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There are TWO questions in Section A and TWO questions in Section B.
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SECTION A

A1. Suppose that accidents at a point on a motorway follow a Poisson process
with rate θ, so that the times between accidents are independent and
follow an exponential Exp(θ) distribution.

(a) Suppose that the times between n + 1 accidents gives inter-event
times x = (x1, x2, . . . , xn)

T . Show that the likelihood function for θ
given these times is

f(x|θ) ∝ θne−nx̄θ, θ > 0,

where x̄ is the mean time between accidents.

[4 marks]

(b) Suppose that your prior beliefs about θ were described by a Ga(g, h)
distribution. Determine your posterior density for θ. Name this
distribution, including its parameters.

[5 marks]

(c) Is the Gamma distribution a conjugate prior distribution? Explain
your answer.

[2 marks]

(d) The local authority is interested in the time to the next event, that
is, the time Y between accidents n+1 and n+2. Using Candidate’s
formula

f(y|x) =
f(y|θ)π(θ|x)

π(θ|x, y)
,

show that the predictive density for Y is

f(y|x) =
GHG

(H + y)G+1
, y > 0.

[4 marks]

(e) Sketch this predictive density and hence determine the 100(1−α)%
predictive interval for Y .

[5 marks]

[Total: 20 marks]
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A2. The wages X of a random sample of n investment bankers follow a log-
normal LN(µ, σ2) distribution.

(a) Show that the likelihood function is

f(x|µ, α) ∝ σ−n exp

{
− 1

2σ2

n∑
i=1

(log xi − µ)2

}
.

[2 marks]

(b) Find the log-likelihood function log f(x|µ, σ), and show that

∂2

∂µ2
log f(x|µ, σ) = − n

σ2
,

∂2

∂σ2
log f(x|µ, σ) =

n

σ2
− 3

σ4

n∑
i=1

(log xi − µ)2, and

∂2

∂µ∂σ
log f(x|µ, σ) = − 2

σ3

n∑
i=1

(log xi − µ).

[6 marks]

(c) Hence show that the Jeffreys prior is

π(µ, σ) ∝ 1

σ2
, −∞ < µ <∞, σ > 0.

Hint: For i = 1, 2, . . . , n, logXi ∼ N(µ, σ2) and so E(logXi) = µ
and V ar(logXi) = σ2.

[8 marks]

(d) Is this a proper prior distribution? Explain your answer.

[2 marks]

(e) Are µ and σ independent in this prior distribution? Explain your
answer.

[2 marks]

[Total: 20 marks]
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SECTION B

B3. A random sample x = (x1, x2, . . . , xn)
T is taken from a normal N(µ, 1/τ)

distribution, with sample mean x̄ and variance s2 =
∑n

i=1(xi − x̄)2/n.

The likelihood function is

f(x|µ, τ) =
( τ

2π

)n/2
exp

[
−nτ

2

{
s2 + (x̄− µ)2

}]
.

Suppose your prior beliefs about (µ, τ)T follow a normal-gammaNGa(b, c, g, h)
distribution.

(a) Show that your posterior distribution for (µ, τ)T is aNGa(B,C,G,H)
distribution where

B =
bc+ nx̄

c+ n
, C = c+n, G = g+

n

2
, H = h+

cn(x̄− b)2

2(c+ n)
+
ns2

2
.

Hint:

c(µ− b)2 + n(x̄− µ)2 + 2h+ ns2 = C(µ−B)2 + 2H.

[7 marks]

(b) Use this joint posterior distribution to determine your marginal pos-
terior density for µ. Name the posterior distribution for µ.

[7 marks]

(c) Suppose Y is the next value randomly sampled from the population.
By writing Y = µ+ ε, determine the predictive density for Y .

