nτ

2

{
s2 + (x̄ − µ)2

}
=⇒

∂

∂µ
log f (x |µ, τ) = nτ(x̄ − µ)

∂

∂τ
log f (x |µ, τ) =

n

2τ
−
n

2

{
s2 + (x̄ − µ)2

}
=⇒

∂2

∂µ2
log f (x |µ, τ) = −nτ

∂2

∂µ∂τ
log f (x |µ, τ) = n(x̄ − µ)

∂2

∂τ2
log f (x |µ, τ) = −

n

2τ2
.

Now

∂

∂µ
logf (x |µ, τ) = 0 =⇒ µ̂ = x̄

∂

∂τ
logf (x |µ, τ) = 0 =⇒ τ̂ =

1

s2
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Therefore

J11(µ̂, τ̂) = −
∂2

∂µ2
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

= nτ̂ =
n

s2

J12(µ̂, τ̂) = −
∂2

∂µ∂τ
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

= −n(x̄ − µ̂) = 0

J22(µ̂, τ̂) = −
∂2

∂τ2
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

=
n

2τ̂2
=
ns4

2

and so

J(µ̂, τ̂) =

( n
s2 0

0 ns4

2

)
,

whence

J(µ̂, τ̂)−1 =

(
s2

n 0

0 2
ns4

)
.

Therefore, for large n, the (approximate) posterior dis-
tribution for (µ, τ) is(

µ
τ

)∣∣∣∣ x ∼ N2

{(
x̄
1
s2

)
,

(
s2

n 0

0 2
ns4

)}
.

Putting this another way, for large n

µ|x ∼ N(x̄ , s2/n), τ |x ∼ N{1/s2, 2/(ns4)},
independently.
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3.3 Learning objectives

By the end of this chapter, you should be able to:

• understand different levels of prior information and have an appreciation for the

difficulty of specifying ignorance priors in multi-parameter problems

• determine the asymptotic posterior distribution when the data are a large random

sample from any distribution

• explain the similarities and differences between the asymptotic posterior distribution

and the asymptotic distribution of the maximum likelihood estimator
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Chapter 4

Non-conjugate multi-parameter
problems

In this chapter we will study some multi-parameter problems in which the prior distribution

does not have to be conjugate. Inferences are made by using techniques which simulate

realisations from the posterior distribution. These methods are generally referred to as

Markov Chain Monte Carlo techniques, and often abbreviated to MCMC. There are many

different MCMC techniques, but we only have time to look briefly at two of the most

fundamental. The first is the Gibbs sampler, which was at the forefront of the recent

MCMC revolution, and the second is generally known as Metropolis-Hastings sampling.

In fact, MCMC schemes based on the combination of these two fundamental techniques

are still at the forefront of MCMC research.

4.1 Why is inference not straightforward in non-conjugate

problems?

Example 4.1

Consider again the problem in section 2.2 in which we have a random sample from a normal

distribution where both the mean µ and the precision τ are unknown, that is, Xi |µ, τ ∼
N(µ, 1/τ), i = 1, 2, . . . , n (independent). In this section, we showed that a NGa prior for

(µ, τ)T was conjugate, that is, if we used a NGa(b, c, g, h) prior distribution for (µ, τ)T

then the posterior was a NGa(B,C,G,H) distribution. But what if a NGa(b, c, g, h)

prior distribution does not adequately represent our prior beliefs? Suppose instead that

our prior beliefs are represented by independent priors for the parameters, with

µ ∼ N
(
b,

1

c

)
and τ ∼ Ga(g, h)

for known values b, c , g and h. What is the posterior distribution for (µ, τ)T?

65
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Solution

Previously we have seen that the likelihood function is

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
.

Using Bayes Theorem, the posterior density is

π(µ, τ |x) ∝ π(µ, τ) f (x |µ, τ)

∝ π(µ)π(τ) f (x |µ, τ)

and so, for µ ∈ R, τ > 0

π(µ, τ |x) ∝
( c

2π

)1/2

exp
{
−
c

2
(µ− b)2

}
×
hgτg−1e−hτ

Γ(g)

× τ
n
2 exp

[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
∝ τg+n

2−1 exp
{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
.

This is not a NGa(B,C,G,H) density as it cannot be
written in the form

k τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
for any choice of B, C, G and H. In fact π(µ, τ |x) is
not the density of any standard distribution.

Can we plot this density? Before we do, we need to
know the constant of proportionality, k . As the poste-
rior density must integrate to one∫ ∞
−∞

∫ ∞
0

kτg+n
2−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ = 1

k−1 =

∫ ∞
−∞

∫ ∞
0

τg+n
2−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ
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Therefore the posterior density is, for µ ∈ R, τ > 0

π(µ, τ |x) =
τg+n

2−1 exp
{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}∫ ∞
−∞

∫ ∞
0

τg+n
2−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ

.

What is the posterior mean of µ and of τ? What are their marginal distributions? How

can we calculate the moments E(µm1τm2 |x) of this posterior distribution? Now

π(µ|x) =

∫ ∞
0

π(µ, τ |x) dτ

=

∫ ∞
0

τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ∫ ∞

−∞

∫ ∞
0

τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ

and

π(τ |x) =

∫ ∞
−∞

π(µ, τ |x) dµ

=

∫ ∞
−∞

τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dµ∫ ∞

−∞

∫ ∞
0

τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ

.

In general, the moments are

E(µm1τm2 |x) =

∫ ∞
−∞

∫ ∞
0

µm1τm2π(µ, τ |x) dτ dµ

=

∫ ∞
−∞

∫ ∞
0

µm1τm2 × τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ∫ ∞

−∞

∫ ∞
0

τg+ n
2
−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
dτ dµ

.

These integrals cannot be determined analytically, though it is possible to use numerical

integration methods or approximations (for large n). However, in general, the accuracy of

the numerical approximation to the integral deteriorates as the dimension of the integral

increases.
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Comment

The above shows how not using a conjugate prior distribution can cause many basic

problems such as plotting the posterior density or determining posterior moments. But

having to use conjugate priors is far too restrictive for many real data analyses: (i) our

prior beliefs may not be captured using a conjugate prior; (ii) most models for complex

data do not have conjugate priors. It was for these reasons that until relatively recently

(say mid-1990s), practical Bayesian inference for real complex problems was either not

feasible or only undertaken by the dedicated few prepared to develop bespoke computer

code to numerically evaluate all the integrals etc.

4.2 Simulation-based inference

One way to get around the problem of having to work out integrals (like those in the

previous section) is to base inferences on simulated realisations from the posterior distri-

bution. This is the fundamental idea behind MCMC methods. If we could simulate from

the posterior distribution then we could use a very large sample of realisations to deter-

mine posterior means, standard deviations, correlations, joint densities, marginal densities

etc.

As an example, imagine you wanted to know about the standard normal distribution –

its shape, its mean, its standard deviation – but didn’t know any mathematics so that

you couldn’t derive say the distribution’s zero mean and unit variance. However you’ve

been given a “black box” which can simulate realisations from this distribution. Here

we’ll use the R function rnorm() as the black box simulator. If you decide to generate

1K realisations the output might look something like the top row of Figure 4.1. The

top left plot shows the trace plot of the output, that is, the realisations from the black

box sampler in the order they are produced. The next plot along the top row shows the

autocorrelation (ACF) plot. This shows how correlated the realisations are at different

lags. We know that the simulator rnorm() produces independent realisations and so the

(sample) correlation between say consecutive values cor r(xi , xi+1) will be almost zero.

This is also the case for correlations at all positive lags. Finally the lag 0 autocorrelation

cor r(xi , xi) must be one (by definition). The sample ACF plot is consistent with all of

these “claims”. Finally the top right plot is a density histogram of the realisations. This

too is consistent with the standard normal density (which is also shown). We can also

estimate various quantities of the standard normal distribution; for example:

1st Qu. Median Mean 3rd Qu. St.Dev.

-0.65240 -0.00130 -0.00192 0.64810 0.96049

Here we see that the mean and median are around zero and the standard deviation is

around one.

The second row of plots in the figure is another collection of 1K realisations from the

black box simulator. These look very similar to those on the top row but are slightly
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Figure 4.1: Summaries of the 1K realisations from the black box simulator

different due to the stochasticity (random nature) of the simulator. This output has the

following numerical summaries:

1st Qu. Median Mean 3rd Qu. St.Dev.

-0.69880 -0.09637 -0.03274 0.67330 0.99599

Again these numerical summaries are slightly different but essentially tell the same story.

In fact we know from previous modules that there is sample variability in estimates of

means from random samples. So if we use the simulator again (twice) to obtain 10K

realisations, we will get even more similar looking output; see Figure 4.2. The numerical

summaries from these outputs are

1st Qu. Median Mean 3rd Qu. St.Dev.

-0.66820 -0.00048 0.00370 0.68070 0.99593

-0.67130 0.01354 0.01008 0.67920 1.00691

Here we have much less sampling variability in our estimates due to the larger sample

size. In fact we can estimate any “population” quantity to any required accuracy simply

by simulating a large enough collection of realisations.

These analyses show how we can make inferences, calculate means, variances, densities

etc by using realisations from a distribution. In the rest of this chapter, we will look into

how we can construct algorithms for simulating from (complex) posterior distributions,

from which we can then make inferences.
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Figure 4.2: Summaries of the 10K realisations from the black box simulator

4.3 Motivation for MCMC methods

The example in section 4.1 showed that using non-conjugate priors can be problematic.

MCMC methods address this problem by providing an algorithm which simulates realisa-

tions from the posterior distribution.

We consider a generic case where we want to simulate realisations of two random variables

X and Y with joint density f (x, y). This joint density can be factorised as

f (x, y) = f (x)f (y |x)

and so we can simulate from f (x, y) by first simulating X = x from f (x), and then

simulating Y = y from f (y |x). On the other hand, we can write

f (x, y) = f (y)f (x |y)

and so simulate Y = y from f (y) and then X = x from f (x |y).

We have already seen that dealing with conditional posterior distributions is straightfor-

ward when the prior is semi-conjugate, so let’s assume that simulating from f (y |x) and

f (x |y) is straightforward. The key problem with using either of the above methods is

that, in general, we can’t simulate from the marginal distribution, f (x) and f (y).

For the moment, suppose we can simulate from the marginal distribution for X, that is,

we have an X = x from f (x). We can now simulate a Y = y from f (y |x) to give a pair

(x, y) from the bivariate density. Given that this pair is from the bivariate density, the y
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value must be from the marginal f (y), and so we can simulate an X = x ′ from f (x |y) to

give a new pair (x ′, y) also from the joint density. But now x ′ is from the marginal f (x),

and so we can simulate a Y = y ′ from f (y |X = x ′) to give a new pair (x ′, y ′) also from

the joint density. And we can keep going.

This alternate sampling from conditional distributions defines a bivariate Markov chain,

and the above is an intuitive explanation for why f (x, y) is its stationary distribution. Thus

being able to simulate easily from conditional distributions is key to this methodology.

4.4 The Gibbs sampler

Suppose we want to generate realisations from the posterior density π(θ|x), where θ =

(θ1, θ2, . . . , θp)T , and that we can simulate from the full conditional distributions (FCDs)

π(θi |θ1, . . . , θi−1, θi+1, . . . , θp, x) = π(θi |·), i = 1, 2, . . . , p.

The Gibbs sampler follows the following algorithm:

1. Initialise the iteration counter to j = 1.

Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )T .

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , . . . , θ(j−1)

p , x)

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ(j−1)

p , x)

...
...

...

