
MAS2903: Introduction to Bayesian Methods

Solutions to all other questions in Chapter 5

Once you have submitted both assignments, solutions to the assessed questions from Chapter 5
(questions 4, 9, 10, 11, 12, 14, 30, 40 and 41) will be available in Blackboard.

By the end of semester 2, we will have worked through questions 5, 6, 7, 8, 18, 27, 29,

33, 34 and 35 in the fortnightly problems classes; slides with solutions can be be found on the
course webpage and Blackboard, along with ReCap recordings.

Students’ solutions to questions 2, 3, 12, 13, 15, 16, 19 and 24 can be found in Power-
Point slides on the course webpage.

In this document, you will find solutions to all remaining questions from Chapter 5.

1. (a) Probability estimates – values to be placed on the 0 −→ 1 scale:

(i) Frequency interpretation: take a sample of students from the class (your friends,
perhaps?) and estimate the probability as the proportion of students in your sample
whose BMI is at least 22.5. Could also use a subjective assessment, just by “looking”,
or by using information given in the lecture notes about the NU BMI study.

(ii) Subjective assessment: For example, even if you don’t know much about football,
you can easily check to see where Newcastle are in the league right now – currently
8th top. Without any further research, you could then specify a high probability,
given that they are only two places from a top six position. After more research,
and perhaps using your own knowledge about the Premier League, you might think
a top six position at the end of the season is unlikely, given their up-and-coming
games – thus specifying a much lower probability.

(iii) Classical interpretation: because we “randomly select”, each number is equally
likely. The probability is then 13/90.

(b) Interval estimates:

(i) We could repeat the experiment 100 times to get 100 estimates of the probability.
Reading off the 2.5 and 97.5 percentiles could then give an estimate of the probability
interval.

(ii) The estimate itself is subjective, so the range will be too. The range should reflect
your degree of certainty – the more you know about football, and Newcastle United,
the narrower your range!

(iii) Since we have a fixed probability, the range will be (13/90, 13/90).

17. From the sample, we have
n = 27; x̄ = 2.4685.

From the question, we have

Precision for the data = τ = 1/0.272

Prior mean = b = 2.7

Prior precision = d = 1/0.32.

From Example 2.6 in the lecture notes, we know that µ|x ∼ N(B, 1/D), where

D = d+ nτ and B =
db+ nτx̄

D
,
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giving

D = 1/0.32 +
27

0.272
= 381.4815

and

B =
2.7/0.32 + 27× 2.4685/0.272

1/0.32 + 27/0.272
= 2.4752.

Thus we have
µ|x ∼ N(2.4752, 1/381.4815).

Therefore,

Pr(µ < 2.5) = Pr

(

Z <
2.5− 2.4752
√

1/381.4815

)

= Pr(Z < 0.4844) = Φ(0.4844).

From tables, or using R (i.e. pnorm(0.4844)), we get Pr(µ < 2.5) = 0.6859.

In summary, we have:

Prior Likelihood Posterior

Mode 2.7 x̄ = 2.4685 2.4752
Mean 2.7 — 2.4752

St. dev. 0.3 — 0.0512

Comments:

– We clearly have substantial information provided by the data – our posterior beliefs
regarding µ have been shifted down considerably, to be much closer to the mean of the
data than our prior mean

– In light of the data, our beliefs regarding µ are much more precise, with a six-fold
reduction in the standard deviation

This is noticeable when we produce a sketch of prior versus posterior:
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18. From example 2.6 in the lecture notes, we know that the posterior precision is given by d+nτ ,
where n is the number of observations and τ is the precision of our measurements.
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(a) Thus, the standard devision of the posterior distribution is 1/sqrtd+ nτ , and we want

1√
d+ nτ

= 0.1

−→ n =
100− d

τ
.

Here, we have d = 1 and τ = 1/4, giving n = 396.

(b) When n = 100 the posterior standard deviation is

1√
d+ 100τ

=
1√

d+ 25
.

The prior variance is 1/d, which can never be negative; Thus, d cannot be negative.
As d → 0, we have 1/5 = 0.2 for the posterior standard deviation; as d increases, the
posterior standard deviation defined above will always decrease.

20. (a) Benefits of working within the Bayesian framework over a standard frequentist analysis:

∗ Can inform the analysis with the opinions of experts. This can have huge practical
benefits when working with small datasets – including a significant increase in the
precision of parameter estimates, leading to substantial reductions in the width of
confidence intervals. In the case study, this filtered through to increased precision
for return level estimates – for example, the rainfall event we might expect to see
once per century.

