
Chapter 2

Inference for a normal population

This chapter shows how to make inferences for the mean and variance of a normal

population using a conjugate prior distribution. First we need the multi-parameter version

of Bayes Theorem.

2.1 Bayes Theorem for many parameters

Suppose that now the probability (density) function we used to describe the data depends

on many parameters, that is, f (x |θ) where θ = (θ1, θ2, . . . , θp)T . After observing the

data, the likelihood function for θ is f (x |θ). Prior beliefs about θ are represented through

a probability (density) function π(θ). Therefore, using Bayes Theorem, the posterior

probability (density) function for θ is

π(θ|x) =
π(θ) f (x |θ)

f (x)

where

f (x) =


∫

Θ
π(θ) f (x |θ) dθ if θ is continuous,

∑
Θ π(θ) f (x |θ) if θ is discrete.

As in Chapter 1, this can be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)

i .e. posterior ∝ prior× likelihood.

Next we introduce a new distribution which will be useful later on.
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Example 2.1

If X has a generalised ta(b, c) distribution (see page 101) then show that Y = (X −
b)/
√
c ∼ ta ≡ ta(0, 1).

Recall the general result: if X is a random variable with probability density function fX(x)

and g is a bijective (1–1) function then the random variable Y = g(X) has probability

density function

fY (y) = fX
{
g−1(y)

} ∣∣∣∣ ddy g−1(y)

∣∣∣∣ . (2.1)

Solution

Here we take Y = g(X) = (X − b)/
√
c from which we obtain X = g−1(Y ) = b +

√
c Y .

Therefore using (2.1) we have

fY (y) = fX
{
g−1(y)

} ∣∣∣∣ ddy g−1(y)

∣∣∣∣
= fY

(
b +
√
c y
)
×
√
c

=
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) (1 +
y 2

a

)− a+1
2

×
√
c, y ∈ R

=
Γ
(
a+1

2

)
√
aπ Γ

(
a
2

) (1 +
y 2

a

)− a+1
2

, y ∈ R.

This is the ta density and so Y = (X − b)/
√
c ∼ ta.

Comment

Values for the density function fY (y) and the distribution function FY (y) can be obtained

by using the R functions dgt and pgt in the package nclbayes.

It is clear that ta(0, 1) ≡ ta by examining their densities. Therefore, it makes sense

to think of the ta distribution as the standard ta–distribution and make all calculations

for the generalised ta(b, c) distribution from this standard distribution. The relationship

between this standard and generalised version of the t-distribution is directly analogous

to that between the standard normal N(0, 1) distribution and its more general version:

the N(b, c) distribution. In both cases the relationship is one of location and scale:

Y ∼ N(b, c) =⇒
Y − b√
c
∼ N(0, 1)

Y ∼ ta(b, c) =⇒
Y − b√
c
∼ ta.
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2.2 Prior to posterior analysis

Suppose we have a random sample from a normal distribution in which both the mean µ

and the precision τ are unknown, that is, Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n (indepen-

dent). We shall adopt a (joint) prior distribution for µ and τ for which

µ|τ ∼ N
(
b,

1

cτ

)
and τ ∼ Ga(g, h)

for known values b, c , g and h. This distribution has density function

π(µ, τ) = π(µ|τ)π(τ)

=
(cτ

2π

)1/2

exp
{
−
cτ

2
(µ− b)2

}
×
hgτg−1e−hτ

Γ(g)
, µ ∈ R, τ > 0

∝ τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
, µ ∈ R, τ > 0. (2.2)

We will use the notation NGa(b, c, g, h) for this distribution. Thus we take the prior

distribution (
µ

τ

)
∼ NGa(b, c, g, h).

Determine the posterior distribution for

(
µ

τ

)
.

Hint:

c(µ− b)2 + n(x̄ − µ)2 = (c + n)

{
µ−

(
cb + nx̄

c + n

)}2

+
nc(x̄ − b)2

c + n
.

Solution

From (1.8), the likelihood function is

f (x |µ, τ) =
( τ

2π

)n/2

exp
[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
.