θ(j)
p ∼ π(θp|θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
p−1, x)

3. Change counter j to j + 1, and return to step 2.

This algorithm defines a homogeneous Markov chain as each simulated value depends

only on the previous simulated value and not on any other previous values or the iteration

counter j . It can be shown that π(θ|x) is the stationary distribution of this chain and so

if we simulate realisations by using a Gibbs sampler, eventually the the Markov chain will

converge to the required posterior distribution.

4.4.1 Processing output from a Gibbs sampler

Burn-in period

First we have to determine how many iterations are needed before the Gibbs sampler

has reached its stationary distribution. This is known as the burn-in period. There are

many diagnostic tests available to help determine how long this is but, in general, the
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Figure 4.3: Demonstration of burn-in using a Gibbs sampler and three initial values

most effective method is simply to look at a trace plot of the posterior sample and detect

the point after which the realisations look to be from the same distribution. Figure 4.3

illustrates typical output from a Gibbs sampler. Here we see the output when using three

different starting points. Initially there is a transient stage and then the distribution of

the output becomes the same for each chain (perhaps after iteration 500).

Once the Gibbs sampler has reached its stationary distribution, all subsequent iterates

are realisations from the posterior distribution. Suppose that θ = (µ, τ)T and we have

run the Gibbs sampler for N iterations after convergence giving a posterior sample

{(µ(1), τ (1)), (µ(2), τ (2)), . . . , (µ(N), τ (N))}.

We can use this sample to calculate any features of the posterior distribution. For ex-

ample, we can estimate the marginal posterior densities π(µ|x) and π(τ |x) by using

histograms of the µ(j) and of the τ (j) respectively. Of course, as N is finite we cannot

determine these densities exactly. We can also estimate other features of the posterior

distribution such as the posterior means, variances and correlation by using their equiv-

alents in the posterior sample: µ̄, τ̄ , s2
µ, s2

τ and rµτ . Again these estimates will not be

exact as N is finite. However, we can make them as accurate as we want by taking a

sufficiently large posterior sample, that is, by taking N large enough.
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Dealing with autocorrelation

Another problem with the output from a Gibbs sampler (after convergence) is that it is

not a random sample. It should not be surprising that successive realisations from the

sampler are autocorrelated, after all the output is a realisation from a Markov chain! To

understand the dependence structure, we look at the sample autocorrelation function for

each variable. For example, the sample autocorrelation function (ACF) for µ at lag k is

r(k) = Corr(µ(j), µ(j+k)).

Looking at a plot of this ACF can give an idea as to how much to thin the output before

it becomes un-autocorrelated (the sample autocorrelations at lags 1,2,3,. . . are small).

Thinning here means not taking every realisation by say taking say every mth realisation.

In general, an appropriate level of thinning is determined by the largest lag m at which

any of the variables have a non-negligible autocorrelation. If doing this leaves a (thinned)

posterior sample which is too small then the original Gibbs sampler should be re-run (after

convergence) for a sufficiently large number of iterations until the thinned sample is of

the required size.

To get a clearer idea of how thinning works, we now look at some output from a moving

average MA(1) process. Figure 4.4 shows this output together with its sample autocorre-

lation function. Theoretically output from this process should have zero autocorrelations

at lags greater than one, and this is what we see (with sample noise) in the figure. If we

now thin the output by taking every other value then it’s clear that the autocorrelations

at non-zero lags should be zero. The lower two plots show the thinned output and its

sample autocorrelation function. This ACF plot suggests that the thinned output is not

autocorrelated.

We now look at some output from an autoregressive AR(1) process. Figure 4.5 shows

this output together with its sample autocorrelation function. As mentioned previously,

theoretically output from this process has autocorrelations which decrease geometrically,

and this is what we see (with sample noise) in the figure. The smallest lag after which

the autocorrelations are negligible is around 7–10. If we now thin the output by taking

every 10th value then we should get output which is almost un-autocorrelated. The lower

two plots show the thinned output and its sample autocorrelation function and the ACF

plot is consistent with the thinned output being un-autocorrelated.

If the MCMC output is un-autocorrelated then the accuracy of µ̄ is roughly ±2sµ/
√
N.

However if the Markov chain followed an autoregressive AR(1) process, its autocorrela-

tions would decrease geometrically, with r(k) ' r(1)k , k ≥ 2. In this case it can be shown

that the accuracy of µ̄ is roughly ±2sµ/
√
N{1− r(1)}2, that is, because the process has

autocorrelation, the amount of information in the data is equivalent to a random sample

with size Nef f = N{1− r(1)}2. This effective random sample size calculation gets more

complicated for processes with non-zero higher order autocorrelations and this is why we

usually adopt the simplistic method of thinning. It’s worth noting that, in general, MCMC

output with positive autocorrelations has Nef f < N. Also sometimes MCMC output with

some negative autocorrelations can have Nef f > N.
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Figure 4.4: Effect of thinning output from a MA(1) process
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Figure 4.5: Effect of thinning output from a AR(1) process



76 CHAPTER 4. NON-CONJUGATE MULTI-PARAMETER PROBLEMS

Strategy

1. Determine the burn-in period, after which the Gibbs sampler has reached its station-

ary distribution. This may involve thinning the posterior sample as slowly snaking

trace plots may be due to high autocorrelations rather than a lack of convergence.

2. After this, determine the level of thinning needed to obtain a posterior sample whose

autocorrelations are roughly zero.

3. Repeat steps 1 and 2 several times using different initial values to make sure that

the sample really is from the stationary distribution of the chain, that is, from the

posterior distribution.

Accuracy of posterior summaries

Each time we run an MCMC scheme, we obtain a different sample from the posterior

distribution. Suppose that after burn-in and thinning, we have a large sample with N un-

autocorrelated values, say µ1, . . . , µN. In order to determine the accuracy of the sample

mean and standard deviation estimates of the posterior mean and standard deviation we

need to make some assumption about the posterior distribution. If the data sample size n

is large then the posterior distribution will be approximately normal. So we will think of

our MCMC output as being a random sample from the posterior distribution.

Suppose the posterior output has sample mean µ̄ and standard deviation sµ. We need

to know the accuracy of these estimates of M = E(µ|x) and Σ = SD(µ|x). We saw

in Example 3.3 that the asymptotic posterior distribution about the mean and precision

(µ, τ)T using a random sample from a normal N(µ, 1/τ) distribution was

µ|x ∼ N(x̄ , s2/n), τ |x ∼ N{1/s2, 2/(ns4)}, independently.

Rewriting this result in terms of the MCMC sample mean µ̄, standard deviation sµ and

the parameters they estimate gives posterior distributions

M ∼ N(µ̄, s2
µ/N), Σ−2 ∼ N{1/s2

µ, 2/(Ns4
µ)}, independently.

Therefore an approximate 95% HDI for M is

µ̄± z0.025

sµ√
N
' µ̄±

2sµ√
N

since z0.025 ' 2.

Also, from the posterior distribution for Σ−2, we have

P

(
1

s2
µ

− 2

√
2

Ns4
µ

< Σ−2 <
1

s2
µ

+ 2

√
2

Ns4
µ

)
' 0.95

=⇒ P

(
1− 2

√
2/N

s2
µ

< Σ−2 <
1 + 2

√
2/N

s2
µ

)
' 0.95

=⇒ P

 sµ√
1 + 2

√
2/N

< Σ <
sµ√

1− 2
√

2/N

 ' 0.95
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Therefore a 95% confidence interval for Σ is

sµ

(
1± 2

√
2/N

)−1/2

' sµ
(

1±
1

2
× 2
√

2/N

)
= sµ ± sµ

√
2

N
.

It can be shown that these accuracy calculations are fairly accurate even when the pos-

terior distribution (from which we have the MCMC sample) is not particularly normal.

4.4.2 Bayesian inference using a Gibbs sampler

Example 4.2

Construct a Gibbs sampler for the posterior distribution in Example 4.1.

Solution

We first need to determine the conditional posterior
density for µ and for τ .

The conditional posterior density for µ is, for µ ∈ R

π(µ|τ, x) =
π(µ, τ |x)

π(τ |x)

∝ π(µ, τ |x)

∝ τg+n
2−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
∝ exp

{
−
c

2
(µ− b)2 −

nτ

2
(x̄ − µ)2

}
after moving all multiplicative constants not involving
µ into the proportionality sign, and so after completing
the square in the exponent

π(µ|τ, x) ∝ exp

{
−
c + nτ

2

(
µ−

bc + nτx̄

c + nτ

)2
}
, µ ∈ R
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that is

µ|τ, x ∼ N
(
bc + nτx̄

c + nτ
,

1

c + nτ

)
.

Note that we could have obtained this result by using
Example 1.3 with d = c .

The conditional posterior density for τ is, for τ > 0

π(τ |µ, x) =
π(µ, τ |x)

π(µ|x)

∝ π(µ, τ |x)

∝ τg+n
2−1 exp

{
−
c

2
(µ− b)2 − hτ −

nτ

2

[
s2 + (x̄ − µ)2

]}
∝ τg+n

2−1 exp
{
−
[
h +

n

2

{
s2 + (x̄ − µ)2

}]
τ
}

after moving all multiplicative constants not involving
τ into the proportionality sign, and so

τ |µ, x ∼ Ga
(
g +

n

2
, h +

n

2

{
s2 + (x̄ − µ)2

})
.

We also need to initialise the algorithm. We might
use the prior mean (µ(0) = b, τ (0) = g/h) or the mle
(µ(0) = x̄ , τ (0) = 1/s2). Alternatively, if we wanted to
compare different runs of the Gibbs sampler, we might
simulate (µ(0), τ (0)) from the prior distribution.

Therefore the Gibbs sampler is

1. Initialise the iteration counter to j = 1.
Initialise the state of the chain by taking (µ(0), τ (0))
as (b, g/h) or (x̄ , 1/s2) or as a random draw from
the prior distribution.
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2. Obtain new values µ(j) and τ (j) from µ(j−1) and
τ (j−1) via

µ(j) ∼ N
(
bc + nτ (j−1)x̄

c + nτ (j−1)
,

1

c + nτ (j−1)

)
τ (j) ∼ Ga

(
g +

n

2
, h +

n

2

{
s2 +

(
x̄ − µ(j)

)2
})

3. Change counter j to j + 1, and return to step 2.

Comments

Notice that, since µ and τ independent a priori, µ|τ ∼ N(b, 1/c). Therefore, given

τ , the normal prior for µ is conjugate. Similarly, τ |µ ∼ Ga(g, h) and so, given µ, the

gamma prior for τ is conjugate. Therefore, both conditional priors (for µ|τ and τ |µ) are

conjugate. Such priors are called semi-conjugate.