∗ In a Bayesian analysis, confidence intervals have a more intutitve interpretation. For
example, a 95% frequentist confidence interval (ℓ, u) for a parameter µ does not hold
the property Pr(ℓ < µ < u) = 0.95. However, a 95% Bayesian confidence interval
does have this interpretation!

∗ Although not covered in this case study, a Bayesian analysis has the advantage of
being able to handle prediction naturally, through the predictive distribution.

(b) The main difficulty lay in ‘converting’ the epxert hydrologist’s beliefs into something
meaningful about the parameters in the distribution being used. This was especially
difficult for the shape parameter in the generalised extreme value distribution, and to
some extene the scale parameter; such parameters might not easily be understood by
non-statisticians.

(c) In the case study, distribution theory was used to transform elicited prior distributions
for quantities the expert might feel more comfortable with (here we used quantiles cor-
responding to the 10, 50 and 200 year rainfall event for this location), to a distribution
for the original parameters in the model. The quantiles used were functions of these
parameters.

(d) An improper prior distribution is one that does not have total desity under the curve
equalling 1; they are not probability densities.

(e) Markov chain Monte Carlo.

21. There is a typo in the question: it should say “... and in question 42 you have already...”.

From question 42, we have that θ ∼ Ga(11.05, 0.63). The likelihood is

f(x|θ) = e−θθ15

15!
× e−θθ6

6!
× e−θθ10

10!
∝ e−3θθ31.
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Thus, the posterior is

π(θ|x) ∝ θ10.05e−0.63θ × e−3θθ31

= θ41.05e−3.63θ,

that is, θ|x ∼ Ga(42.05, 3.63). A report would be formed in the usual way – that is, comparing
prior and posterior beliefs about θ using the following summary table to assist with the
discussion:

Mean St. Dev.

Prior 17.5 5.28
Posterior 11.6 1.79

The discussion might also be supported by sketches of prior versus posterior.

22. If we use a vague prior, we use a conjugate prior with as large a varance as possible. The conju-
gate prior for the Poisson model is the gamma distribution (as this gives a gamma posterior);
in example 3.10 of the lecture notes, we saw that if θ ∼ Ga(a, b), then Var(θ) → ∞ as a, b → 0.

In general, the likelihood is:

f(x|θ) =
n
∏

i=1

e−θθxi

xi!
∝ e−nθθnx̄,

where x̄ is the sample mean. The posterior, assuming the prior θ ∼ Ga(a, b), is

π(θ|x) ∝ θa−1e−bθ × e−nθθnx̄ = θa+nx̄−1e−(n+b)θ,

that is, θ|x ∼ Ga(a+ nx̄, b+ n). For vague prior knowledge, we let a, b → 0, giving

θ|x ∼ Ga(nx̄, n).

In question 21, this would have resulted in aGa(31, 3) posterior (as opposed to theGa(42.05, 3.63)
we obtained in question 21). This would have resulted in:

Mean St. Dev.

Posterior 10.33 1.05

23. If θ ∼ Be(22.6, 3.4), then

Mode(θ) =
22.6− 1

22.6 + 3.4− 2
= 0.9.

giving the required “most likely value”. Using R, we have:

> pbeta(0.6,22.6, 3.4)

[1] 0.0008882217

This implies that Pr(θ < 0.6) = 0.0008882217 ≈ 0.001 = 10−3, as required.

25. (a) Using the trial roulette method in MATCH, we would specify a range for θ of (0, 200).
Placing ten chips in the bin for (80, 100), we can then specify the number of chips for
all other bins relative to this (i.e. 5 chips for the (40, 60) bin, etc.). There is a typo in
the question: just before the start of part (a), the question should read “... very few
occasions have there been less than 40 casualties”.

Building up the prior in this way results in θ ∼ Ga(10, 0.11).
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(b) The prior is conjugate – combining a Poisson likelihood with a gamma prior gives a
gamma posterior, and so both prior and posterior are from the same family.

(c) We have:

Prior mode = 82 casualties

Prior st. dev. = 28.75 casualties

1%-ile −→ 99%-ile : 38 −→ 173 casualties

26. (a) Using the bisection method in MATCH, with lower and upper limits of 0 and 20 respec-
tively, gives λ ∼ Ga(1.23, 0.22).

(b) Assuming a Poisson observation of 6, we can find the posterior as:

π(λ|x = 6) ∝ e−λλ6 × λ0.23e−0.22λ = e−1.22λλ6.23,

giving λ|x ∼ Ga(7.23, 1.22).