Using Bayes Theorem, the posterior density is

π(µ, τ |x) ∝ π(µ, τ) f (x |µ, τ)

and so, for µ ∈ R, τ > 0

π(µ, τ |x) ∝ τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
× τ

n
2 exp

[
−
nτ

2

{
s2 + (x̄ − µ)2

}]
∝ τg+ n

2
− 1

2 exp
{
−
τ

2

[
c(µ− b)2 + n(x̄ − µ)2 + 2h + ns2

]}
∝ τg+ n

2
− 1

2 exp

{
−
τ

2

[
(c + n)

{
µ−

(
cb + nx̄

c + n

)}2

+
nc(x̄ − b)2

c + n
+ 2h + ns2

]}
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using the hint. Let

B =
bc + nx̄

c + n
, C = c + n,

G = g +
n

2
, H = h +

cn(x̄ − b)2

2(c + n)
+
ns2

2
.

(2.3)

Then the posterior density is

π(µ, τ |x) ∝ τG−
1
2 exp

{
−
τ

2

[
C(µ− B)2 + 2H

]}
,

µ ∈ R, τ > 0

Notice that this posterior density is of the same form as the prior density (2.2). Therefore,

we can conclude that the posterior distribution is(
µ

τ

)∣∣∣∣ x ∼ NGa(B,C,G,H).

Thus, the NGa distribution is conjugate to this data model.

2.2.1 Marginal distributions

Suppose (µ, τ)T ∼ NGa(b, c, g, h). From the definition of the NGa distribution we know

that τ ∼ Ga(g, h). This also means that σ = 1/
√
τ ∼ Inv-Chi(g,h); see page 101.

The (marginal) density for µ is, for µ ∈ R

π(µ) =

∫ ∞
0

π(µ, τ) dτ

∝
∫ ∞

0

τg−
1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
dτ.

Now, as the integral of a gamma density over its entire range is one, we have∫ ∞
0

baθa−1e−bθ

Γ(a)
dθ = 1 =⇒

∫ ∞
0

θa−1e−bθ dθ =
Γ(a)

ba
.

Therefore, for µ ∈ R

π(µ) ∝
∫ ∞

0

τg+ 1
2
−1 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
dτ

∝
Γ
(
g + 1

2

)
[{c(µ− b)2 + 2h}/2}]g+ 1

2

∝ h−g−1/2

{
1 +

c(µ− b)2

2h

}−g−1/2

∝
{

1 +
c(µ− b)2

2h

}− 2g+1
2

.
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Comparing this density with that of the generalised t–distribution (on page 101) gives

µ ∼ t2g

(
b,
h

gc

)
. (2.4)

Thus, marginally, the prior distribution for µ is a t–distribution.

Similar calculations can be used to determine the (marginal) posterior distributions.

Summary of marginal distributions

The prior

(
µ

τ

)
∼ NGa(b, c, g, h) has marginal distributions

• µ ∼ t2g

(
b, h

gc

)
• τ ∼ Ga(g, h)

Also σ = 1/
√
τ ∼ Inv-Chi(g, h).

The posterior

(
µ

τ

)∣∣∣∣ x ∼ NGa(B,C,G,H) has marginal distributions

• µ|x ∼ t2G

(
B, H

GC

)
• τ |x ∼ Ga(G,H)

Also σ|x ∼ Inv-Chi(G,H).

It can be shown that the posterior mean of µ is greater than its prior mean if and only if

the sample mean (likelihood mode) is greater than its prior mean, that is,

E(µ|x) > E(µ) ⇐⇒ x̄ > b.

The relationships between the prior and posterior variance of µ and mean and variance

of τ and of σ are rather more complex.

Example 2.2

Recall Example 1.4 on the earth’s density. Previously we assumed that the measurements

followed a N(µ, 0.22) distribution, that is, the standard deviation of the measurements

was known to be 0.2 g/cm3. Now we consider the case where this standard deviation is

unknown and determine posterior distributions using the theory in section 2.2.

Before we can proceed, we must specify the parameters in the NGa(b, c, g, h) prior distri-

bution for (µ, τ). In the previous analysis, we assumed that the population measurement
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precision was τ = 1/0.22 = 25 and assumed a N(5.41, 0.42) prior distribution for the

population mean, that is, µ|τ = 25 ∼ N(5.41, 0.42).

