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SECTION A

A1. Suppose that the lifetimes X of n patients randomly allocated to receive
a new drug treatment follow a Ga(4,6) distribution.

(a) Show that the likelihood function for 6 given the lifetimes & =
(w1, 29, ...,7,)T of a random sample of patients given the treatment

is
f(z]0) < §*"e 9 >0,
where Z is the mean lifetime in the sample.
[4 marks]
(b) Suppose your prior beliefs about 6 were described by a Ga(g, h)

distribution. Determine your posterior density for 6. Name this
distribution, including its parameters.

[5 marks]
(c) Is the Gamma distribution a conjugate prior distribution in this
case? Explain your answer.
[2 marks|
(d) Explain why, in general, a 95% highest density interval (HDI) is not
straightforward to calculate for this posterior distribution.
[3 marks|
(e) Determine an approximate 95% HDI for 6 by approximating the pos-

terior distribution by a normal distribution with the same posterior
mean and variance.

[6 marks]

[Total: 20 marks|
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A2. The time to fracture, X, in metals used in aeroplane fuselages that are
subject to the growth of fatigue cracks is modelled by a reparameterised
log-normal RLN (i, o) distribution, where (u, ) € R2.

(a) Show that the likelihood function is

na/2 _i - N2
f(x|p, a) xe exp{ 5 Z(logmz 1) }

1=1

[4 marks|
(b) Show that the Jeffreys prior is, for (i, a) € R?,

m(p, o) ox e,

Hint: If X ~ RLN(u, «), then E(log X) = pand Var(log X) = e™“.

[14 marks]
(c) Are pu and o independent in this prior distribution? Explain your
answer.
[2 marks]

[Total: 20 marks|
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SECTION B

B3. A random sample & = (1, 79, ..., 7,)T is taken from a gamma Ga(a, \),

and has sample mean . Suppose the prior belief about A\ follows a
mixture gamma distribution

A~ piGa(gr, g1) + p2Galge, 92).

(a) Determine the mean and variance of the prior distribution, and show
that the prior mean does not depend on p; and g;, 1 = 1, 2.

[11 marks]
(b) Show that the posterior distribution is of the form

p1Ga(G, Hy) + psGa(Gay, H),

and show that G, =na+ ¢; and H; = ¢, + nxz, i = 1, 2.

[11 marks]
(¢) Find expressions for p; and p3.

[8 marks]
[Total: 30 marks|
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B4. Suppose you have a random sample & = (x1,29,...,x,) from a repa-
rameterised inverse Gaussian RIG(u, \) distribution, where p and A are
unknown. Your prior distribution has yu ~ Fxp(a) and A ~ Ga(g,h),
independently, for known values a, g and h.

(a) Show that the likelihood function is
A 2
f (@], A) o< A" exp {—n—g (ﬂ? —2u+ A_L—) } :
2,u Th
where 7 is the arithmetic mean of the data and 7, is the harmonic

mean of the data, given by

n

1 1 1
B

[5 marks]
(b) Determine your posterior density for (u, A\)T.
[4 marks|

(c¢) Determine the conditional posterior densities for u|\ and A|p up to
a multiplicative constant.

[8 marks]

You decide to develop an MCMC algorithm with separate steps for each
parameter to simulate realisations from the posterior distribution.

(d) Why do you need to use a Metropolis within Gibbs algorithm?
[2 marks]

(e) You decide to use a symmetric normal random walk proposal for u
with known variance X, that is, ¢(p*|p) = N(p, X,). What is the
acceptance probability for the proposed value p*?

[4 marks]
(f) Explain how you might initialise your algorithm.
[1 mark|

(g) Write down the steps in your MCMC algorithm for simulating real-
isations from the posterior distribution.

[6 marks|
[Total: 30 marks|
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Distributions for data

Binomial distribution
If X1|0 ~ Bin(k,0) then it has probability function

k

f(z]0) = (:1;) 0°(1— 0=, x=01,...k,

where k is a positive integer and 0 < § < 1. Also, E(X) = kf and Var(X) =
kO(1 — 6).

