
Group exercises

1. Suppose you have a random sample x1, x2, . . . , xn. In the following models, derive

the posterior density and name the posterior distribution (and its parameters).

(i) f (x |θ) = θx−1(1− θ), x = 1, 2, . . . with a Beta(3, 2) prior distribution for θ.

(ii) f (x |θ) = e−θθx

x !
, x = 0, 1, . . . with a Exp(2) prior distribution for θ.

(iii) f (x |θ) =

(
4

x

)
θx(1 − θ)4−x , x = 0, 1, 2, 3, 4 with a U(0, 1) prior distribution

for θ.

2. Suppose that a random sample x1, x2, . . . , x10 is obtained from a uniform U(0, θ)

distribution. Derive the posterior density for θ assuming a gamma Ga(20, 1) prior

distribution θ. Hint: this distribution will depend on the maximum observed x-value

xmax.

3. Suppose that a random sample x1, x2, . . . , xn is obtained from a truncated unit

exponential distribution, with density

f (x |θ) =

{
eθ−x , x > θ

0, otherwise,

where θ ∈ R. Derive the posterior density for θ assuming a normal N(b, 1/d) prior

distribution. Hint: this distribution will depend on the minimum observed x-value

xmin.

4. The dimensions of a component from a long production run vary according to

a N(µ, 1) distribution, and the mean dimension µ varies from production run to

production run according to a N(10, 1/4) distribution. From one production run 12

components are drawn at random and their average dimension is found to be 10 1
3

.

On this information what is the probability that the mean component dimension is

at least 10?

5. A trucking company owns a large fleet of well-maintained trucks. Suppose that

breakdowns occur at random times. The owner of the company is interested in

learning about the daily rate θ at which breakdowns occur. It is known that the

number of breakdowns X on a typical day has a Poisson distribution with mean θ.

The owner has some knowledge about the rate parameter θ based on the observed

number of breakdowns in previous years and expresses these prior beliefs using a
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Ga(4, 2) distribution. The daily number of truck breakdowns are obtained on five

consecutive days as 3, 2, 3, 1, and 2. Assuming these data are a random sample,

determine the posterior distribution of θ.

6. Suppose that the time in minutes required to serve a customer at a certain facility

has an exponential distribution for which the parameter θ is unknown, and that

the prior distribution of θ is a gamma distribution with mean 0.2 and standard

deviation 1. If the average time required to serve a random sample of 20 customers

is observed to be 3.8 minutes, determine the posterior distribution of θ.

7. The following data is the time intervals (in minutes) between eruptions of the “Old

Faithful” geyser. Note that the average time between eruptions is 67.38 minutes,

that is, 1.123 hours. If the eruptions occur randomly in time according to a Poisson

process with a rate of θ eruptions per hour then the times between eruptions will

form a random sample from an exponential distribution with rate θ. Making this

assumption, establish a prior distribution for θ with E(θ) = 1 and V ar(θ) = 1.

Determine the posterior distribution for θ. Comment on your analysis.

70 64 72 76 80 48 88 53 71 56 69 72 76 54 76

65 54 86 40 87 49 76 51 77 49 71 78 80 51 82

49 80 43 83 49 75 47 78 71 69 63 64 82 68 71

71 63 79 66 75 56 83 67 65 77 72 79 73 53 69

53 78 55 67 68 73 53 70 69 66 79 48 90 49 78

52 79 49 75 75 50 87 40 76 57 71 70 69 72 51

84 43 73 73 70 84 71 79 58 73

8. The negative binomial distribution is used to model scenarios in which we observe

the number of independent (success-fail) trials needed before we see a successful

trial; the trials must have the same success probability. Suppose x1, x2, . . . , xn are

a random sample from a negative binomial NegBin(k, θ) distribution, where k is

known.

(i) Verify that the congugate prior distribution is a Beta distribution.

(ii) Determine the choice of parameters g and h for the Beta(g, h) distribution

that give it maximal variance.