Choice of b and c : the conditional prior distribution for µ is µ|τ ∼ N{b, 1/(cτ)} and so

matching the prior distributions for µ (when τ = 25) gives b = 5.41 and c = 0.25.

Choice of g and h: the marginal prior distribution for τ is τ ∼ Ga(g, h). Previously, we

assumed τ = 25 (with V ar(τ) = 0) and so take this value as the prior mean: E(τ) = 25.

Suppose we also decide that V ar(τ) = 250. These two requirements give g = 2.5 and

h = 0.1. Therefore, we will assume the prior distribution(
µ

τ

)
∼ NGa(5.41, 0.25, 2.5, 0.1).

We have seen that if (µ, τ)T ∼ NGa(b, c, g, h) then the marginal distribution of µ is

µ ∼ t2g

{
b, h/(gc)

}
. Therefore, with this choice of prior distribution, the marginal prior

distribution for µ is

µ ∼ t5(5.41, 0.16).

Figure 2.1 shows the close match between the new (marginal) prior distribution for µ and

that used previously.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
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Figure 2.1: Marginal prior density for µ: new version (solid) and previous version (dashed)

Determine the posterior distribution for (µ, τ)T . Also determine the marginal prior dis-

tribution for τ and for σ, and the marginal posterior distribution for each of µ, τ and σ.

Solution

We can combine the information in the NGa(5.41, 0.25, 2.5, 0.1) prior distribution

for (µ, τ)T with that in the data (n = 23, x̄ = 5.4848, s = 0.1882) using the results in
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section 2.2 to obtain a NGa(B,C,G,H) posterior distribution, where

B =
bc + nx̄

c + n
=

(5.41× 0.25) + (23× 5.4848)

23.25
= 5.4840,

C = c + n = 23.25,

G = g +
n

2
= 14,

H = h +
cn(x̄ − b)2

2(c + n)
+
ns2

2
= 0.1 +

5.75

46.5
(5.4848− 5.41)2 + 11.5× 0.18822 = 0.5080.

The marginal prior distributions for τ and σ are

τ ∼ Ga(g, h) ≡ Ga(2.5, 0.1)

σ ∼ Inv-Chi(g, h) ≡ Inv-Chi(2.5, 0.1)

Also the marginal posterior distributions for µ, τ and σ are

µ|x ∼ t2G

(
B,

H

GC

)
≡ t28(5.4840, 0.001561)

τ |x ∼ Ga(G,H) ≡ Ga(14, 0.5080)

σ|x ∼ Inv-Chi(G,H) ≡ Inv-Chi(14, 0.5080)

Plots of the (marginal) prior and posterior distributions of µ, τ and σ are given in Fig-

ure 2.2. Note that the (marginal) prior and posterior distributions for σ can be determined

from that of τ . We can also examine the joint prior and posterior distributions for (µ, τ)T

via the contour plots of their densities to see if there is any change in the dependence

structure; see Figure 2.3. This figure is produced by using the R command NGacontour

in the nclbayes package as follows:

mu=seq(4.5,6.5,len=1000)

tau=seq(0,71,len=1000)

NGacontour(mu,tau,b,c,g,h,lty=3)

NGacontour(mu,tau,B,C,G,H,add=TRUE)

in which the variables b,c,g,h,B,C,G,H have already been set to their prior/posterior

values. A careful look at the values of the contour levels plotted shows that the highest
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Figure 2.2: Prior (dashed) and posterior (solid) densities for µ, τ and σ

contour level plotted for the prior density is 0.024 and the lowest level for the posterior

density is 0.05. From this we can conclude that the posterior distribution is far more

concentrated than the prior distribution. Also the contours for the posterior distribution

are much more elliptical than those for the prior distribution. This indicates a change

in the dependence structure. However, the main changes shown by the figure are in the

mean and variability of µ and τ .

Wikipedia tells us that the actual mean density of the earth is 5.515 g/cm3. We can

determine the (posterior) probability that the mean density is within 0.1 of this value as

follows. We already know that µ|x ∼ t28(5.484, 0.001561) and so we can calculate

P r(5.415 < µ < 5.615|x) = 0.9529

using pgt(5.615,28,5.484,0.001561)-pgt(5.415,28,5.484,0.001561).

