
Chapter 3

General results for multi-parameter
problems

In this chapter we will study some general results for multi-parameter problems.

3.1 Different levels of prior knowledge

We have substantial prior information for θ when the prior distribution dominates the

posterior distribution, that is π(θ|x) ∼ π(θ).

When prior information about θ is limited, this is usually represented through the use

of a conjugate prior distribution, with vague prior knowledge represented by making the

conjugate distribution as diffuse as possible.

If we represent prior ignorance for a single parameter θ by using uniform or improper

priors then we have seen (MAS2903, section 3.4) that, in general, the prior for g(θ) is

not constant and so we are not ignorant about g(θ). The same problem occurs when we

have more than one parameter.

Suppose we represent prior ignorance about θ = (θ1, θ2, . . . , θp)T using π(θ) = constant.

Let φi = gi(θ), i = 1, . . . , p and φ = (φ1, . . . , φp)T be a 1–1 transformation. Then, in

general, the prior density for φ is not constant and this suggests that we are not ignorant

about φ. However, if we are ignorant about θ then we must also be ignorant about g(θ).

This contradiction makes it impossible to use this representation of prior ignorance.
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Example 3.1

Suppose 0 < θ1 < 1 and 0 < θ2 < 1. If we are ignorant about θ = (θ1, θ2)T then show

that θ1θ2 does not have a constant prior density.

Solution
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Example 3.2

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ unknown).

Determine the Jeffreys prior for this model.

Hint: We have already seen that the likelihood function can be written as

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
where

s2 =
1

n

n∑
i=1

(xi − x̄)2.

Solution
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3.2 Asymptotic posterior distribution

Suppose we have a statistical model for data with likelihood function f (x |θ), where

x = (x1, x2, . . . , xn)T and θ = (θ1, θ2, . . . , θp)T , together with a prior distribution with

density π(θ) for θ. Then

J(θ̂)1/2(θ − θ̂)|x D−→ Np(0, Ip) as n →∞,

where θ̂ is the likelihood mode, Ip is the p × p identity matrix and J(θ) is the observed

information matrix, with (i , j)th element

Ji j = −
∂2

∂θi∂θj
log f (x |θ),

and A1/2 denotes the square root matrix of A.

Comments

1. This asymptotic result can give us a useful approximation to the posterior distribu-

tion for θ when n is large:

θ|x ∼ Np
(
θ̂, J(θ̂)−1

)
approximately.

2. This limiting result is similar to one for the maximum likelihood estimator in Fre-

quentist Statistics:

I(θ)1/2(θ̂ − θ)
D−→ Np(0, Ip) as n →∞,

where I(θ) = EX|θ[J(θ)] is Fisher’s information matrix. Note that this statement

about the distribution of θ̂ for fixed (unknown) θ, whereas the results above is a

statement about the distribution of θ for fixed (known) θ̂.
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Example 3.3

Suppose we now have a random sample from a N(µ, 1/τ) distribution (with unknown

precision). Determine the asymptotic posterior distribution for (µ, τ).

Hint: we have already seen that the likelihood function can be written as

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
where s2 =

∑n
i=1(xi − x̄)2/n.

Solution

We have

log f (x |µ, τ) =
n

2
log τ −

n

2
log(2π)−

nτ

2

{
s2 + (x̄ − µ)2

}
=⇒

∂

∂µ
log f (x |µ, τ) = nτ(x̄ − µ)

∂

∂τ
log f (x |µ, τ) =

n

2τ
−
n

2

{
s2 + (x̄ − µ)2

}
=⇒

∂2

∂µ2
log f (x |µ, τ) = −nτ

∂2

∂µ∂τ
log f (x |µ, τ) = n(x̄ − µ)

∂2

∂τ2
log f (x |µ, τ) = −

n

2τ2
.

Now

∂

∂µ
logf (x |µ, τ) = 0 =⇒ µ̂ = x̄

∂

∂τ
logf (x |µ, τ) = 0 =⇒ τ̂ =

1

s2

Therefore

J11(µ̂, τ̂) = −
∂2

∂µ2
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

= nτ̂ =
n

s2

J12(µ̂, τ̂) = −
∂2

∂µ∂τ
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

= −n(x̄ − µ̂) = 0

J22(µ̂, τ̂) = −
∂2

∂τ2
log f (x |µ, τ)

∣∣∣∣
(µ̂,τ̂)

=
n

2τ̂2
=
ns4

2

and so

J(µ̂, τ̂) =

(
n
s2 0

0 ns4

2

)
,
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whence

J(µ̂, τ̂)−1 =

(
s2

n
0

0 2
ns4

)
.

Therefore, for large n, the (approximate) posterior distribution for (µ, τ) is(
µ

τ

)∣∣∣∣ x ∼ N2

{(
x̄
1
s2

)
,

(
s2

n
0

0 2
ns4

)}
.

Putting this another way, for large n

µ|x ∼ N(x̄ , s2/n), τ |x ∼ N{1/s2, 2/(ns4)},

independently.
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3.3 Learning objectives

By the end of this chapter, you should be able to:

• understand different levels of prior information and have an appreciation for the

difficulty of specifying ignorance priors in multi-parameter problems

• determine the asymptotic posterior distribution when the data are a large random

sample from any distribution

• explain the similarities and differences between the asymptotic posterior distribution

and the asymptotic distribution of the maximum likelihood estimator



58 CHAPTER 3. GENERAL RESULTS FOR MULTI-PARAMETER PROBLEMS