[4 marks]

[Please turn over for the rest of Question B3]

Question B3 continued on next page Page 4 of 10
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(d) The aerobic capacity of 50 randomly chosen athletes was measured,
giving a mean of x̄ = 73.5 ml/kg/min and standard deviation s =
5.2 ml/kg/min. These measurements are assumed to be a random
sample from a Normal distribution with mean µ and precision τ .

Work with a sports scientist suggests the following prior distribution:(
µ
τ

)
∼ NGa(80, 3, 2, 0.5).

(i) Obtain the joint posterior distribution for (µ, τ)T |x.

(ii) Find a 95% highest density interval for the mean aerobic capac-
ity, µ.

(iii) Find a 95% prediction interval for another athlete to be accepted
into the sample.

Hint: Note the following output from R:

> qt(0.975, 54)

[1] 2.004879

[12 marks]

[Total: 30 marks]
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B4. Suppose you have a random sample x = (x1, x2, . . . , xn)
T from an Exponential-

Gamma EG(α, λ) distribution, with likelihood function

f(x|α, λ) = λnα exp(αnx̄− λnx̄exp)/Γ(α)n,

where x̄ =
∑n

i=1 xi/n and x̄exp =
∑n

i=1 exp(xi)/n are the sample means
of x and exp(x).

(a) Assuming your prior distribution has α ∼ Ga(a, b) and λ ∼ Ga(c, d),
independently and for known values a, b, c and d, show that your
posterior density is

π(α, λ|x) ∝ αa−1λnα+c−1 exp {α(nx̄− b)− λ(nx̄exp + d)} /Γ(α)n,

for α > 0 and λ > 0.

[5 marks]

(b) Determine the posterior conditional densities for α|λ and λ|α up to
a multiplicative constant.

[8 marks]

You decide to develop a Markov Chain Monte Carlo (MCMC) algorithm
with separate steps for each parameter to simulate realisations from the
posterior distribution. You have available a simulator which generates
values from a gamma distribution.

(c) Why might a Metropolis within Gibbs algorithm be appropriate for
simulating realisations from the posterior distribution?

[3 marks]

(d) You decide to use a normal N(α,Σα) random walk proposal for
α, that is, make proposals using α∗|α ∼ N(α,Σα). What is the
acceptance probability for the proposed value α∗?

[4 marks]

(e) Write down the steps in your MCMC algorithm for simulating real-
isations from the posterior distribution.

[10 marks]

[Total: 30 marks]

Page 6 of 10



MAS3902: Specimen Paper 1

Distributions for data

Binomial distribution

If X|θ ∼ Bin(k, θ) then it has probability function

f(x|θ) =

(
k
x

)
θx(1− θ)k−x , x = 0, 1, . . . , k,

where k is a positive integer and 0 < θ < 1. Also, E(X) = kθ and V ar(X) =
kθ(1− θ).

Exponential distribution

If X|θ ∼ Exp(θ) then it has density

f(x|θ) = θe−θx , x > 0,

where θ > 0. Also, E(X) = 1/λ and V ar(X) = 1/λ2.

Exponential-Gamma distribution

If X ∼ EG(α, λ) then it has density

f(x|α, λ) = λα exp {αx− λ exp(x)} /Γ(α),

where α > 0 and λ > 0.

Gamma distribution

If X|α, λ ∼ Ga(α, λ) then it has density

f(x|α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0,

where α > 0 and λ > 0. Also, E(X) = α/λ and V ar(X) = α/λ2.