Producing and analysing output from this Gibbs sampler

The R function gibbsNormal in the library nclbayes implements this Gibbs sampling

algorithm. The library also contains the functions mcmcProcess which can be used to

remove the burn–in and thin the output, and mcmcAnalysis which analyses the MCMC

output. Let us consider the case in which the data have size n = 100, mean x̄ = 15

and standard deviation s = 4.5 and the prior distribution has µ ∼ N(10, 1/100) and

τ ∼ Ga(3, 12), independently. The following code produces output from this Gibbs

sampler, initialising at (10, 0.25) and then analyses the output.

library(nclbayes)

posterior=gibbsNormal(N=1000,initial=c(10,0.25),

priorparam=c(10,1/100,3,12),n=100,xbar=15,s=4.5)

posterior2=mcmcProcess(input=posterior,burnin=10,thin=1)

op=par(mfrow=c(2,2))

plot(posterior,col=c(1:length(posterior)),main=”All realisations”)

plot(posterior,type=”l”,main=”All realisations”)

plot(posterior2,col=c(1:length(posterior2)),main=”After deleting first 10”)

plot(posterior2,type=”l”,main=”After deleting first 10”)

par(op)

mcmcAnalysis(posterior,rows=2,show=F)

mcmcAnalysis(posterior2,rows=2,show=F)



80 CHAPTER 4. NON-CONJUGATE MULTI-PARAMETER PROBLEMS

●

●●●
●

●
●● ●●

●
● ● ●●

●●
● ● ●●
●●●●

●
●●
●● ●● ●●●● ●

●
●● ●

● ●●● ●
●

●●
● ●●● ●● ●●

●
● ●●
●●●

●
●●●

●
●● ●● ●● ● ●●●

● ●●● ●
●●●●●

●
●●● ●●

● ●●
●

●● ●●●●
●● ●●●

● ●● ●●● ● ●●●
●

●●
●●● ● ●●
●●
●

●
●

●
●●

●
●

●
●●●●

●
● ●

●●●
● ● ●● ●●

●●● ●●
●●● ●●●●●●

●
●● ● ●●● ●●●

●
●●

●● ●●●● ●●●●● ●
●

●●●
●
●● ● ●

●●
●
●

● ●●●
●

●●●
● ●●

●
●●

●●●●●● ●●●●
●

●●
● ●

● ●● ●●●
●

●
●●●● ●

●
●●● ●● ●●● ●●

●● ● ●● ●●
●●●
●
●●

●
● ●●● ●●

●●●
● ●●
● ●●

●●
● ●●● ●●●●●● ●●●●
●

●
● ●

●
● ●

●
●

● ●●● ●● ● ●●
●
●

●● ● ●●● ●●●●
●

●●
●●

● ●●
●●

●
● ●●●

●●
●●
●●●

●● ●●
●

●
●

● ●●● ●●●●
●● ●

● ●
●
●●●● ●●

●
●●● ●

●● ●
●

●●●
●●●

●
● ●●●● ●

●● ●●● ●
●

●
● ●

●
●

●●
●

● ●●●● ●
● ●● ●●● ●●● ●
●

●
●● ●●●●●
●

●
●● ● ●●●●●● ● ●●●

● ●● ● ●
●●● ● ●

●
●

● ●● ●●●
●
●●●●

●
●●

●
●

●
●●●

●●●● ●
●●●● ● ●

●

●
●●● ●

●
●●

●● ●
●

● ●●
● ●●● ● ●● ●●●

●
●● ●●

●
●

●
●● ●

● ●
●

●● ●●●
●●

●
●

●●
● ●● ●
●

● ●
●

●● ●●● ●●●
●● ●● ●●● ●

●
●●● ●●

● ● ●
● ●

●●
●● ● ●● ●●●●

●● ●●●
●
● ●●●● ●●● ●●●

●●●●●● ●● ● ●●
●

●●●
●● ●●

●
●●

●●●●●●
●

●
●●

●●●
●

●● ●● ●●
●

● ●
●
● ●

●
●

●●●●
●● ●●●●●●●

●
●●

●
●

●
● ●●

●
●

●
●

●●
●

●●
●

●● ● ●
●●

●
●
●●●●

●
●●●

●●
●

●
● ●●●●

●
●●●
●● ●

●● ●●●
●● ●● ●● ●●●●

●
●● ●● ●●●

●
●●

●●●
● ●

●●●
● ●● ●●●●● ●

●●
●

●●●●
●

● ● ●● ●
● ●●●●●

●
●

●●● ●●
●

●
●● ●● ●●●●●● ●●
●●
●●

●

●
●●●

●
● ●

●
●

●
●●

● ●● ●● ●●● ●●● ● ●●●●
● ●●●●●●●●●● ● ●

●

●
●●

●

●● ●● ● ●
●●

● ●●
●
● ●●● ●● ●● ●●● ●

●
● ●

● ●●
● ●●
●● ●

●
● ● ●● ●●

●●
●●●

●
●

●
●
●●

●
●
●●●

●●
● ●● ●●●●● ●

●
●● ●●●

●● ●●●
●

●

●
●

● ●●●●● ●●●●●
●●●

●
●●

●●
●●●●●●●●● ●●● ●●●● ●● ●●●
●●●●●

●
●●

10 11 12 13 14 15 16

0.
05

0.
15

0.
25

All realisations

mu

ta
u

10 11 12 13 14 15 16

0.
05

0.
15

0.
25

All realisations

mu

ta
u

●

● ● ●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●●

● ●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●●

●
●●

●●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●
●

●
●

●●●
●

●

●●

● ●

●
●

●

●●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●●

●●

●
●

●

●

●●

●

●

●
●

● ●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
● ●●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●●

● ●
●

● ●

●

●

●

● ● ●
●

●●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

● ●●

●

●

●

● ●

●
● ●

●●
●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●
●

●●

● ●
●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●
●

●● ●
●

● ●
●●

●

●
● ●●

●

●

●

●●
●

●
●

●

●
●

●●
●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●●
●

●

●

●

●●

●

● ●
● ●●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

● ●● ●

●

● ●

●●

●

●● ●

●

●
●

● ●

●
●

●

●
●

●

●

● ●
●

●

●

●

●●

● ● ●●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●●

●●●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●●

●

●

● ●
●

●
●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●
● ●

●

●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●● ●

●

●
●●

●

●

●●

●

●●

●
●●

●●

●

●

●●
●

●

●

●

●

14.0 15.0 16.0

0.
03

0.
05

0.
07

After deleting first 10

mu

ta
u

14.0 15.0 16.0
0.

03
0.

05
0.

07

After deleting first 10

mu

ta
u

Figure 4.6: Progress of the MCMC scheme

The first block of code runs the function gibbsNormal, with initial values initial

taken as the prior means, to obtain the output. The next block then uses the function

mcmcProcess to post-process the Gibbs output by deleting an initial burnin = 10 values

and then not thinning by taking thin = 1. The next block of code produces the plots

in Figure 4.6. After this the code analyses the Gibbs sampler output and produces the

plots in Figure 4.7.

In Figure 4.6, the top left plot shows the values produced by the Gibbs sampler: notice

the initial value (µ(0), τ (0)) = (b = 10, g/h = 0.25) appears at the top left part of the plot

and the other values towards the bottom right part (in different colours). The top right

plot is another representation of this output but here each consecutive pair (µ(j), τ (j)) are

joined by a line. This clearly shows that all pairs after the first one remain in the same

vicinity (the bottom right part). The lower plots are the equivalent ones to the upper

plots but only use the Gibbs sampler output after deleting the first 10 pairs.

In Figure 4.7, the top two rows of plots summarise the Gibbs sampler output using all

realisations and the bottom two rows of plots are the equivalent plots but only use the

Gibbs sampler output after deleting the first 10 pairs. The first column of plots shows

the trace plot of the output, that is, the values for each variable (µ and τ) as the sampler

iterates from its first value to its final value. The top two first column plots clearly show

the initial value (µ(0), τ (0)) = (b = 10, g/h = 0.25), after which the subsequent values

all look to be from the same distribution. In particular, there looks to be no change in

the range of values or in the mean value. The bottom two first column plots emphasise

these points; here the first 10 values have been deleted as burn-in, though probably we
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needed only to delete the first 2 or 3 values. Note that the benefit of using R code that

runs quickly is that adopting a conservative strategy which deletes too many values as

burn-in, does not have significant time implications (though this is not a sensible strategy

if the code is very slow and takes months to run!).

The second column shows the autocorrelation function for each variable. Note that

the spike at lag 0 is due to r(0) = Corr(µ(j), µ(j)) = 1. The plots show that the

autocorrelations at all other lags are negligible, and so no thinning is needed. The final

column shows histograms of the Gibbs sampler output. If using a burn-in of 10 iterations

is okay (and it is here!) then the subsequent output can be taken as our posterior sample

and therefore the lower two histograms will be good estimates of the marginal densities:

good because the output is (almost) uncorrelated and the sample size is quite large.

If we use the command

mcmcAnalysis(posterior2,rows=2)

that is, don’t use the show=F option, then the function will produce the plots and also

various useful numerical summaries. In this run of the Gibbs sampler it gave

N = 990 iterations

mu tau

Min. :13.66 Min. :0.03025

1st Qu.:14.68 1st Qu.:0.04663

Median :15.01 Median :0.05068

Mean :14.99 Mean :0.05110

3rd Qu.:15.29 3rd Qu.:0.05557

Max. :16.41 Max. :0.07515

Standard deviations:

mu tau

0.448562708 0.006743413

We can also calculate other features of the joint posterior distribution such as its corre-

lation

Corr(µ, τ |x) = −0.002706

using the command cor(posterior2), and summarise the posterior sample with a plot

of its values and its marginal distributions; see Figure 4.8. We can also determine 100(1−
α)% equi-tailed confidence intervals as follows. Suppose we have N realisations from our

Gibbs sampler. If we sort the values into increasing order then the confidence interval will

have end points which are Nα/2th and N(1−α/2)th values. The nclbayes package has a

function mcmcCi to do this. In this case we would use mcmcCi(posterior2,level=0.95)

and, for this output, obtain the 95% confidence intervals as

µ : (14.071, 15.803)

τ : (0.03818, 0.06499).
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Figure 4.7: Trace plots, autocorrelation plots and histograms of the Gibbs sampler output.

Upper plots: all realisations. Lower plots: after deleting the first 10 iterations
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Figure 4.8: Plot of the bivariate posterior sample and their marginal distributions. Left

plot: (µ, τ)T ; right plot: (µ, σ)T .

Now we have a sample from the posterior distribution, we can determine the posterior

distribution for any function of the parameters. For example, if we want the posterior dis-

tribution for σ = 1/
√
τ then we can easily obtain realisations of σ as σ(j) = 1/

√
τ (j), from

which we can produce a plot of its values and its marginal distributions (see Figure 4.8)

and also obtain its numerical summaries

¿ sigma=1/sqrt(posterior2[,2])

¿ summary(sigma)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.648 4.242 4.442 4.453 4.631 5.750

¿ sd(sigma)

[1] 0.2977992

¿ quantile(sigma,probs=c(0.025,0.975))

2.5% 97.5%

3.922480 5.109632

Summary

We can use the (converged and thinned) MCMC output to do the following.

• Obtain the posterior distribution for any (joint) functions of the parameters, such

as σ = 1/
√
τ or (θ1 = µ− τ, θ2 = eµ+τ/2)T

• Look at bivariate posterior distributions via scatter plots
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• Look at univariate marginal posterior distributions via histograms or boxplots

• Obtain numerical summaries such as the mean, standard deviation and confidence

intervals for single variables and correlations between variables.

Example 4.3

Gibbs sampling can also be used when using a conjugate prior. Construct a Gibbs sampler

for the problem in Example 2.2 analysing Cavendish’s data on the earth’s density. Recall

this assumed the data were a random sample from a normal distribution with unknown

mean µ and precision τ , that is, Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (independent), and

took a conjugate NGa prior distribution for (µ, τ)T .

Solution

The joint posterior density is, for µ ∈ R, τ > 0

π(µ, τ |x) ∝ τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
where

B =
bc + nx̄

c + n
, C = c + n,

G = g +
n

2
, H = h +

cn(x̄ − b)2

2(c + n)
+
ns2

2
.

Therefore the conditional posterior density for µ is, for
µ ∈ R

π(µ|τ, x) =
π(µ, τ |x)

π(τ |x)

∝ π(µ, τ |x)

∝ τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
∝ exp

{
−
Cτ

2
(µ− B)2

}
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after moving all multiplicative constants not involving
µ into the proportionality sign, and so

µ|τ, x ∼ N
(
B,

1

Cτ

)
.

(Actually we already knew this from the definition of
the NGa distribution.)