Without the data, the only basis for determining the earth’s density is via the prior

distribution. Here the prior distribution is µ ∼ t5(5.41, 0.16) and so the (prior) probability

that the mean density is within 0.1 of the (now known) true value is

P r(5.415 < µ < 5.615) = 0.1802,

calculated using pgt(5.615,5,5.41,0.16)-pgt(5.415,5,5.41,0.16).

These probability calculations demonstrate that the data have been very informative and

changed our beliefs about the earth’s density.
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Figure 2.3: Contour plot of the prior (dashed) and posterior (solid) densities for (µ, τ)T .

2.3 Confidence intervals and regions

Example 2.3

Determine the 100(1−α)% highest density interval (HDI) for the population mean µ in

terms of quantiles of the standard t-distribution.

Solution

The marginal posterior distribution is µ|x ∼ t2G

(
B, H

GC

)
. This is a symmetric

distribution and so the HDI is an equi-tailed interval. Therefore the HDI (`, u) for µ

must satisfy

P r(µ < `|x) = α/2 and P r(µ > u|x) = α/2.

Now, given the data x

µ− B√
H/(GC)

∼ t2G
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and so

P r(µ > u|x) = α/2 ⇒ P r

(
µ− B√
H/(GC)

>
u − B√
H/(GC)

∣∣∣∣∣ x
)

= α/2

⇒
u − B√
H/(GC)

= t2G;α/2

where t2G;p is the upper p point of the t2G distribution. Therefore

u = B + t2G;α/2

√
H

GC
.

Similar calculations give

` = B + t2G;1−α/2

√
H

GC
= B − t2G;α/2

√
H

GC

since the t distribution is symmetric about zero. Thus the 100(1− α)% HDI for µ is(
B − t2G;α/2

√
H

GC
, B + t2G;α/2

√
H

GC

)
.

These intervals can be calculated easily using the R function qgt in the package nclbayes.

For example, the prior and posterior 95% HDIs for µ can be calculated using

c(qgt(0.025,2*g,b,h/(g*c)),qgt(0.975,2*g,b,h/(g*c)))

c(qgt(0.025,2*G,B,H/(G*C)),qgt(0.975,2*G,B,H/(G*C)))

Determining a highest density interval (HDI) for the population precision τ or standard

deviation σ is more complicated as their posterior distributions are not symmetric. The

(marginal) posterior for τ is τ |x ∼ Ga(G,H) and the (marginal) posterior for σ is σ|x ∼
Inv-Chi(G,H). HDIs can be found by using the R functions hdiGamma and hdiInvchi

in the package nclbayes. More standard equi-tailed confidence intervals can be found

using the functions qgamma and qinvchi.

For example, the prior and posterior 95% HDIs for τ can be calculated using R com-

mands hdiGamma(0.95,g,h) and hdiGamma(0.95,G,H), and those for σ using com-

mands hdiInvchi(0.95,g,h) and hdiInvchi(0.95,G,H). The 95% equi-tailed confi-

dence intervals are calculated in a similar way to the HDIs for µ above. So for τ , the

prior and posterior intervals are calculated using

c(qgamma(0.025,g,h),qgamma(0.975,g,h))

c(qgamma(0.025,G,H),qgamma(0.975,G,H))

and those for σ using

c(qinvchi(0.025,g,h),qinvchi(0.975,g,h))

c(qinvchi(0.025,G,H),qinvchi(0.975,G,H))
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Prior Posterior

µ: (4.3818, 6.4382) (5.4031, 5.5649)

τ : (1.4812, 55.9573) (14.0193, 42.2530) ← HDI

(4.1561, 64.1625) (15.0674, 43.7625)

σ: (0.1062, 0.4246) (0.1466, 0.2505) ← HDI

(0.1248, 0.4905) (0.1512, 0.2576)

Table 2.1: Prior and posterior 95% intervals for the analysis in Example 2.2

The numerical values for the prior and posterior 95% intervals for the analysis in Exam-

ple 2.2 are given in Table 2.1. Notice that there is little difference between the posterior

HDI and equi-tailed intervals for τ and for σ, whereas the prior intervals are fairly differ-

ent. This is because the prior distributions are quite skewed but the posterior distributions

are fairly symmetric; see Figure 2.2.

