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SECTION A

A1. Suppose that the lifetimes X of n patients randomly allocated to receive
a new drug treatment follow a Ga(4, θ) distribution.

(a) Show that the likelihood function for θ given the lifetimes x =
(x1, x2, . . . , xn)

T of a random sample of patients given the treatment
is

f(x|θ) ∝ θ4ne−nx̄θ, θ > 0,

where x̄ is the mean lifetime in the sample.

[4 marks]

(b) Suppose your prior beliefs about θ were described by a Ga(g, h)
distribution. Determine your posterior density for θ. Name this
distribution, including its parameters.

[5 marks]

(c) Is the Gamma distribution a conjugate prior distribution in this
case? Explain your answer.

[2 marks]

(d) Explain why, in general, a 95% highest density interval (HDI) is not
straightforward to calculate for this posterior distribution.

[3 marks]

(e) Determine an approximate 95% HDI for θ by approximating the pos-
terior distribution by a normal distribution with the same posterior
mean and variance.

[6 marks]

[Total: 20 marks]
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A2. The time to fracture, X, in metals used in aeroplane fuselages that are
subject to the growth of fatigue cracks is modelled by a reparameterised
log-normal RLN(µ, α) distribution, where (µ, α) ∈ R2.

(a) Show that the likelihood function is

f(x|µ, α) ∝ enα/2 exp

{
−e

α

2

n∑
i=1

(log xi − µ)2

}
.

[4 marks]

(b) Show that the Jeffreys prior is, for (µ, α) ∈ R2,

π(µ, α) ∝ eα/2.

Hint: If X ∼ RLN(µ, α), then E(logX) = µ and V ar(logX) = e−α.

[14 marks]

(c) Are µ and σ independent in this prior distribution? Explain your
answer.

[2 marks]

[Total: 20 marks]
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SECTION B

B3. A random sample x = (x1, x2, . . . , xn)
T is taken from a gamma Ga(α, λ),

and has sample mean x̄. Suppose the prior belief about λ follows a
mixture gamma distribution

λ ∼ p1Ga(g1, g1) + p2Ga(g2, g2).

(a) Determine the mean and variance of the prior distribution, and show
that the prior mean does not depend on pi and gi, i = 1, 2.

[11 marks]

(b) Show that the posterior distribution is of the form

p∗1Ga(G1, H1) + p∗2Ga(G2, H2),

and show that Gi = nα + gi and Hi = gi + nx̄, i = 1, 2.

[11 marks]

(c) Find expressions for p∗1 and p∗2.

[8 marks]

[Total: 30 marks]
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B4. Suppose you have a random sample x = (x1, x2, . . . , xn) from a repa-
rameterised inverse Gaussian RIG(µ, λ) distribution, where µ and λ are
unknown. Your prior distribution has µ ∼ Exp(a) and λ ∼ Ga(g, h),
independently, for known values a, g and h.

(a) Show that the likelihood function is

f(x|µ, λ) ∝ λn/2 exp

{
− nλ

2µ2

(
x̄− 2µ+

µ2

x̄h

)}
,

where x̄ is the arithmetic mean of the data and x̄h is the harmonic
mean of the data, given by

1

x̄h
=

1

n

n∑
i=1

1

xi
.

[5 marks]

(b) Determine your posterior density for (µ, λ)T .

[4 marks]

(c) Determine the conditional posterior densities for µ|λ and λ|µ up to
a multiplicative constant.

[8 marks]

You decide to develop an MCMC algorithm with separate steps for each
parameter to simulate realisations from the posterior distribution.

(d) Why do you need to use a Metropolis within Gibbs algorithm?

[2 marks]

(e) You decide to use a symmetric normal random walk proposal for µ
with known variance Σµ, that is, q(µ∗|µ) = N(µ,Σµ). What is the
acceptance probability for the proposed value µ∗?

[4 marks]

(f) Explain how you might initialise your algorithm.

[1 mark]

(g) Write down the steps in your MCMC algorithm for simulating real-
isations from the posterior distribution.

[6 marks]

[Total: 30 marks]
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Distributions for data

Binomial distribution

If X|θ ∼ Bin(k, θ) then it has probability function

f(x|θ) =

(
k
x

)
θx(1− θ)k−x , x = 0, 1, . . . , k,

where k is a positive integer and 0 < θ < 1. Also, E(X) = kθ and V ar(X) =
kθ(1− θ).

Exponential distribution

If X|θ ∼ Exp(θ) then it has density

f(x|θ) = θe−θx , x > 0,

where θ > 0. Also, E(X) = 1/λ and V ar(X) = 1/λ2.

Gamma distribution

If X|α, λ ∼ Ga(α, λ) then it has density

f(x|α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0,

where α > 0 and λ > 0. Also, E(X) = α/λ and V ar(X) = α/λ2.