The conditional posterior density for τ is, for τ > 0

π(τ |µ, x) =
π(µ, τ |x)

π(µ|x)

∝ π(µ, τ |x)

∝ τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
and so

τ |µ, x ∼ Ga
(
G +

1

2
, H +

C

2
(µ− B)2

)
.

We will initialise the algorithm using the prior means:
µ(0) = b and τ (0) = g/h. Therefore the Gibbs sampler
is

1. Initialise the iteration counter to j = 1.
Initialise the state of the chain to µ(0) = b and
τ (0) = g/h.

2. Obtain new values µ(j) and τ (j) from µ(j−1) and
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τ (j−1) via

µ(j) ∼ N
(
B,

1

Cτ (j−1)

)
τ (j) ∼ Ga

(
G +

1

2
, H +

C

2

(
µ(j) − B

)2
)

3. Change counter j to j + 1, and return to step 2.
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The R function gibbsNormal2 in the library nclbayes implements this Gibbs sampling al-

gorithm. Consider again the analysis of Cavendish’s measurements on the earth’s density

in Example 2.2. These data gave n = 23, x̄ = 5.4848, s = 0.1882 and this information

was combined with a NGa(b = 5.41, c = 0.25, g = 2.5, h = 0.1) prior distribution to

give a NGa(B = 5.4840, C = 23.25, G = 14, H = 0.5080) posterior distribution. Here

we analyse the data using a Gibbs sampler and verify that it gives the same results. For

example, we know that the marginal posterior distributions are

µ|x ∼ t2G=28(B = 5.4840, H/(GC) = 0.001561)

and

τ |x ∼ Ga(G = 14, H = 0.5080),

and so we can compare the Gibbs output with these distributions. The following code

runs this Gibbs sampler for this problem.

library(nclbayes)

posterior=gibbsNormal2(N=1010,initial=c(5.41,25),

priorparam=c(5.41,0.25,2.5,0.1),n=23,xbar=5.4848,s=0.1882)

posterior2=mcmcProcess(input=posterior,burnin=10,thin=1)

mcmcAnalysis(posterior,rows=2,show=F)

mcmcAnalysis(posterior2,rows=2,show=F)

Figure 4.9 shows the summary of the Gibbs sampler output after deleting the first 1000

iterations as burn-in. The traceplots look like the sampler has converged: they indicate

a well mixing chain with similar means and variances in different sections of the chain.

Also the autocorrelation plots show that no thinning is needed.

These realisations from the posterior distribution can be summarised using R function

mcmcAnalysis as

N = 1000 iterations

mu tau

Min. :5.342 Min. :10.44

1st Qu.:5.460 1st Qu.:22.81

Median :5.484 Median :27.70

Mean :5.485 Mean :28.09

3rd Qu.:5.510 3rd Qu.:32.80

Max. :5.619 Max. :53.66

Standard deviations:

mu tau

0.03936649 7.39551702
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Figure 4.9: Trace plots, autocorrelation plots and histograms of the Gibbs sampler output

These posterior summaries are pretty accurate as we know the correct summaries are

E(µ|x) = B = 5.4840, SD(µ|x) =

√
H

(G − 1)C
= 0.04100

E(τ |x) =
G

H
= 27.559, SD(τ |x) =

√
G

H
= 7.3655.

We could obtain even more accurate estimates for these posterior summaries by running

the sampler for more iterations. Figure 4.10 shows that the histograms of the Gibbs

sampler output are also very close to the (known) marginal posterior densities. These

results confirm that our Gibbs sampler is working correctly and does indeed produce

realisations from the correct posterior distribution.
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Figure 4.10: Histograms of the Gibbs sampler output and the (known) marginal densities
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Example 4.4

Suppose we have a random sample of size n from a gamma Ga(α, λ) distribution in

which both the index α > 0 and scale parameter λ > 0 are unknown, that is, Xi |α, λ ∼
Ga(α, λ), i = 1, 2, . . . , n (independent). We shall assume independent prior distributions

for these parameters, with α ∼ Ga(a, b) and λ ∼ Ga(c, d) for known values a, b, c

and d . Determine the posterior density for (α, λ)T and hence the posterior conditional

densities for α|λ and λ|α.

Solution

The likelihood function is

f (x |α, λ) =

n∏
i=1

λαxα−1
i e−λxi

Γ(α)

=
λnα (

∏
xi)

α−1
e−nx̄λ

Γ(α)n

=
λnαx̄

n(α−1)
g e−nx̄λ

Γ(α)n

where x̄g = n
√∏

xi is the geometric mean of the data.
Using Bayes Theorem, the posterior density is

π(α, λ|x) ∝ π(α, λ) f (x |α, λ)

and so, for α > 0, λ > 0

π(α, λ|x) ∝ αa−1e−bα × λc−1e−dλ ×
λnαx̄

n(α−1)
g e−nx̄λ

Γ(α)n

∝
αa−1x̄nαg λ

c+nα−1

Γ(α)n
exp {−bα− (d + nx̄)λ} .
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This is not the density of a standard distribution. The
conditional posterior density for α is, for α > 0

π(α|λ, x) =
π(α, λ|x)

π(λ|x)

∝ π(α, λ|x)

∝
αa−1x̄nαg λ

c+nα−1

Γ(α)n
exp {−bα− (d + nx̄)λ}

∝
αa−1x̄nαg λ

nαe−bα

Γ(α)n

∝
αa−1e−(b−n log x̄g−n logλ)α

Γ(α)n
.

This looks like it might be a gamma density but (i) we
would require b − n log x̄g − n logλ > 0 which can’t
be guaranteed (ii) the divisor term is wrong: it would
have to be Γ(a) for this to be a gamma density.

The conditional posterior density for λ is, for λ > 0

π(λ|α, x) =
π(α, λ|x)

π(α|x)

∝ π(α, λ|x)

∝
αa−1x̄nαg λ

c+nα−1

Γ(α)n
exp {−bα− (d + nx̄)λ}

∝ λc+nα−1 e−(d+nx̄)λ,

that is, λ|α, x ∼ Ga(c + nα, d + nx̄).

The full conditional distribution (FCD) for λ is a standard distribution and so it is straight-

forward to simulate from this distribution. However, the FCD for α is not a standard

distribution and not easy to simulate from. Therefore we cannot use a Gibbs sampler to

simulate from the posterior π(α, λ|x). Fortunately, there are other methods available to

help us in these situations.
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4.5 Metropolis-Hastings sampling

The Gibbs sampler is a very powerful tool but is only useful if the full conditional distribu-

tions (FCDs) are standard distributions (which are easy to simulate from). Fortunately

there is a class of methods which can be used when the FCDs are non-standard. These

methods are known as Metropolis-Hastings schemes.

Suppose we want to simulate realisations from the posterior density π(θ|x) and all of the

FCDs are non-standard. Suppose further that we have a proposal distribution with density

q(θ∗|θ), which is easy to simulate from. This distribution gives us a way of proposing

new values θ∗ from the current value θ.

Consider the following algorithm:

1. Initialise the iteration counter to j = 1, and initialise the chain to θ(0).

2. Generate a proposed value θ∗ using the proposal distribution q(θ∗|θ(j−1)).

3. Evaluate the acceptance probability α(θ(j−1), θ∗) of the proposed move, where

α(θ, θ∗) = min

{
1,
π(θ∗|x) q(θ|θ∗)
π(θ|x) q(θ∗|θ)

}
.

4. Set θ(j) = θ∗ with probability α(θ(j−1), θ∗), and set θ(j) = θ(j−1) otherwise.

5. Change the counter from j to j + 1 and return to step 2.

In other words, at each stage, a new value is generated from the proposal distribution.

This is either accepted, in which case the chain moves, or rejected, in which case the

chain stays where it is. Whether or not the move is accepted or rejected depends on

an acceptance probability which itself depends on the relationship between the density of

interest and the proposal distribution. Note that the posterior density π(·|x) only enters

into the acceptance probability as a ratio, and so the method can be used when it is

known up to a scaling constant, that is,

α(θ, θ∗) = min

{
1,
π(θ∗) f (x |θ∗) q(θ|θ∗)
π(θ) f (x |θ) q(θ∗|θ)

}
,

since

π(θ|x) =
π(θ) f (x |θ)

f (x)
.

It can be shown that the above algorithm defines a Markov chain with π(θ|x) as its

stationary distribution.

Notice that the above description holds for all possible proposal distributions (subject to

them generating realisations from the full parameter space). But are some choices better

than others? We now discuss some commonly used proposal distributions.
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4.5.1 Symmetric chains (Metropolis method)

The simplest case is the Metropolis sampler and uses a symmetric proposal distribution,

that is, one with q(θ∗|θ) = q(θ|θ∗), ∀ θ, θ∗. In this case the acceptance probability

simplifies to

α(θ, θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

}
,

and hence does not involve the proposal density at all. Consequently proposed moves

which will take the chain to a region of higher posterior density are always accepted,

while moves which take the chain to a region of lower posterior density are accepted with

probability proportional to the ratio of the two densities — moves which will take the

chain to a region of very low density will be accepted with very low probability. Note

that any proposal of the form q(θ∗|θ) = f (|θ∗ − θ|) is symmetric, where f (·) is some

zero mean density function, as |θ∗ − θ| = |θ − θ∗|. In this case, the proposal value is a

symmetric displacement from the current value. This motivates the following.

Random walk proposals

Consider the random walk proposal in which the proposed value θ∗ depends on the current

value θ via

θ∗ = θ + w ,

where w is a random p × 1 vector from the zero mean density f (·) which is symmetric

about its mean, and is independent of the state of the chain. We can generate our

proposal value by first simulating an innovation w , and then set the proposal value

to θ∗ = θ + w . Clearly q(θ∗|θ) = f (θ∗ − θ) = f (w). Also θ = θ∗ − w and so

q(θ|θ∗) = f (θ − θ∗) = f (−w). However, as f (·) is a zero mean symmetric density, we

have that f (w) = f (−w) and so q(θ∗|θ) = q(θ|θ∗).

But, what distribution should we use for f (·)? A distribution which is simple and easy to

simulate from would be good, with obvious choices of the uniform or normal distributions,

though the normal distribution is generally better, but is a bit more expensive to simulate.

What variance should we use for the distribution we choose? This choice will affect

the acceptance probability, and hence the overall proportion of accepted moves. If the

variance of the innovation is too low, then most proposed values will be accepted, but the

chain will move very slowly around the space — the chain is said to be too “cold”. On

the other hand, if the variance of the innovation is too large, very few proposed values

will be accepted, but when they are, they will often correspond to quite large moves

— the chain is said to be too “hot”. Theoretically it has been shown that the optimal

acceptance rate is around 0.234 — this is an asymptotic result (for large samples of data)

— but experience suggests that an acceptance rate of around 20–30% is okay. Thus,

the variance of the innovation distribution should be “tuned” to get an acceptance rate

of around this level.
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Normal random walk proposals

A symmetric normal random walk proposal takes the form θ∗|θ ∼ N(θ, k2) for some

innovation size k > 0. This is a symmetric proposal because θ∗ = θ + w , where w ∼
N(0, k2) has a density which is symmetric about zero. Also the proposal ratio is

q(θ|θ∗)
q(θ∗|θ)

=

1√
2πk2

exp

{
−

(θ − θ∗)2

2k2

}
1√

2πk2
exp

{
−

(θ∗ − θ)2

2k2

} = 1.

Uniform random walk proposals

A symmetric uniform random walk proposal takes the form θ∗|θ ∼ U(θ − a, θ + a) for

some innovation size a > 0. This is a symmetric proposal because θ∗ = θ + w , where

w ∼ U(−a, a) has a density which is symmetric about zero. Also

q(θ|θ∗)
q(θ∗|θ)

=
1/(2a)

1/(2a)
= 1.