In Bayesian inference it can also be useful to determine (joint) confidence regions for

several parameters, in this case, for (µ, τ)T . In general this is a difficult problem to solve

mathematically, and it is in this case.
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Example 2.4

Determine a joint confidence region for (µ, τ)T .

Solution

We know that the (joint) prior distribution for these parameters is(
µ

τ

)
∼ NGa(b, c, g, h).

Therefore an HDI–type confidence region takes the form{(
µ

τ

)
: π(µ, τ) > k

}
=

{(
µ

τ

)
: τg−

1
2 exp

{
−
τ

2

[
c(µ− b)2 + 2h

]}
> k ′

}
=

{(
µ

τ

)
:

(
g −

1

2

)
log τ −

τ

2

[
c(µ− b)2 + 2h

]
> k ′′

}
=

{(
µ

τ

)
:
τc(µ− b)2

2
+ hτ −

(
g −

1

2

)
log τ < kα

}
where kα will depend on the confidence level of the region. These regions are not difficult

to draw. The difficult part is determining the appropriate value for kα to get say a 95%

confidence region. If we could determine the distribution of

Y =
τc(µ− b)2

2
+ hτ −

(
g −

1

2

)
log τ

when (
µ

τ

)
∼ NGa(b, c, g, h)

then we could get the value for kα. Unfortunately it is quite difficult to do this mathe-

matically. However, we can use simulation methods to get a pretty accurate value for kα
(for a given confidence level).

Using an additional argument in the R function NGacontour produces plots of confidence

regions. For example
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mu=seq(3.5,7.5,len=1000)

tau=seq(0,80,len=1000)

NGacontour(mu,tau,b,c,g,h,p=c(0.95,0.9,0.8),lty=3)

NGacontour(mu,tau,B,C,G,H,p=c(0.95,0.9,0.8),add=TRUE)

produces a plot containing the 95%, 90% and 80% prior and posterior confidence regions

for (µ, τ)T for the prior and posterior distributions in Example 2.2; see Figure 2.4. The

upper plot shows contours of both prior and posterior densities. The numbers within

the plot are the contour levels. The largest prior confidence region is the 95% region.

The next largest is the 90% prior confidence region and the smallest is the 80% prior

confidence region. The same ordering holds for the posterior confidence regions. The

posterior contours are so concentrated in the middle of the plot that there is no room to

put in the contour levels. However, these can be see on the lower plot which also shows

the contours but focuses the parameter range to highlight the contours of the posterior

density. The values of the contours in this lower plot show that the posterior density is

much more peaked, that is, the posterior has a much reduced variability. The location

of the centre of the central contour for both the prior and posterior densities shows that

there has been little change in the mean/mode.

2.4 Predictive distribution

Suppose we sample another value y randomly from the population. What values is it

likely to take? This is described by its predictive distribution. We can determine this

distribution by using the definition of the predictive density

f (y |x) =

∫
f (y |µ, τ)π(µ, τ |x) dµ dτ

or by using Candidate’s formula (as this is a conjugate analysis). However, for this

model/prior, there is a more straightforward method to determine the predictive distri-

bution in this model.

As Y is a random value from the population, we have that Y |µ, τ ∼ N(µ, 1/τ). We also

know that the posterior distribution is (µ, τ)T |x ∼ NGa(B,C,G,H). Therefore, we can

write

Y = µ+ ε,

where

ε|τ ∼ N(0, 1/τ) and µ|x , τ ∼ N
(
B,

1

Cτ

)
.

Hence Y is the sum of two independent normal random quantities, and so

Y |x , τ ∼ N
(
B,

1

τ
+

1

Cτ

)
≡ N

(
B,

C + 1

Cτ

)
.
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Figure 2.4: 95%, 90% and 80% prior (dashed) and posterior (solid) confidence regions

for (µ, τ)T
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Thus, as τ |x ∼ Ga(G,H) (
Y

τ

)∣∣∣∣ x ∼ NGa(B, C

C + 1
, G,H

)
and so, using (2.4)

Y |x ∼ t2G

{
B,
H(C + 1)

GC

}
.