Exponential distribution
If X|0 ~ Fxp(0) then it has density
f(x]6) =07, x>0,

where § > 0. Also, E(X) = 1/X and Var(X) = 1/)2

Gamma distribution
If X|a, A~ Ga(a, \) then it has density

)\axaflef)\x
() 7

where a > 0 and A > 0. Also, E(X) = a/X and Var(X) = a/)>.

f(zla, A) = x>0,

Normal distribution
If X|u, 7~ N(u,1/7) then it has density

T T

1/2
felnr) = () ep{-—S@-p?}, zer
where € R and 7 > 0. Also, E(X) = p and Var(X) = 1/7. The distribu-

tion has the following quantiles

r  |12816 1.6449 19600 2.3263 2.5758
Pr(X <z)| 09 095 0975 0.99 0.99
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Poisson distribution
If X |0 ~ Po(6) then it has probability function

Gt

flalo) = =

where 6 > 0. Also, E(X) =6 and Var(X) = 6.

, r=0,1,...,.

Reparameterised inverse Gaussian distribution

If X|pu, A~ RIG(p, A) then it has density

A A
Falnh) =g { ~5ole —uP w30, w>0a>0

Also, E(X) = p and Var(X) = u3/\.

Reparameterised log-normal distribution

If X|u,a ~ RLN(u, ) then it has density

a/2 e
e e
T\, o) = exp{ ——(logz — u)?y, x>0,
f(xlp, @) e p{ 5 (log u)}

where —0o < 1 < 00 and —o0o0 < a < oo. Also, E(X) = exp{u + e */2},
Var(X) = {exp(e™®) — 1}exp(2pu + 7). Further, E(logX) = p and
Var(log X) = e .

Uniform distribution

If X|p,0 ~ U(p,0) then it has density
falo.0) = 5= b<a<0,
where ¢ < 0. Also, E(X) = (¢ +0)/2 and Var(X) = (6 — ¢)*/12.

Page 7 of 9



MAS3902: Specimen Paper 2

Distributions for prior beliefs

Beta distribution
If & ~ Beta(g, h) then it has density

(1 —o)h!
B(g,h)

where g > 0 and h > 0. Also, F(0) = g/(g + h) and Var(d) = gh/{(g +
h)*(g+h+1)}

7(6) 0<6<1,

Gamma distribution

If 6 ~ Ga(g, h) then it has density

gpng—1_—ho
7(0) = h@—e,
I'(g)

where g > 0 and h > 0. Also, E(f) = g/h and Var(0) = g/h*.

6 >0,

Generalised t distribution
If i ~ t,(b,c) then it has density
L (%) (L=b\ "
— 2ol h | peER
() Vact T’ (%) { ac } a

where b € R, a > 0 and ¢ > 0. Also, F(u) = b and Var(u) = ac/(a — 2) if
a> 2.

Inverse Chi distribution

If o ~ Inv-Chi(a,b) then it has density

2ba0.—2a—1e—b/0'2

m(ola ) = =

o >0,
where a > 0, b > 0 and T'(a) is the gamma function. Also E(c) = vbI'(a —

1/2)/T(a) and Var(c) = b/(a — 1) — E(0)? if @ > 1. The name of the
distribution comes from the fact that 1/0% ~ Ga(a,b) = x3,/(2b).
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Log-normal distribution
If 0 ~ LN(b,c?) then it has density

1
B V2w el

where b € R and ¢ > 0. Also, E(0) = €2 Var(f) = (e — 1)e?+.
Further log @ ~ N (b, ¢?) and so E(log#) = b and Var(log#) = 2.

7(0)

1
exp {—ﬁ(logﬁ — b)2} , 08>0

Normal distribution

If w ~ N(b,1/d) then it has density

() = (%)/ e {5}, nek

where b € R and ¢ > 0. Also, F(u) = b and Var(u) = 1/d.

Normal-gamma distribution

If < ’: ) ~ NGa(b,c, g, h) then it has density
1 T 2
w(p, ) o< 79 2exp{—§ [c(p —b) —|—2h]}, peR 7>0

1
where b € R and ¢, g, h > 0. Also, p|t ~ N (b, —), T ~ Ga(g,h) and has
cT

h
marginal distribution p ~ g, (b, —)
gc

Uniform distribution

If 6 ~ Uf(a,b) then it has density

B 1
b—a’

where a < b. Also, E(0) = (a +0)/2 and Var(d) = (b — a)?/12.

m(6) a <6 <b,

THE END
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