Hint: reparameterise the distribution in terms of its mean m = g/(g + h) and

s = g + h; determine the choice of m and s that maximises the variance of

the distribution, and hence the choice of g and h.

Determine the posterior distribution for θ assuming

(iii) vague prior knowledge;

(iv) a very large sample.

9. The Rayleigh distribution is often used to measure variability in magnetic resonance

imaging (MRI). Suppose x1, x2, . . . , xn are a random sample from a Rayleigh R(θ)

distribution. Determine the posterior distribution for θ assuming

(i) vague prior knowledge;
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(ii) a very large sample.

10. The Pareto distribution is often used to model data in many areas, ranging from the

wealth of individuals to the sizes of meteorites. Suppose x1, x2, . . . , xn are a random

sample from a Pareto Pa(1, θ) distribution. Determine the posterior distribution

for θ assuming

(i) vague prior knowledge;

(ii) a very large sample.

11. Suppose that a random sample of size n = 10 from an N(µ, 1) distribution has

mean x̄ = 2.5. The prior distribution for µ is the mixture distribution

µ ∼ 0.2N(3.3, 0.372) + 0.8N(1.1, 0.472).

(i) Determine the posterior distribution for µ. Note that, for this model

fi(x) =
πi(µ) f (x |µ)

πi(µ|x)
∝
√
di√
Di

exp

{
1

2

[
DiB

2
i − dib2

i

]}
,

where the constant of proportionality doesn’t depend on component prior i .

In order to get accurate values for the posterior weights, you should calculate

posterior component means and standard deviations to at least 4 dp.

(ii) Calculate the prior and posterior mean and standard deviation.

(iii) Plot the prior and posterior densities for µ.

(iv) Calculate the prior and posterior probability that µ exceeds 2.5. Comment on

the effect of incorporating the data.

12. Consider the exponential model and gamma mixture prior distribution described

in Example 1.13. Define your own R functions to calculate the first component

weight (p∗1) and the posterior mean and standard deviation as functions of the

sample mean x̄ . Investigate the behaviour of these functions and give an intuitive

explanation of their general properties.

13. Suppose that you have a random sample x1, x2, . . . , xn from an N(µ, σ2) distribution

and take a NGa(b, c, g, h) prior distribution for (µ, τ)T , where τ = 1/σ2. Verify

that the posterior mean for µ is greater than the prior mean if and only if the sample

mean is greater than the prior mean.

14. Suppose that you have a random sample from an N(µ, 1/τ) distribution and believe

that the conjugate NGa(b, c, g, h) prior distribution is appropriate for (µ, τ)T . Let

tν,α and χ2
ν,α denote the upper α-points of the tν and χ2

ν distributions respectively.

Determine

(i) the equi-tailed 95% Posterior confidence interval for µ;

(ii) the equi-tailed 95% Posterior confidence interval for τ (hint: if W ∼ Ga(a, b)

then 2bW ∼ χ2
2a);

(iii) a 95% Posterior confidence interval for σ = 1/
√
τ ;
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(iv) the 95% Posterior HDI for µ.

(v) Why is it not straightforward to determine the 95% HDI for τ? Determine

the 95% HDI for τ when the size of the random sample is large.

Compare your answers with the equivalent 95% frequentist confidence intervals:

µ: (x̄ − tn−1,0.025su/
√
n, x̄ + tn−1,0.025su/

√
n )

τ : (χ2
n−1,0.975/{(n − 1)s2

u}, χ2
n−1,0.025/{(n − 1)s2

u})
σ:
(√
{(n − 1)s2

u}/χ2
n−1,0.025,

√
{(n − 1)s2

u}/χ2
n−1,0.975

)
.

15. Suppose that you have a random sample x1, x2, . . . , xn from an N(µ, 1/τ) distri-

bution and the sample size n is sufficiently large that the posterior distribution for

(µ, τ)T is close to its asymptotic form. Determine

(i) the 95% HDI for µ;

(ii) the 95% HDI for τ ;

(iii) the 95% HDI for σ = 1/
√
τ .