Example 4.5

Suppose the posterior distribution is a standard normal distribution, with density φ(·).

Construct a Metropolis–Hastings algorithm which samples this posterior distribution by

using a uniform random walk proposal. Examine how the acceptance rate for this algo-

rithm depends on the width of the uniform distribution.

Solution

We have π(θ|x) = φ(θ) and will use a symmetric uni-
form random walk proposal θ∗|θ ∼ U(θ− a, θ+ a) for
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some choice of a > 0. The acceptance probability is

α(θ, θ∗) = min

{
1,
π(θ∗|x)

π(θ|x)

}
= min

{
1,
φ(θ∗)

φ(θ)

}
= min

{
1, e(θ2−θ∗2)/2

}
.

Therefore the algorithm is

1. Initialise the iteration counter to j = 1, and initialise
the chain to θ(0) = 0 say.

2. Generate a proposed value θ∗ ∼ U(θ(j−1) −
a, θ(j−1) + a).

3. Evaluate the acceptance probability α(θ(j−1), θ∗) =

min
{

1, e(θ(j−1)2−θ∗2)/2
}

4. Set θ(j) = θ∗ with probability α(θ(j−1), θ∗), and set
θ(j) = θ(j−1) otherwise.

5. Change the counter from j to j + 1 and return to
step 2.

Of course, in practice we would never simulate from a standard normal distribution using

this M–H algorithm as there are much more efficient methods (like the one used in

rnorm). The purpose here was to illustrate the general method using a very simple

choice of posterior distribution.

The R function metropolis in the library nclbayes implements this Metropolis algorithm.

The following code runs this algorithm, taking the population mean as its initial value

and taking a = 6:

posterior=metropolis(N=10000,initial=0,a=6)

mcmcAnalysis(posterior,rows=1,show=F)

Figure 4.11 shows the output from runs of the algorithm for 10k iterations using different

values of a. The top row uses a = 0.6 and this chain is too “cold”: the innovations are
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Figure 4.11: Trace plots, autocorrelation plots and histograms of the output from a

Metropolis–Hastings sampler using a U(−a, a) random walk proposal. Top row: a = 0.6;

middle row: a = 6; bottom row: a = 60

too small and are generally accepted. The acceptance rate for this chain was 0.881.

Notice that the autocorrelations are too high and this chain would have to be thinned.

Increasing the size of the innovations to a = 6 gives the output on the middle row.

The autocorrelations are much lower and the acceptance rate was 0.260 (nearer the

asymptotic 0.234 M–H acceptance rate). Increasing the size still further to a = 60 gives

the output on the bottom row. This chain is too “hot” with few proposed values being

accepted (acceptance rate 0.027), but when they are, it results in a fairly large move to

the chain. This gives fairly high autocorrelations and this chain would have to be thinned.
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Normal random walk proposals

Suppose we decide to use a normal random walk with f (·) = Np(0,Σ) and so the proposal

distribution is

θ∗|θ ∼ Np(θ,Σ).

Tuning this random walk requires us to choose a value for the covariance matrix Σ. If

the posterior distribution is approximately normally distributed (as it is with large data

samples) then researchers have shown that the optimal choice is

Σ =
2.382

p
V ar(θ|x).

In practice, of course, we don’t know the posterior variance V ar(θ|x). However, we could

first run the MCMC algorithm substituting in the (generally much larger) prior variance

V ar(θ). If this chain doesn’t converge quickly then we can use its output to get a better

idea of V ar(θ|x) and run the MCMC code again – this will have more appropriate values

for the parameter variances and correlations.

It has been shown from experience that it is not vital to get an extremely accurate value

for Σ. Often just getting the correct order of magnitude for its elements will be sufficient,

that is, using say 0.1 rather than 0.01 or 1.

4.5.2 Independence chains

In this case, the proposal is formed independently of the position of the chain, and so

q(θ∗|θ) = f (θ∗) for some density f (·). Here the acceptance probability is

α(θ, θ∗) = min

{
1,
π(θ∗|x) f (θ)

π(θ|x) f (θ∗)

}
= min

{
1,
π(θ∗|x)

f (θ∗)

/
π(θ|x)

f (θ)

}
,

and we see that the acceptance probability can be increased by making f (·) as similar to

π(·|x) as possible. In this case, the higher the acceptance probability, the better.

Bayes Theorem via independence chains

One possible choice for the proposal density is the prior density. The acceptance proba-

bility is then

α(θ, θ∗) = min

{
1,
f (x |θ∗)
f (x |θ)

}
,

and hence depends only on the likelihood ratio of the proposal and the current value.
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4.6 Hybrid methods

We have now seen how we can use the Gibbs sampler to sample from multivariate dis-

tributions provided that we can simulate from the full conditional distributions. We have

also seen how we can use Metropolis-Hastings methods to sample from awkward FCDs.

If we wish, we can combine these in order to form hybrid Markov chains whose stationary

distribution is a distribution of interest.

4.6.1 Componentwise transitions

Given a posterior distribution with full conditional distributions that are awkward to sam-

ple from directly, we can define a Metropolis-Hastings scheme for each full conditional

distribution, and apply them to each component in turn for each iteration. This is like

the Gibbs sampler, but each component update is a Metropolis-Hastings update, rather

than a direct simulation from the full conditional distribution. Each of these steps will

require its own proposal distribution. The algorithm is as follows:

1. Initialise the iteration counter to j = 1.

Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )T .

2. Let θ
(j)
−i =

(
θ

(j)
1 , . . . , θ

(j)
i−1, θ

(j−1)
i+1 , . . . , θ

(j−1)
p

)T
, i = 1, 2, . . . , p.

Obtain a new value θ(j) from θ(j−1) by successive generation of values

• θ(j)
1 ∼ π(θ1|θ(j)

−1, x) using a Metropolis–Hastings step with proposal distribution

q1(θ1|θ(j−1)
1 , θ

(j)
−1)

• θ(j)
2 ∼ π(θ2|θ(j)

−2, x) using a Metropolis–Hastings step with proposal distribution

q2(θ2|θ(j−1)
2 , θ

(j)
−2)

...

• θ(j)
p ∼ π(θp|θ(j)

−p, x) using a Metropolis–Hastings step with proposal distribution

qp(θp|θ(j−1)
p , θ

(j)
−p)

3. Change counter j to j + 1, and return to step 2.

This is in fact the original form of the Metropolis algorithm. Note that the distributions

π(θi |θ(j)
−i , x) are just the FCDs.

Suppose we decide to use normal random walks for these M–H steps, that is, take

qi(θ
∗
i |θi , θ

(j)
−i ) is a N(θi ,Σi j) density. What is the appropriate value for Σi j? As the

proposal in step j is targeting the conditional posterior density π(θi |θ(j)
−i , x), the optimal

choice of Σi j is

Σi j =
2.382

1
V ar(θi |θ(j)

−i , x) = 2.382 V ar(θi |θ(j)
−i , x).

As these (conditional) posterior variances are not known before running the MCMC code,

a sensible strategy might be to replace it with the (probably much larger) prior conditional
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variance V ar(θi |θ(j)
−i ) or even the prior marginal variance V ar(θi). Again, recall that these

values are to be used as a guide, generally to get the order of magnitude for the innovation

variance.

4.6.2 Metropolis within Gibbs

Given a posterior distribution with full conditional distributions, some of which may be

simulated from directly, and others which have Metropolis-Hastings updating schemes,

the Metropolis within Gibbs algorithm goes through each in turn, and simulates directly

from the full conditional, or carries out a Metropolis-Hastings update as necessary. This

algorithm is, in fact, just the above algorithm but uses the full conditional distributions

as the proposal distributions when they are easy to simulate from. To see this, suppose

that we can simulate from the FCD π(θi |θ(j)
−i , x) and use this as the proposal distribution,

that is, take θ∗i ∼ π(θi |θ(j)
−i , x). Then the acceptance probability for this step is

α(θi , θ
∗
i ) = min

{
1,
π(θ∗i |θ

(j)
−i , x)

π(θi |θ(j)
−i , x)

q(θi |θ∗i , θ
(j)
−i )

q(θ∗i |θi , θ
(j)
−i )

}

= min

{
1,
π(θ∗i |θ

(j)
−i , x)

π(θi |θ(j)
−i , x)

π(θi |θ(j)
−i , x)

π(θ∗i |θ
(j)
−i , x)

}
= min(1, 1)

= 1,

that is, we always accept the proposal from the FCD.

Example 4.6

Construct an MCMC scheme for the problem in Example 4.4 where we had a random

sample of size n from a gamma Ga(α, λ) distribution and independent gamma Ga(a, b)

and Ga(c, d) prior distributions for α and λ respectively. Recall that the FCDs were

π(α|λ, x) ∝
αa−1e(−b+n log x̄g+n logλ)α

Γ(α)n
, α > 0

and

π(λ|α, x) ∝ λc+nα−1 e−(d+nx̄)λ, λ > 0.

Solution

We have that λ|α, x ∼ Ga(c + nα, d + nx̄) but the
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distribution of α|λ, x is non-standard. Therefore we
will use a Metropolis within Gibbs algorithm which uses
a Gibbs step for λ and a M–H step for α. In the M–H
step, we will use a normal random walk proposal distri-
bution, with α∗|α ∼ N(α,Σα), in which the proposal
α∗ has acceptance probability min(1, A), where

A =
π(α∗|λ, x)

π(α|λ, x)

=
α∗a−1e(−b+n log x̄g+n logλ)α∗

Γ(α∗)n
×

Γ(α)n

αa−1e(−b+n log x̄g+n logλ)α
, α∗ > 0

=

(
α∗

α

)a−1 {
Γ(α)

Γ(α∗)

}n
e(−b+n log x̄g+n logλ)(α∗−α), α∗ > 0,

and zero otherwise.

We need to find a value for α or λ to initialise the
MCMC algorithm. We could use a value simulated
from the prior or use the prior mean. Alternatively
we could use the mle but this is rather complicated to
determine. However, the moment estimates are rather
more straightforward, and equating first and second
population and sample moments gives

mean :
α̃

λ̃
= x̄ variance :

α̃

λ̃2
= s2

and so

λ̃ =
x̄

s2
α̃ =

x̄2

s2
.

Therefore the MCMC algorithm is
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1. Initialise the iteration counter to j = 1, and initialise
the chain to α(0) = (x̄/s)2.

2. Obtain a new value

λ(j) ∼ Ga(c + nα(j−1), d + nx̄)

3. Generate a proposed value α∗ ∼ N(α(j−1),Σα)

4. Evaluate the acceptance probability min(1, A) at
α∗ = α∗, α = α(j−1) and λ = λ(j)

5. Set α(j) = α∗ with probability min(1, A), and set
α(j) = α(j−1) otherwise.

6. Change the counter from j to j + 1 and return to
step 2.

The R function mwgGamma in the library nclbayes implements this Metropolis within Gibbs

algorithm. The following code produces posterior output from an analysis of a dataset

with n = 50, x̄ = 0.62, x̄g = 0.46 and s = 0.4, with prior beliefs represented by a = 2,

b = 1, c = 3 and d = 1, and uses a normal random walk proposal with variance Σα = 0.92

as this gives a reasonable acceptance probability of 0.237. The initial value is taken as

the moment estimate α̃ = (x̄/s)2.

posterior=mwgGamma(N=20000,initial=(0.46/0.4)ˆ2,innov=0.9,

priorparam=c(2,1,3,1),n=50,xbar=0.62,xgbar=0.46,show=TRUE)

mcmcAnalysis(posterior,rows=2,show=F)

posterior2=mcmcProcess(input=posterior,burnin=10,thin=20)

mcmcAnalysis(posterior2,rows=2)

The upper plots in Figure 4.12 show all the output of this MCMC scheme and the lower

plots show the output after deleting the first 10 iterations as burn–in and then thinning

by only taking every 20th iterate to reduce the autocorrelations.
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Figure 4.12: Trace plots, autocorrelation plots and histograms of the Metropolis with

Gibbs output. Upper plots: all realisations. Lower plots: with burn-in = 10, thin = 20.