Normal distribution

If X|µ, τ ∼ N(µ, 1/τ) then it has density

f(x|µ, τ) =
( τ

2π

)1/2

exp
{
−τ

2
(x− µ)2

}
, x ∈ R

where µ ∈ R and τ > 0. Also, E(X) = µ and V ar(X) = 1/τ . The distribu-
tion has the following quantiles

x 1.2816 1.6449 1.9600 2.3263 2.5758

Pr(X < x) 0.9 0.95 0.975 0.99 0.995
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Poisson distribution

If X|θ ∼ Po(θ) then it has probability function

f(x|θ) =
θxe−θ

x!
, x = 0, 1, . . . , .

where θ > 0. Also, E(X) = θ and V ar(X) = θ.

Reparameterised inverse Gaussian distribution

If X|µ, λ ∼ RIG(µ, λ) then it has density

f(x|µ, λ) =

√
λ

2πx3
exp

{
− λ

2xµ2
(x− µ)2

}
, x > 0, µ > 0, λ > 0.

Also, E(X) = µ and V ar(X) = µ3/λ.

Reparameterised log-normal distribution

If X|µ, α ∼ RLN(µ, α) then it has density

f(x|µ, α) =
eα/2

x
√

2π
exp

{
−e

α

2
(log x− µ)2

}
, x > 0,

where −∞ < µ < ∞ and −∞ < α < ∞. Also, E(X) = exp{µ + e−α/2},
V ar(X) = {exp(e−α) − 1} exp(2µ + e−α). Further, E(logX) = µ and
V ar(logX) = e−α.

Uniform distribution

If X|φ, θ ∼ U(φ, θ) then it has density

f(x|φ, θ) =
1

θ − φ
, φ < x < θ,

where φ < θ. Also, E(X) = (φ+ θ)/2 and V ar(X) = (θ − φ)2/12.
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Distributions for prior beliefs

Beta distribution

If θ ∼ Beta(g, h) then it has density

π(θ) =
θg−1(1− θ)h−1

B(g, h)
, 0 < θ < 1,

where g > 0 and h > 0. Also, E(θ) = g/(g + h) and V ar(θ) = gh/{(g +
h)2(g + h+ 1)}.

Gamma distribution

If θ ∼ Ga(g, h) then it has density

π(θ) =
hgθg−1e−hθ

Γ(g)
, θ > 0,

where g > 0 and h > 0. Also, E(θ) = g/h and V ar(θ) = g/h2.

Generalised t distribution

If µ ∼ ta(b, c) then it has density

π(µ) =
Γ
(
a+1

2

)
√
acπ Γ

(
a
2

) {1 +
(µ− b)2

ac

}−a+1
2

, µ ∈ R,

where b ∈ R, a > 0 and c > 0. Also, E(µ) = b and V ar(µ) = ac/(a − 2) if
a ≥ 2.

Inverse Chi distribution

If σ ∼ Inv-Chi(a, b) then it has density

π(σ|a, b) =
2baσ−2a−1e−b/σ

2

Γ(a)
, σ > 0,

where a > 0, b > 0 and Γ(a) is the gamma function. Also E(σ) =
√
bΓ(a−

1/2)/Γ(a) and V ar(σ) = b/(a − 1) − E(σ)2 if a > 1. The name of the
distribution comes from the fact that 1/σ2 ∼ Ga(a, b) ≡ χ2

2a/(2b).
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Log-normal distribution

If θ ∼ LN(b, c2) then it has density

π(θ) =
1√

2π c θ
exp

{
− 1

2c2
(log θ − b)2

}
, θ > 0

where b ∈ R and c > 0. Also, E(θ) = eb+c
2/2, V ar(θ) = (ec

2 − 1)e2b+c2.
Further log θ ∼ N(b, c2) and so E(log θ) = b and V ar(log θ) = c2.

Normal distribution

If µ ∼ N(b, 1/d) then it has density

π(µ) =

(
d

2π

)1/2

exp

{
−d

2
(µ− b)2

}
, µ ∈ R,

where b ∈ R and c > 0. Also, E(µ) = b and V ar(µ) = 1/d.

Normal-gamma distribution

If

(
µ
τ

)
∼ NGa(b, c, g, h) then it has density

π(µ, τ) ∝ τ g−
1
2 exp

{
−τ

2

[
c(µ− b)2 + 2h

]}
, µ ∈ R, τ > 0

where b ∈ R and c, g, h > 0. Also, µ|τ ∼ N

(
b,

1

cτ

)
, τ ∼ Ga(g, h) and has

marginal distribution µ ∼ t2g

(
b,
h

gc

)
.

Uniform distribution

If θ ∼ U(a, b) then it has density

π(θ) =
1

b− a
, a < θ < b,

where a < b. Also, E(θ) = (a+ b)/2 and V ar(θ) = (b− a)2/12.

THE END
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