Compare your answers with the equivalent 95% frequentist confidence intervals:

µ: (x̄ − 1.96s/
√
n, x̄ + 1.96s/

√
n )

τ : (1/s2 − 1.96
√

2/(
√
ns2), 1/s2 + 1.96

√
2/(
√
ns2)

σ: (s − 1.96s/
√

2n, s + 1.96s/
√

2n ).

16. Suppose that you have a random sample x1, x2, . . . , xn from a Ga(α, λ) distribution.

(i) Determine the asymptotic posterior distribution for θ = (α, λ)T . Hint: you

should define the maximum likelihood estimates α̂ and λ̂ in terms of the equa-

tions they must satisfy, with these involving the sample mean x̄ , the geometric

mean x̄g and the digamma function ψ(x) = Γ′(x)/Γ(x).

(ii) Suppose a sample of size n = 100 gives sample mean x̄ = 3.0 and geometric

mean x̄g = 2.5 leading to maximum likelihood estimates α̂ = 2.8983 and

λ̂ = 0.9661. Determine the asymptotic posterior distribution for θ. Also

calculate the asymptotic posterior correlation between α and λ. Hint: you will

need to use the R functions digamma for ψ(·) and trigamma for ψ′(·).

17. In a calibration experiment, the times between successive emissions from a radioac-

tive source were measured using two techniques: one (X) is very accurate and the

other (Y ) less precise. Suppose that the observed times (x1, y1), (x2, y2), . . . , (xn, yn)

are a (bivariate) random sample from a distribution in which X ∼ Exp(λ) and

Y |X = x ∼ N(x, σ2). Determine the posterior distribution for (λ, σ)T when the

sample size is large.

18. Consider the Metropolis–Hastings scheme described in Example 4.5 which simulates

realisations from the standard normal distribution.

(i) Investigate the relationship between the acceptance rate of the proposals (acc)

and the lag 1 autocorrelation (r1) of the output as the size of the innovation a

takes values 1, 2, . . . , 8.
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(ii) How accurate are your acceptance rates (for each a)? Hint: consider the

Bernoulli observations which describe whether a proposal is accepted at each

iteration. This model scenario was considered in one of your MAS2903 exer-

cises. Use the asymptotic distribution of the true acceptance probability based

on these underlying Bernoulli observations.

(iii) For each value of a, obtain a sample of 1000 realisations which are almost

uncorrelated (with |r1| < 0.02) and assess whether each sample is plausibly

from the standard normal distribution using a Q–Q plot.

19. Suppose the posterior distribution is a standard normal distribution, with density

φ(·). Construct a Metropolis–Hastings algorithm which samples this posterior dis-

tribution by using a normal random walk proposal with standard deviation k .

20. Suppose the posterior distribution is θ|x ∼ Ga(G,H) distribution, with G and H

known. Suppose you want to construct a Metropolis–Hastings algorithm which

samples this posterior distribution by using a (skewed) Exp(a/θ) proposal distribu-

tion, where a > 0, i.e an exponential distribution with its parameter λ = a/θ.

(i) Determine the mean of the proposal distribution.

(ii) What good feature does this proposal distribution have?

(iii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

21. Suppose the posterior distribution is θ|x ∼ Inv-Chi(G,H) distribution, with G and

H known. Suppose you want to construct a Metropolis–Hastings algorithm which

samples this posterior distribution by using a (skewed) log normal LN(log θ, a2)

proposal distribution, where a > 0.

(i) Determine the mean of the proposal distribution.

(ii) What good feature does this proposal distribution have?

(iii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

22. Rework Qn 21 for the case where interest is about β = log θ: suppose the posterior

distribution is θ|x ∼ Inv-Chi(G,H) distribution, with G and H known.

(i) Use equation (2.1) to determine the posterior density of β = log θ.

Suppose you want to construct a Metropolis–Hastings algorithm which samples the

posterior distribution for β by using a normal random walk with variance a2.

(ii) Write down the steps in this Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution.