102 CHAPTER 4. NON-CONJUGATE MULTI-PARAMETER PROBLEMS

Comments

1. If you’re unsure whether the proposal distribution is symmetric then it’s quite

straightforward to examine the proposal ratio. In this last example, we have proposal

α∗|α ∼ N(α,Σα) and so

q(α|α∗)
q(α∗|α)

=

1√
2πΣα

exp

{
−

(α− α∗)2

2Σα

}
1√

2πΣα

exp

{
−

(α∗ − α)2

2Σα

} = 1.

2. A normal random walk proposal α∗ is not accepted if it is negative as, in this case,

A = 0. This can be wasteful. An alternative is to use a proposal distribution which

only generates positive proposal values, such as α∗|α ∼ LN(logα,Σα). Using this

skewed proposal distribution, we have

q(α|α∗)
q(α∗|α)

=

1

α
√

2πΣα

exp

{
−

(logα− logα∗)2

2Σα

}
1

α∗
√

2πΣα

exp

{
−

(logα∗ − logα)2

2Σα

} =
α∗

α
.

Therefore the acceptance probability for a proposed value α∗ is min(1, B) where

B =
π(α∗|λ, x)

π(α|λ, x)
×
q(α|α∗)
q(α∗|α)

=
α∗ π(α∗|λ, x)

απ(α|λ, x)
.

The acceptance probability is still quite straightforward to calculate, and with this

proposal distribution we never reject proposal values that are inconsistent with the

parameter space (here α > 0). Incidentally, logX ∼ N(µ, σ2) if X ∼ LN(µ, σ2)

and so using a log-normal proposal is the same as using a normal random walk on

the log scale, that is, a normal random walk for logα. Also log-normal proposals

are easy to simulate because if Y ∼ N(µ, σ2) then eY ∼ LN(µ, σ2).

3. Dealing with a constraint such as α > 0 in optimisation methods or here in MCMC

methods, can be solved by re-parameterising the model. Here, for example, we

could work with A = logα and obtain realisations from the posterior distribution

for A. Once we have these realisations we can easily obtain realisations from the

posterior distribution for α = eA. Working in A rather than α means we have to

simulate realisations from the conditional posterior

πA(A|λ, x) = πα(eA|λ, x)×
∣∣∣∣ dda eA

∣∣∣∣ = eA πα(eA|λ, x)

using (2.1). If we also use a normal random walk for proposing new values for A (as
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it’s unconstrained) then a proposal A∗ is accepted with probability min(1, C) where

C =
π(A∗|λ, x)

π(A|λ, x)
×
q(A|A∗)
q(A∗|A)

=
π(A∗|λ, x)

π(A|λ, x)
since the proposal distribution is symmetric about zero

=
eA
∗
πα(eA

∗|λ, x)

eA πα(eA|λ, x)

=
α∗ πα(α∗|λ, x)

απα(α|λ, x)
.

Notice that the acceptance probabilities B and C are the same, that is, there is

no (algorithmic) difference between using a log-normal random walk for a positive

parameter or working on the log-scale and using a symmetric normal random walk.

4.7 Summary

(i) Bayesian inference can be complicated when not using a conjugate prior distribution.

(ii) One solution is to use Markov chain Monte Carlo (MCMC) methods.

(iii) These work by producing realisations from the posterior distribution by constructing

a Markov chain which has the posterior distribution as its stationary distribution.

(iv) The MCMC methods we have studied are the Gibbs sampler, Metropolis within

Gibbs algorithm and the Metropolis–Hastings algorithm.

(v) When obtaining output from these algorithms, we need to assess whether there

needs to be a burn-in and whether the output needs to be thinned (by looking at

traceplots and autocorrelation plots) using mcmcAnalysis and mcmcProcess.

(vi) The (converged and thinned) MCMC output are realisations from the posterior

distribution. It can be used to

• obtain the posterior distribution for any (joint) functions of the parameters

(such as σ = 1/
√
τ or (θ1 = µ− τ, θ2 = eµ+τ/2)T );

• look at bivariate posterior distributions via scatter plots;

• look at univariate marginal posterior distributions via histograms or boxplots;

• obtain numerical summaries such as the mean, standard deviation and confi-

dence intervals for single variables and correlations between variables.

(vii) Equi-tailed posterior confidence intervals can be determined from the MCMC output

using mcmcCi.
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4.8 Learning objectives

By the end of this chapter, you should be able to:

• explain why not using a conjugate prior generally causes problems in determining

the posterior distribution

• describe the Gibbs sampler, explain why it is a Markov chain and give an outline as

to why its stationary distribution is the posterior distribution

• describe the issues of processing MCMC output (burn-in, autocorrelation, thinning

etc.) and interpret numerical/graphical output

• derive the full conditional densities for any posterior distribution and name these

distributions if they are “standard” distributions given in the notes or on the exam

paper

• describe a Metropolis-Hastings algorithm in general terms and when using either

symmetric or non-symmetric random walk proposals or independence proposals

• describe the hybrid methods componentwise transitions and Metropolis within Gibbs

• provide a detailed description of any of the MCMC algorithms as they apply to

generating realisations from any posterior distribution



Appendix A

Summary of distributions

A.1 Distributions for data

Binomial distribution

If X|θ ∼ Bin(k, θ) then it has probability function

f (x |θ) =

(
k

x

)
θx(1− θ)k−x , x = 0, 1, . . . , k,

where k is a positive integer and 0 < θ < 1. Also, E(X) = kθ and V ar(X) = kθ(1− θ).

Exponential distribution

If X|λ ∼ Exp(λ) then it has density

f (x |λ) = λe−λx , x > 0

where λ > 0. Also, E(X) = 1/λ and V ar(X) = 1/λ2.

Gamma distribution

If X|α, λ ∼ Ga(α, λ) then it has density

f (x |α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0,

where α > 0 and λ > 0. Also, E(X) = α/λ and V ar(X) = α/λ2.

105
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Inverse Gaussian distribution

If X|µ, λ ∼ IG(µ, λ) then it has density

f (x |µ, λ) =

√
λ√

2πx3
exp

{
−
λ(x − µ)2

2µ2x

}
, x > 0,

where µ > 0 and λ > 0. Also, E(X) = µ and V ar(X) = µ3/λ.

Laplace distribution

If X|µ, σ ∼ La(µ, σ2) then it has density

f (x |µ, σ) =
1√
2σ

exp

{
−
√

2|x − µ|
σ

}
, x > 0,

where µ ∈ R and σ > 0. Also, E(X) = µ and V ar(X) = σ2.

Log-normal distribution

If X|µ, σ ∼ LN(µ, σ2) then it has density

f (x |µ, σ) =
1

xσ
√

2π
exp

{
−

1

2σ2
(log x − µ)2

}
, x > 0

where µ ∈ R and σ > 0. Also, E(X) = eµ+σ2/2, V ar(X) = (eσ
2 − 1)e2µ+σ2

. Further

E(logX) = µ and V ar(logX) = σ2.

Negative binomial distribution

If X|θ ∼ NegBin(k, θ) then it has probability function

f (x |θ) =

(
x − 1

k − 1

)
θk(1− θ)x−k , x = k, k + 1, . . . ,

where k is a positive integer and 0 < θ < 1. Also E(X) = k/θ and V ar(X) = k(1−θ)/θ2.

Normal distribution

If X|µ, τ ∼ N(µ, 1/τ) then it has density

f (x |µ, τ) =
( τ

2π

)1/2

exp
{
−
τ

2
(x − µ)2

}
, x ∈ R

where µ ∈ R and τ > 0. Also, E(X) = µ and V ar(X) = 1/τ . The distribution has the

following quantiles

x 1.2816 1.6449 1.9600 2.3263 2.5758

Pr(X < x) 0.9 0.95 0.975 0.99 0.995
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Pareto distribution

If X|θ, α ∼ Pa(θ, α) then it has density

f (x |α, θ) =
αθα

xα+1
, x > θ

where α > 0 and θ > 0. Also E(X) = αθ/(α − 1), α > 1 and V ar(X) = αθ2/{(α −
1)2(α− 2)}, α > 2.

Poisson distribution

If X|θ ∼ Po(θ) then it has probability function

f (x |θ) =
θxe−θ

x!
, x = 0, 1, . . . ,

where θ > 0. Also, E(X) = θ and V ar(X) = θ.

Rayleigh distribution

If X|θ ∼ R(θ) then it has density

f (x |θ) = 2xθe−θx
2

, x > 0,

where θ > 0. Also E(X) =
√
π/(4θ) and V ar(X) = (4− π)/(4θ).

Uniform distribution

If X|φ, θ ∼ U(φ, θ) then it has density

f (x |φ, θ) =
1

θ − φ , φ < x < θ,

where φ < θ. Also, E(X) = (φ+ θ)/2 and V ar(X) = (θ − φ)2/12.

von Mises distribution

If X|µ, λ ∼ vM(µ, λ) then it has density

f (x |µ, λ) =
1

2πI0(λ)
exp{λ cos (x − µ)}, 0 ≤ x < 2π

where 0 ≤ µ < 2π and λ > 0. Also I0(·) is the modified Bessel function of order zero.
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Weibull distribution

If X|β, λ ∼ Wei(β, λ) then it has density

f (x |β, λ) = βλβxβ−1e−λ
βxβ , x > 0,

where β > 0 and λ > 0. Also, E(X) = Γ(1 + 1/β)/λ and V ar(X) = Γ(1 + 2/β)/λ2 −
E(X)2.
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A.2 Distributions for prior beliefs

Beta distribution

If θ ∼ Beta(g, h) then it has density

π(θ) =
θg−1(1− θ)h−1

B(g, h)
, 0 < θ < 1,

where g > 0 and h > 0. Also, E(θ) = g/(g+h) and V ar(θ) = gh/{(g+h)2(g+h+ 1)}.

Exponential distribution

If θ ∼ Exp(h) then it has density

π(θ) = he−hθ , θ > 0,

where h > 0. Also, E(θ) = 1/h and V ar(θ) = 1/h2.

Gamma distribution

If θ ∼ Ga(g, h) then it has density

π(θ) =
hgθg−1e−hθ

Γ(g)
, θ > 0,

where g > 0 and h > 0. Also, E(θ) = g/h and V ar(θ) = g/h2.

Generalised t distribution

If µ ∼ ta(b, c) then it has density

π(µ) =
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) {1 +
(µ− b)2

ac

}− a+1
2

, µ ∈ R,

where b ∈ R, a > 0 and c > 0. Also, E(µ) = b and V ar(µ) = ac/(a − 2) if a ≥ 2.