We can determine 100(1 − α)% predictive intervals by noting that the predictive distri-

bution is symmetric about its mean and therefore the HDI is(
B − t2G;α/2

√
H(C + 1)

GC
, B + t2G;α/2

√
H(C + 1)

GC

)
.
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These predictive intervals can be calculated easily using the R function qgt. For example,

in Example 2.2, the prior and posterior predictive HDIs for a new value Y from the

population are (4.2604, 6.5596) and (5.0855, 5.8825) respectively, calculated using

c(qgt(0.025,2*g,b,h*(c+1)/(g*c)),qgt(0.975,2*g,b,h*(c+1)/(g*c)))

c(qgt(0.025,2*G,B,H*(C+1)/(G*C)),qgt(0.975,2*G,B,H*(C+1)/(G*C)))

2.5 Summary

Suppose we have a normal random sample with Xi |µ, τ ∼ N(µ, 1/τ), i = 1, 2, . . . , n

(independent).

(i) (µ, τ)T ∼ NGa(b, c, g, h) is a conjugate prior distribution.

(ii) The posterior distribution is (µ, τ)T |x ∼ NGa(B,C,G,H) where the posterior pa-

rameters are given by (2.3).

(iii) The marginal prior distributions are µ ∼ t2g{b, h/(gc)}, τ ∼ Ga(g, h), σ = 1/
√
τ ∼

Inv-Chi(g, h).

(iv) The marginal posterior distributions are µ|x ∼ t2G{B,H/(GC)}, τ |x ∼ Ga(G,H),

σ|x ∼ Inv-Chi(G,H).

(v) Prior and posterior means and standard deviations for µ, τ and σ can be calculated

from the properties of the t, Gamma and Inv-Chi distributions.

(vi) Prior and posterior probabilities and densities for µ, τ and σ can be calculated using

the R functions pgt, dgt, pgamma, dgamma, pinvchi, dinvchi.

(vii) HDIs or equi-tailed CIs for µ, τ and σ can be calculated using qgt, hdiGamma,

hdiInvchi, qgamma, qinvchi.

(viii) Contour plots of the prior and posterior densities for (µ, τ)T can be plotted using

the NGacontour function.

(ix) Prior and posterior confidence regions for (µ, τ)T can be plotted using the NGacontour

function.

(x) The predictive distribution for a new observation Y from the population is Y |x ∼
t2G{B,H(C + 1)/(GC)} and its HDI can be calculated using the qgt function.



2.6. WHY DO WE HAVE SO MANY DIFFERENT DISTRIBUTIONS? 47

2.6 Why do we have so many different distributions?

So far we have used many distributions, some you will have met before and some will be

new. After a while the variety and sheer number of different distributions can become

overwhelming. Why do we need so many distributions and why do we name so many of

them?

Statistics studies the random variation in experiments, samples and processes. The variety

of applications leads to their randomness being described by many different distributions.

In many applications, bespoke distributions will need to be formulated. However, some

distributions come up time and time again for modelling random variation in data and

for describing prior beliefs. It is helpful for us to be able to refer to these distributions –

and so we give each one a name – and also to be able to quote known results for these

distributions such as their mean and variance. In this chapter you have been introduced

to a generalisation of the t-distribution and the inverse chi distribution, and we have been

able to use results for their mean and variance to study prior and posterior distributions

and have been able to plot these distributions using functions in the R package.

You will meet several other new distributions in the remainder of the module. You won’t

be surprised to hear that it is useful to have a working knowledge of each of these

distributions but perhaps not vital to remember all their properties listed in these notes.

To help in this regard, the exam paper will contain a list of all the distributions used in

the exam, together with their density (or probability function) and any useful results such

as their mean and variance (as needed for the exam); see the specimen exam paper at

the back of this booklet.
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2.7 Learning objectives

By the end of this chapter, you should be able to:

• determine the posterior distribution for (µ, τ)T

• determine and use the univariate prior and posterior distributions

• determine confidence intervals, HDIs and confidence regions

• determine the predictive distribution of another value from the population, and its

predictive interval

• determine the predictive distribution of the mean of another random sample from

the population

both in general and for a particular prior and data set. Also you should be able to:

• appreciate the benefit of naming distributions and for having lists of properties for

these distributions