(iii) Show that the acceptance probabilities in these two Metropolis–Hastings al-

gorithms are the same, that is α(θ, θ∗) = α(β, β∗), where β = log θ and

β∗ = log θ∗.



108

23. The Weibull distribution is commonly used to model lifetime data. Suppose we

have a random sample x1, x2, . . . , xn from a Weibull Wei(β, λ) distribution, with

parameters β > 0 and λ > 0. Suppose that the prior distribution has β ∼ Ga(a, b)

and λ ∼ Ga(c, d), independently, for known values a, b, c and d .

(i) Determine the posterior density for (β, λ)T up to a multiplicative constant.

(ii) Determine the posterior conditional densities for β|λ and λ|β.

(iii) Write down the steps in a Metropolis–Hastings algorithm to simulate reali-

sations from the posterior distribution. Your algorithm should have separate

steps for each parameter and use normal random walks with variances Σβ and

Σλ respectively.

24. The von Mises distribution is commonly used to model circular data, that is, data on

the circle such as wind directions. Suppose we have a random sample x1, x2, . . . , xn
from a von Mises vM(µ, λ) distribution with mean direction µ ∈ (0, 2π) and con-

centration parameter λ > 0. Suppose that the prior distribution has µ ∼ U(0, 2π)

and λ ∼ Ga(g, h), independently, for known values of g and h.

(i) Determine the posterior density for (µ, λ)T up to a multiplicative constant.

(ii) Determine the posterior densities for µ|λ and λ|µ.

(iii) Write down the steps in Metropolis-Hastings algorithm to simulate realisations

from the posterior distribution. Your algorithm should have separate steps

for each parameter and use normal random walks with variances Σµ and Σλ

respectively.

(iv) Using the trigonometric identities cos(A−B) = cosA cosB + sinA sinB and

A cos x+B sin x = C cos(x−D) where C =
√
A2 + B2 and D = arctan(B/A),

show that the update for µ can be achieved using a (more efficient) Gibbs step.

25. A drug company wants to assess the level of side effects from a new drug. A

random sample of n people are given the drug and note is taken on the dose level

(X) and whether they suffer side effects (Y = 1 if yes and Y = 0 if no). It is

decided that the relationship between dose level and side effects can be described

using a linear probit regression model in which

P r(Y = 1|X = x) = Φ(β + θx),

where Φ(·) is the standard normal distribution function. Suppose that the prior

distribution has β ∼ N(a, 1/b2) and θ ∼ N(c, 1/d2), independently for known

values of a, b, c and d .

(i) Using the data (y1, x1), . . . , (yn, xn), determine the likelihood function f (y |β, θ)

and hence the posterior density for (β, θ)T up to a multiplicative constant.

(ii) Determine the posterior densities for β|θ and θ|β.

(iii) Write down the steps in Metropolis-Hastings algorithm to simulate realisations

from the posterior distribution. Your algorithm should have separate steps

for each parameter and use normal random walks with variances Σβ and Σθ

respectively.



Group project

1. Suppose you have a random sample of size n = 10 from an N(µ, 1) distribution with

mean x̄ and your prior distribution for µ is the mixture distribution

µ ∼ 0.2N(3.3, 0.372) + 0.8N(1.1, 0.472).

(a) Determine the posterior distribution for µ when x̄ = 2.0, 2.3, 2.4, 2.5, 2.8. Calculate

(to three decimal places) the mean, standard deviation and P r(µ > 2.5|x) for the

prior distribution and these posterior distributions. (Hint: Refer to question 11 in the

’Group Exercises’)

15 marks

(b) Plot the prior density and these posterior densities on the same graph.

4 marks

(c) Describe the effect of observing these sample means on the posterior distribution by

comparing their shape, mean, standard deviation and P r(µ > 2.5|x) with that of the

prior distribution.

6 marks

(d) Plot the posterior weight p∗1 for sample means in the range x̄ ∈ (0, 30) and comment

on how p∗1 depends on the sample mean x̄ . By studying the underlying mathematics,

explain the feature you see algebraically.