Inverse Chi distribution

If σ ∼ Inv-Chi(a, b) then it has density

π(σ|a, b) =
2baσ−2a−1e−b/σ

2

Γ(a)
, σ > 0,

where a > 0, b > 0 and Γ(a) is the gamma function. Also E(σ) =
√
b Γ(a − 1/2)/Γ(a)

and V ar(σ) = b/(a− 1)−E(σ)2 if a > 1. The name of the distribution comes from the

fact that 1/σ2 ∼ Ga(a, b) ≡ χ2
2a/(2b).
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Log-normal distribution

If θ ∼ LN(b, c2) then it has density

π(θ) =
1√

2π c θ
exp

{
−

1

2c2
(log θ − b)2

}
, θ > 0

where b ∈ R and c > 0. Also, E(θ) = eb+c2/2, V ar(θ) = (ec
2 − 1)e2b+c2

. Further

log θ ∼ N(b, c2) and so E(log θ) = b and V ar(log θ) = c2.

Normal distribution

If µ ∼ N(b, 1/d) then it has density

π(µ) =

(
d

2π

)1/2

exp

{
−
d

2
(µ− b)2

}
, µ ∈ R,

where b ∈ R and c > 0. Also, E(µ) = b and V ar(µ) = 1/d .

Normal-gamma distribution

If

(
µ

τ

)
∼ NGa(b, c, g, h) then it has density

π(µ, τ) ∝ τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
, µ ∈ R, τ > 0

where b ∈ R and c, g, h > 0. Also, µ|τ ∼ N
(
b,

1

cτ

)
, τ ∼ Ga(g, h) and has marginal

distribution µ ∼ t2g

(
b,
h

gc

)
.

Uniform distribution

If θ ∼ U(a, b) then it has density

π(θ) =
1

b − a , a < θ < b,

where a < b. Also, E(θ) = (a + b)/2 and V ar(θ) = (b − a)2/12.



Group exercises

1. Suppose you have a random sample x1, x2, . . . , xn. In the following models, derive

the posterior density and name the posterior distribution (and its parameters).

(i) f (x |θ) = θx−1(1− θ), x = 1, 2, . . . with a Beta(3, 2) prior distribution for θ.

(ii) f (x |θ) = e−θθx

x !
, x = 0, 1, . . . with a Exp(2) prior distribution for θ.

(iii) f (x |θ) =

(
4

x

)
θx(1 − θ)4−x , x = 0, 1, 2, 3, 4 with a U(0, 1) prior distribution

for θ.

2. Suppose that a random sample x1, x2, . . . , x10 is obtained from a uniform U(0, θ)

distribution. Derive the posterior density for θ assuming a gamma Ga(20, 1) prior

distribution θ. Hint: this distribution will depend on the maximum observed x-value

xmax.

3. Suppose that a random sample x1, x2, . . . , xn is obtained from a truncated unit

exponential distribution, with density

f (x |θ) =

{
eθ−x , x > θ

0, otherwise,

where θ ∈ R. Derive the posterior density for θ assuming a normal N(b, 1/d) prior

distribution. Hint: this distribution will depend on the minimum observed x-value

xmin.

4. The dimensions of a component from a long production run vary according to

a N(µ, 1) distribution, and the mean dimension µ varies from production run to

production run according to a N(10, 1/4) distribution. From one production run 12

components are drawn at random and their average dimension is found to be 10 1
3

.

On this information what is the probability that the mean component dimension is

at least 10?

5. A trucking company owns a large fleet of well-maintained trucks. Suppose that

breakdowns occur at random times. The owner of the company is interested in

learning about the daily rate θ at which breakdowns occur. It is known that the

number of breakdowns X on a typical day has a Poisson distribution with mean θ.

The owner has some knowledge about the rate parameter θ based on the observed

number of breakdowns in previous years and expresses these prior beliefs using a
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Ga(4, 2) distribution. The daily number of truck breakdowns are obtained on five

consecutive days as 3, 2, 3, 1, and 2. Assuming these data are a random sample,

determine the posterior distribution of θ.

6. Suppose that the time in minutes required to serve a customer at a certain facility

has an exponential distribution for which the parameter θ is unknown, and that

the prior distribution of θ is a gamma distribution with mean 0.2 and standard

deviation 1. If the average time required to serve a random sample of 20 customers

is observed to be 3.8 minutes, determine the posterior distribution of θ.

7. The following data is the time intervals (in minutes) between eruptions of the “Old

Faithful” geyser. Note that the average time between eruptions is 67.38 minutes,

that is, 1.123 hours. If the eruptions occur randomly in time according to a Poisson

process with a rate of θ eruptions per hour then the times between eruptions will

form a random sample from an exponential distribution with rate θ. Making this

assumption, establish a prior distribution for θ with E(θ) = 1 and V ar(θ) = 1.

Determine the posterior distribution for θ. Comment on your analysis.

70 64 72 76 80 48 88 53 71 56 69 72 76 54 76

65 54 86 40 87 49 76 51 77 49 71 78 80 51 82

49 80 43 83 49 75 47 78 71 69 63 64 82 68 71

71 63 79 66 75 56 83 67 65 77 72 79 73 53 69

53 78 55 67 68 73 53 70 69 66 79 48 90 49 78

52 79 49 75 75 50 87 40 76 57 71 70 69 72 51

84 43 73 73 70 84 71 79 58 73

8. The negative binomial distribution is used to model scenarios in which we observe

the number of independent (success-fail) trials needed before we see a successful

trial; the trials must have the same success probability. Suppose x1, x2, . . . , xn are

a random sample from a negative binomial NegBin(k, θ) distribution, where k is

known.

(i) Verify that the congugate prior distribution is a Beta distribution.

(ii) Determine the choice of parameters g and h for the Beta(g, h) distribution

that give it maximal variance.

Hint: reparameterise the distribution in terms of its mean m = g/(g + h) and

s = g + h; determine the choice of m and s that maximises the variance of

the distribution, and hence the choice of g and h.

Determine the posterior distribution for θ assuming

(iii) vague prior knowledge;

(iv) a very large sample.

9. The Rayleigh distribution is often used to measure variability in magnetic resonance

imaging (MRI). Suppose x1, x2, . . . , xn are a random sample from a Rayleigh R(θ)

distribution. Determine the posterior distribution for θ assuming

(i) vague prior knowledge;
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(ii) a very large sample.

10. The Pareto distribution is often used to model data in many areas, ranging from the

wealth of individuals to the sizes of meteorites. Suppose x1, x2, . . . , xn are a random

sample from a Pareto Pa(1, θ) distribution. Determine the posterior distribution

for θ assuming

(i) vague prior knowledge;

(ii) a very large sample.

11. Suppose that a random sample of size n = 10 from an N(µ, 1) distribution has

mean x̄ = 2.5. The prior distribution for µ is the mixture distribution

µ ∼ 0.2N(3.3, 0.372) + 0.8N(1.1, 0.472).

(i) Determine the posterior distribution for µ. Note that, for this model

fi(x) =
πi(µ) f (x |µ)

πi(µ|x)
∝
√
di√
Di

exp

{
1

2

[
DiB

2
i − dib2

i

]}
,

where the constant of proportionality doesn’t depend on component prior i .

In order to get accurate values for the posterior weights, you should calculate

posterior component means and standard deviations to at least 4 dp.

(ii) Calculate the prior and posterior mean and standard deviation.

(iii) Plot the prior and posterior densities for µ.

(iv) Calculate the prior and posterior probability that µ exceeds 2.5. Comment on

the effect of incorporating the data.

12. Consider the exponential model and gamma mixture prior distribution described

in Example 1.13. Define your own R functions to calculate the first component

weight (p∗1) and the posterior mean and standard deviation as functions of the

sample mean x̄ . Investigate the behaviour of these functions and give an intuitive

explanation of their general properties.

13. Suppose that you have a random sample x1, x2, . . . , xn from an N(µ, σ2) distribution

and take a NGa(b, c, g, h) prior distribution for (µ, τ)T , where τ = 1/σ2. Verify

that the posterior mean for µ is greater than the prior mean if and only if the sample

mean is greater than the prior mean.

14. Suppose that you have a random sample from an N(µ, 1/τ) distribution and believe

that the conjugate NGa(b, c, g, h) prior distribution is appropriate for (µ, τ)T . Let

tν,α and χ2
ν,α denote the upper α-points of the tν and χ2

ν distributions respectively.

Determine

(i) the equi-tailed 95% Posterior confidence interval for µ;

(ii) the equi-tailed 95% Posterior confidence interval for τ (hint: if W ∼ Ga(a, b)

then 2bW ∼ χ2
2a);

(iii) a 95% Posterior confidence interval for σ = 1/
√
τ ;
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(iv) the 95% Posterior HDI for µ.

(v) Why is it not straightforward to determine the 95% HDI for τ? Determine

the 95% HDI for τ when the size of the random sample is large.

Compare your answers with the equivalent 95% frequentist confidence intervals:

µ: (x̄ − tn−1,0.025su/
√
n, x̄ + tn−1,0.025su/

√
n )

τ : (χ2
n−1,0.975/{(n − 1)s2

u}, χ2
n−1,0.025/{(n − 1)s2

u})
σ:
(√
{(n − 1)s2

u}/χ2
n−1,0.025,

√
{(n − 1)s2

u}/χ2
n−1,0.975

)
.

15. Suppose that you have a random sample x1, x2, . . . , xn from an N(µ, 1/τ) distri-

bution and the sample size n is sufficiently large that the posterior distribution for

(µ, τ)T is close to its asymptotic form. Determine

(i) the 95% HDI for µ;

(ii) the 95% HDI for τ ;

(iii) the 95% HDI for σ = 1/
√
τ .

Compare your answers with the equivalent 95% frequentist confidence intervals:

µ: (x̄ − 1.96s/
√
n, x̄ + 1.96s/

√
n )

τ : (1/s2 − 1.96
√

2/(
√
ns2), 1/s2 + 1.96

√
2/(
√
ns2)

σ: (s − 1.96s/
√

2n, s + 1.96s/
√

2n ).

16. Suppose that you have a random sample x1, x2, . . . , xn from a Ga(α, λ) distribution.

(i) Determine the asymptotic posterior distribution for θ = (α, λ)T . Hint: you

should define the maximum likelihood estimates α̂ and λ̂ in terms of the equa-

tions they must satisfy, with these involving the sample mean x̄ , the geometric

mean x̄g and the digamma function ψ(x) = Γ′(x)/Γ(x).

(ii) Suppose a sample of size n = 100 gives sample mean x̄ = 3.0 and geometric

mean x̄g = 2.5 leading to maximum likelihood estimates α̂ = 2.8983 and

λ̂ = 0.9661. Determine the asymptotic posterior distribution for θ. Also

calculate the asymptotic posterior correlation between α and λ. Hint: you will

need to use the R functions digamma for ψ(·) and trigamma for ψ′(·).

17. In a calibration experiment, the times between successive emissions from a radioac-

tive source were measured using two techniques: one (X) is very accurate and the

other (Y ) less precise. Suppose that the observed times (x1, y1), (x2, y2), . . . , (xn, yn)

are a (bivariate) random sample from a distribution in which X ∼ Exp(λ) and

Y |X = x ∼ N(x, σ2). Determine the posterior distribution for (λ, σ)T when the

sample size is large.

18. Consider the Metropolis–Hastings scheme described in Example 4.5 which simulates

realisations from the standard normal distribution.

(i) Investigate the relationship between the acceptance rate of the proposals (acc)

and the lag 1 autocorrelation (r1) of the output as the size of the innovation a

takes values 1, 2, . . . , 8.
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(ii) How accurate are your acceptance rates (for each a)? Hint: consider the

Bernoulli observations which describe whether a proposal is accepted at each

iteration. This model scenario was considered in one of your MAS2903 exer-

cises. Use the asymptotic distribution of the true acceptance probability based

on these underlying Bernoulli observations.

(iii) For each value of a, obtain a sample of 1000 realisations which are almost

uncorrelated (with |r1| < 0.02) and assess whether each sample is plausibly

from the standard normal distribution using a Q–Q plot.