Log-normal distribution

If X|µ, σ ∼ LN(µ, σ2) then it has density

f(x|µ, σ) =
1

xσ
√

2π
exp

{
− 1

2σ2
(log x− µ)2

}
, x > 0

where µ ∈ R and σ > 0. Also, E(X) = eµ+σ2/2, V ar(X) = (eσ
2 − 1)e2µ+σ2

.
Further E(logX) = µ and V ar(logX) = σ2.
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Normal distribution

If X|µ, τ ∼ N(µ, 1/τ) then it has density

f(x|µ, τ) =
( τ

2π

)1/2

exp
{
−τ

2
(x− µ)2

}
, x ∈ R

where µ ∈ R and τ > 0. Also, E(X) = µ and V ar(X) = 1/τ . The distribu-
tion has the following quantiles

x 1.2816 1.6449 1.9600 2.3263 2.5758

Pr(X < x) 0.9 0.95 0.975 0.99 0.995

Poisson distribution

If X|θ ∼ Po(θ) then it has probability function

f(x|θ) =
θxe−θ

x!
, x = 0, 1, . . . , .

where θ > 0. Also, E(X) = θ and V ar(X) = θ.

Uniform distribution

If X|φ, θ ∼ U(φ, θ) then it has density

f(x|φ, θ) =
1

θ − φ
, φ < x < θ,

where φ < θ. Also, E(X) = (φ+ θ)/2 and V ar(X) = (θ − φ)2/12.
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Distributions for prior beliefs

Beta distribution

If θ ∼ Beta(g, h) then it has density

π(θ) =
θg−1(1− θ)h−1

B(g, h)
, 0 < θ < 1,

where g > 0 and h > 0. Also, E(θ) = g/(g + h) and V ar(θ) = gh/{(g +
h)2(g + h+ 1)}.

Gamma distribution

If θ ∼ Ga(g, h) then it has density

π(θ) =
hgθg−1e−hθ

Γ(g)
, θ > 0,

where g > 0 and h > 0. Also, E(θ) = g/h and V ar(θ) = g/h2.

Generalised t distribution

If µ ∼ ta(b, c) then it has density

π(µ) =
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) {1 +
(µ− b)2

ac

}−a+1
2

, µ ∈ R,

where b ∈ R, a > 0 and c > 0. Also, E(µ) = b and V ar(µ) = ac/(a − 2) if
a ≥ 2.

Inverse Chi distribution

If σ ∼ Inv-Chi(a, b) then it has density

π(σ|a, b) =
2baσ−2a−1e−b/σ

2

Γ(a)
, σ > 0,

where a > 0, b > 0 and Γ(a) is the gamma function. Also E(σ) =
√
bΓ(a−

1/2)/Γ(a) and V ar(σ) = b/(a − 1) − E(σ)2 if a > 1. The name of the
distribution comes from the fact that 1/σ2 ∼ Ga(a, b) ≡ χ2

2a/(2b).

Page 9 of 10



MAS3902: Specimen Paper 1

Log-normal distribution

If θ ∼ LN(b, c2) then it has density

π(θ) =
1√

2π c θ
exp

{
− 1

2c2
(log θ − b)2

}
, θ > 0

where b ∈ R and c > 0. Also, E(θ) = eb+c
2/2, V ar(θ) = (ec

2 − 1)e2b+c2.
Further log θ ∼ N(b, c2) and so E(log θ) = b and V ar(log θ) = c2.

Normal distribution

If µ ∼ N(b, 1/d) then it has density

π(µ) =

(
d

2π

)1/2

exp

{
−d

2
(µ− b)2

}
, µ ∈ R,

where b ∈ R and c > 0. Also, E(µ) = b and V ar(µ) = 1/d.

Normal-gamma distribution

If

(
µ
τ

)
∼ NGa(b, c, g, h) then it has density

π(µ, τ) ∝ τ g−
1
2 exp

{
−τ

2

[
c(µ− b)2 + 2h

]}
, µ ∈ R, τ > 0

where b ∈ R and c, g, h > 0. Also, µ|τ ∼ N

(
b,

1

cτ

)
, τ ∼ Ga(g, h) and has

marginal distribution µ ∼ t2g

(
b,
h

gc

)
.

Uniform distribution

If θ ∼ U(a, b) then it has density

π(θ) =
1

b− a
, a < θ < b,

where a < b. Also, E(θ) = (a+ b)/2 and V ar(θ) = (b− a)2/12.

THE END
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