14 marks

2. A hepatologist is interested in the levels of the liver enzyme ornithine carbonyltrans-

ferase in patients suffering from acute viral hepatitis. She collects measurements from a

random sample of patients and the logarithm of their enzyme measurements are given in

the following table. They are also available in the R datafile hepatitis in the nclbayes

package.

2.64 2.51 2.20 2.53 2.02 2.47 2.75 2.77 2.91 2.45

2.25 1.96 2.22 2.23 1.98 2.70 2.61 2.76 2.03 2.38

2.62 2.28 2.47 3.04 1.91 2.71 2.89 2.70 2.29 2.50

Assume that the enzyme measurement varies according to a N(µ, 1/τ) distribution. An

expert says her (prior) beliefs about µ and τ can be summarised as(
µ

τ

)
∼ NGa(2.6, 1, 5, 0.4).
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(a) Use a normal probability (q–q) plot to confirm the suitability of the normal distribu-

tion as a model for the variation in enzyme measurements. The relevant R commands

are qqnorm and qqline.

4 marks

(b) Calculate her prior mean and standard deviation for µ, τ and σ = 1/
√
τ .

6 marks

(c) Determine the (joint) posterior distribution for (µ, τ)T after combining the hepatolo-

gist’s prior beliefs with the data. Calculate the posterior mean and standard deviation

of µ, τ and σ.

8 marks

(d) Plot the (marginal) prior and posterior densities for µ on the same graph. Construct

similar plots for τ and σ. Also produce contour plots of the (joint) prior and posterior

densities for (µ, τ)T on the same graph.

8 marks

(e) Plot 80%, 90% and 95% prior and posterior confidence regions for (µ, τ)T on the

same graph.

2 marks

(f) Use these plots and your calculations to comment on the main changes in the hepa-

tologist’s beliefs about µ, τ and σ after incorporating the data. Include a comment on

the prior-to-posterior change in the dependence structure (contour shape) of (µ, τ)

and on their confidence regions for (µ, τ).

5 marks

(g) The hepatologist is particularly interested in whether the population mean level µ is

larger than 2.7. Determine the prior and posterior probabilities for µ > 2.7. Have

the data been informative?

2 marks

The hepatologist starts to think about the enzyme levels in the next sample of m patients.

(h)∗ Determine the predictive distribution for Ȳ , the mean of this future sample.

2 marks

(i)∗ Plot the predictive density of Ȳ for the case m = 20, and determine the 95% pre-

diction interval for Ȳ .

2 marks

(j)∗ Verify that the predictive distribution for V =
∑m

i=1(Yi− Ȳ )2/m, the variance of this

future sample, has a scaled F -distribution, that is, V |x ∼ aFν1,ν2
for some choice

of a, ν1 and ν2. Hints:

1. Recall from MAS2901 that in normal random samples (m − 1)S2
u/σ

2 ∼ χ2
m−1.

The equivalent statement in our Bayesian setting is mV τ |τ ∼ χ2
m−1.

2. χ2
ν ≡ Ga(ν/2, 1/2) and Ga(a, b)/c ≡ Ga(a, bc).
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3. If Y ∼ aFν1,ν2
then it has density

f (y) =
1

B(ν1/2, ν2/2)

(
ν1

ν2a

)ν1/2

y ν1/2−1

(
1 +

ν1y

ν2a

)−(ν1+ν2)/2

, y > 0.

9 marks

(k)∗ For the case m = 20, determine the 95% equi-tailed prediction interval for V and

hence a 95% confidence interval for S =
√
V , the standard deviation of this future

sample.

3 marks

∗ These questions are quite difficult and are to test good first class students — no help

will be given with them.

Presentation

Your report should be clearly written but need not be typed. It should be written as

separate answers to each part question, contain the details of any calculations such as

those in Qn 2(b) but not any of the R commands used to generate numerical or graphical

output. Marks will be given for appropriate titling, labelling and annotation of plots.

10 marks