19. Suppose the posterior distribution is a standard normal distribution, with density

φ(·). Construct a Metropolis–Hastings algorithm which samples this posterior dis-

tribution by using a normal random walk proposal with standard deviation k .

20. Suppose the posterior distribution is θ|x ∼ Ga(G,H) distribution, with G and H

known. Suppose you want to construct a Metropolis–Hastings algorithm which

samples this posterior distribution by using a (skewed) Exp(a/θ) proposal distribu-

tion, where a > 0, i.e an exponential distribution with its parameter λ = a/θ.

(i) Determine the mean of the proposal distribution.

(ii) What good feature does this proposal distribution have?

(iii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

21. Suppose the posterior distribution is θ|x ∼ Inv-Chi(G,H) distribution, with G and

H known. Suppose you want to construct a Metropolis–Hastings algorithm which

samples this posterior distribution by using a (skewed) log normal LN(log θ, a2)

proposal distribution, where a > 0.

(i) Determine the mean of the proposal distribution.

(ii) What good feature does this proposal distribution have?

(iii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

22. Rework Qn ?? for the case where interest is about β = log θ: suppose the posterior

distribution is θ|x ∼ Inv-Chi(G,H) distribution, with G and H known.

(i) Use equation (2.1) to determine the posterior density of β = log θ.

Suppose you want to construct a Metropolis–Hastings algorithm which samples the

posterior distribution for β by using a normal random walk with variance a2.

(ii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

(iii) Show that the acceptance probabilities in these two Metropolis–Hastings al-

gorithms are the same, that is α(θ, θ∗) = α(β, β∗), where β = log θ and

β∗ = log θ∗.
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23. The Weibull distribution is commonly used to model lifetime data. Suppose we

have a random sample x1, x2, . . . , xn from a Weibull Wei(β, λ) distribution, with

parameters β > 0 and λ > 0. Suppose that the prior distribution has β ∼ Ga(a, b)

and λ ∼ Ga(c, d), independently, for known values a, b, c and d .

(i) Determine the posterior density for (β, λ)T up to a multiplicative constant.

(ii) Determine the posterior conditional densities for β|λ and λ|β.

(iii) Write down the steps in a Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution. Your algorithm should have separate

steps for each parameter and use normal random walks with variances Σβ and

Σλ respectively.

24. The von Mises distribution is commonly used to model circular data, that is, data on

the circle such as wind directions. Suppose we have a random sample x1, x2, . . . , xn
from a von Mises vM(µ, λ) distribution with mean direction µ ∈ (0, 2π) and con-

centration parameter λ > 0. Suppose that the prior distribution has µ ∼ U(0, 2π)

and λ ∼ Ga(g, h), independently, for known values of g and h.

(i) Determine the posterior density for (µ, λ)T up to a multiplicative constant.

(ii) Determine the posterior densities for µ|λ and λ|µ.

(iii) Write down the steps in Metropolis-Hastings algorithm to simulate realisations

from the posterior distribution. Your algorithm should have separate steps

for each parameter and use normal random walks with variances Σµ and Σλ

respectively.

(iv) Using the trigonometric identities cos(A−B) = cosA cosB + sinA sinB and

A cos x+B sin x = C cos(x−D) where C =
√
A2 + B2 and D = arctan(B/A),

show that the update for µ can be achieved using a (more efficient) Gibbs step.

25. A drug company wants to assess the level of side effects from a new drug. A

random sample of n people are given the drug and note is taken on the dose level

(X) and whether they suffer side effects (Y = 1 if yes and Y = 0 if no). It is

decided that the relationship between dose level and side effects can be described

using a linear probit regression model in which

P r(Y = 1|X = x) = Φ(β + θx),

where Φ(·) is the standard normal distribution function. Suppose that the prior

distribution has β ∼ N(a, 1/b2) and θ ∼ N(c, 1/d2), independently for known

values of a, b, c and d .

(i) Using the data (y1, x1), . . . , (yn, xn), determine the likelihood function f (y |β, θ)

and hence the posterior density for (β, θ)T up to a multiplicative constant.

(ii) Determine the posterior densities for β|θ and θ|β.

(iii) Write down the steps in Metropolis-Hastings algorithm to simulate realisations

from the posterior distribution. Your algorithm should have separate steps

for each parameter and use normal random walks with variances Σβ and Σθ

respectively.



Group project

1. Suppose you have a random sample of size n = 10 from an N(µ, 1) distribution with

mean x̄ and your prior distribution for µ is the mixture distribution

µ ∼ 0.2N(3.3, 0.372) + 0.8N(1.1, 0.472).

(a) Determine the posterior distribution for µ when x̄ = 2.0, 2.3, 2.4, 2.5, 2.8. Calculate

(to three decimal places) the mean, standard deviation and P r(µ > 2.5|x) for the

prior distribution and these posterior distributions. (Hint: Refer to question 11 in the

’Group Exercises’)

15 marks

(b) Plot the prior density and these posterior densities on the same graph.

4 marks

(c) Describe the effect of observing these sample means on the posterior distribution by

comparing their shape, mean, standard deviation and P r(µ > 2.5|x) with that of the

prior distribution.

6 marks

(d) Plot the posterior weight p∗1 for sample means in the range x̄ ∈ (0, 30) and comment

on how p∗1 depends on the sample mean x̄ . By studying the underlying mathematics,

explain the feature you see algebraically.

14 marks

2. A hepatologist is interested in the levels of the liver enzyme ornithine carbonyltrans-

ferase in patients suffering from acute viral hepatitis. She collects measurements from a

random sample of patients and the logarithm of their enzyme measurements are given in

the following table. They are also available in the R datafile hepatitis in the nclbayes

package.

2.64 2.51 2.20 2.53 2.02 2.47 2.75 2.77 2.91 2.45

2.25 1.96 2.22 2.23 1.98 2.70 2.61 2.76 2.03 2.38

2.62 2.28 2.47 3.04 1.91 2.71 2.89 2.70 2.29 2.50

Assume that the enzyme measurement varies according to a N(µ, 1/τ) distribution. An

expert says her (prior) beliefs about µ and τ can be summarised as(
µ

τ

)
∼ NGa(2.6, 1, 5, 0.4).
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(a) Use a normal probability (q–q) plot to confirm the suitability of the normal distribu-

tion as a model for the variation in enzyme measurements. The relevant R commands

are qqnorm and qqline.

4 marks

(b) Calculate her prior mean and standard deviation for µ, τ and σ = 1/
√
τ .

6 marks

(c) Determine the (joint) posterior distribution for (µ, τ)T after combining the hepatolo-

gist’s prior beliefs with the data. Calculate the posterior mean and standard deviation

of µ, τ and σ.

8 marks

(d) Plot the (marginal) prior and posterior densities for µ on the same graph. Construct

similar plots for τ and σ. Also produce contour plots of the (joint) prior and posterior

densities for (µ, τ)T on the same graph.

8 marks

(e) Plot 80%, 90% and 95% prior and posterior confidence regions for (µ, τ)T on the

same graph.

2 marks

(f) Use these plots and your calculations to comment on the main changes in the hepa-

tologist’s beliefs about µ, τ and σ after incorporating the data. Include a comment on

the prior-to-posterior change in the dependence structure (contour shape) of (µ, τ)

and on their confidence regions for (µ, τ).

5 marks

(g) The hepatologist is particularly interested in whether the population mean level µ is

larger than 2.7. Determine the prior and posterior probabilities for µ > 2.7. Have

the data been informative?

2 marks

The hepatologist starts to think about the enzyme levels in the next sample of m patients.

(h)∗ Determine the predictive distribution for Ȳ , the mean of this future sample.

2 marks

(i)∗ Plot the predictive density of Ȳ for the case m = 20, and determine the 95% pre-

diction interval for Ȳ .

2 marks

(j)∗ Verify that the predictive distribution for V =
∑m

i=1(Yi− Ȳ )2/m, the variance of this

future sample, has a scaled F -distribution, that is, V |x ∼ aFν1,ν2
for some choice

of a, ν1 and ν2. Hints:

1. Recall from MAS2901 that in normal random samples (m − 1)S2
u/σ

2 ∼ χ2
m−1.

The equivalent statement in our Bayesian setting is mV τ |τ ∼ χ2
m−1.

2. χ2
ν ≡ Ga(ν/2, 1/2) and Ga(a, b)/c ≡ Ga(a, bc).
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3. If Y ∼ aFν1,ν2
then it has density

f (y) =
1

B(ν1/2, ν2/2)

(
ν1

ν2a

)ν1/2

y ν1/2−1

(
1 +

ν1y

ν2a

)−(ν1+ν2)/2

, y > 0.

9 marks

(k)∗ For the case m = 20, determine the 95% equi-tailed prediction interval for V and

hence a 95% confidence interval for S =
√
V , the standard deviation of this future

sample.

3 marks

∗ These questions are quite difficult and are to test good first class students — no help

will be given with them.

Presentation

Your report should be clearly written but need not be typed. It should be written as

separate answers to each part question, contain the details of any calculations such as

those in Qn 2(b) but not any of the R commands used to generate numerical or graphical

output. Marks will be given for appropriate titling, labelling and annotation of plots.

10 marks
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The R package nclbayes

The nclbayes package is available on all university PC clusters which run R. Please do

not install it in your university account.

You can install the package on your own PC by typing (within Rstudio or R)

install.packages(”nclbayes”,repos=”http://R-Forge.R-project.org”)

Note that you only need to install the package once on your own PC – not every time

you want to use it.

Distributions

• Inverse Chi distribution [Inv-Chi(a,b)]

density, distribution function, quantile function and random numbers:

dinvchi, pinvchi, qinvchi, rinvchi

• Generalised t distribution [ta(b, c)]

density, distribution function, quantile function and random numbers:

dgt, pgt, qgt, rgt

• Normal-Gamma distribution [NGa(b, c, g, h)]

density, random numbers, confidence regions and elicitation of parameter values:

dnormgamma, rnormgamma, NGacontour, elicitNGa

• Normal-InvChi distribution

density and random numbers: dnorminvchi, rnorminvchi

• Bivariate Normal distribution [N2(µ,Σ)]

density: dbvnorm

• Bivariate t distribution [ta(b, c)]

density: dbvt
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Highest density intervals (HDIs)

• Beta distribution [Beta(a,b)]: hdiBeta

• Gamma distribution [Ga(a,b)]: hdiGamma

• Inv-Chi distribution [Inv-Chi(a,b)]: hdiInvchi

MCMC algorithms

• gibbsNormal: Gibbs sampler for a normal random sample with semi-conjugate prior

• gibbsNormal2: Gibbs sampler for a normal random sample with conjugate prior

• gibbsReffects: Gibbs sampler for a one-way normal random effects model with

semi-conjugate prior

• metropolis: Metropolis algorithm for simulating from a standard normal distribu-

tion

• mwgGamma: Metropolis within Gibbs algorithm for a gamma random sample

• mhReffects: Metropolis–Hastings algorithm for a one-way normal random effects

model using normal and log normal random walk proposals

Other functions

• mcmcAnalysis: summarises and plots MCMC output from the above algorithms

• mcmcProcess: chops off burnin and then thins MCMC output

• mcmcCi: calculates equi-tailed confidence intervals from MCMC output

Demos

• review: code used in Chapter 1

• cavendish: analyses Cavendish’s data on the earth’s density

• gibbs: code to demonstrate the Gibbs sampler

• mh: code to demonstrate the Metropolis-Hastings algorithm

• sundries: code used in the notes but not in any other demo

As an example, you can run the demo cavendish using demo(cavendish) and view the

commands in this demo using demoCommands(cavendish).