28. Non-examinable for this course.

31. There is a typo in this question: it should say “... in question 44”. Interesting for compari-
son to the Bayesian confidence intervals in question 44, but non-examinable for this course...
anyway, here is the solution:

Both θC and θI in question 44 are binomial proportions (the proportion of rates exceed-
ing 0.12), and from MAS2901 you know that for a binomial proportion the 95% confidence
interval is given by:

θ̂ ± 1.96

√

θ̂(1− θ̂)

n
.

For the Coastal location, we have n = 10 and θ̂C = 0.7, giving (0.416, 0.984). For the Inland
location, we have θ̂I = 0, giving (0, 0).

32. Comparing frequentist with Bayesian:

Coastal Inland

Frequentist (0.4160, 0.9840) (0, 0)
Bayesian (0.6005, 0.9308) (0, 0.1173)

Numerical comparisons:

– For the coastal location, the Bayesian confidence interval is considerably narrower than
the frequentist interval.

– It was not possible to find a frequentist interval for the inland location since θ̂I = 0.

Interpretation:

– For the Bayesian confidence intervals, there is a probability of 0.95 that θC or θI lies
between the lower and upper bounds.

– For the frequentist intervals, the probability that θC or θI lies between the lower and
upper bounds is either zero or one, since – in the frequentist paradigm – these parameters
are fixed (but unknown) constants.

36. Question is completely instructional.
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37. In R:

> plot(x,posterior,type="l",xlab="theta",ylab="Density",main="Example 2.3",ylim=c(0,5))

> lines(x,prior,type="l",lty=2)

Giving the following plot (which is the same as that in Figure 2.7 in the lecture notes):
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38. As for questions 36 and 37.

39. In R:

> x1=seq(0,1,0.0001)

> x2=seq(0,100,0.01)

> par(mfrow=c(2,2))

> plot(x1,dbeta(x1,10,37),type="l",xlab="t",ylab="d",main="(a)")

> plot(x1,dbeta(x1,20,77),type="l",xlab="t",ylab="d",main="(b)")

> plot(x2,dgamma(x2,15,0.625),type="l",xlab="t",ylab="d",main="(c)")

> plot(x2,dgamma(x2,9,0.36),type="l",xlab="t",ylab="d",main="(d)")
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For scenario 1, the most suitable distribution must be one of (a) or (b), since θ is a probability
and so is defined on (0, 1). From R:

> 1-pbeta(0.5,10,37)<1/100000

[1] FALSE

> 1-pbeta(0.5,20,77)<1/100000

[1] TRUE

This suggests that θ ∼ Beta(20, 77) must the most appropriate prior – in other words, dis-
tribution (b).

For scenario 2, the most suitable distribution must be one of (c) or (d), since θ is a rate and
so is defined over the positive real line. From R:

> pgamma(10,15,0.625)

[1] 0.00205863

> pgamma(10,9,0.36)

[1] 0.01167141

This suggests that θ ∼ Ga(9, 0.36) must be the most appropriate prior as the distribution
function evaluated at 10 is closest to the specified 1/100 probability – in other words, distri-
bution (d).

42. (c) Feedback: first fit

θ ∼ Ga(10, 0.54)

π(θ) =
0.5410θ9e−0.54θ

Γ(10)
, θ > 0

E(θ) = 18.518

SD(θ) = 5.856

(d) P (θ < 7.61) = P (θ > 34.6) = 0.01.

(e) “Only once in a hundred years would we expect to see more than around 34 or 35 tropical
depressions. Does this seem reasonable?”

(f) Feedback after refinement: second fit

θ ∼ Ga(11.05, 0.63)

π(θ) =
0.6311.05θ10.05e−0.63θ

Γ(11.05)
, θ > 0

E(θ) = 17.539

SD(θ) = 5.276

P (θ < 7.61) = 0.01

P (θ > 32) = 0.01
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(g) (i) In R:

> x=seq(0,50,0.001)

> plot(x, dgamma(x,11.05,0.63), type="l", xlab="t", ylab="d")

Giving the following plot:
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(ii) In R:

> pgamma(7.61,11.05,0.63)

[1] 0.009866593

> 1-pgamma(32,11.05,0.63)

[1] 0.01028627

43. (a) Use λ ∼ Be(a, b), as λ is a probability.

(b) We have

Mode(λ) =
a− 1

a+ b− 2
= 0.7

Therefore, we can find that

a =
7b− 4

3
.

(c) The question should say “... like that at the top of page 56...”. In R:

> f=function(b){

+ answer = pbeta(0.3, ((7*b-4)/3),b)-0.001

+ return(answer)

+ }

(d) The question should say “... on page 56...”. In R:

> uniroot(f, lower=1, upper=100)

$root

[1] 5.170688

$f.root

[1] 8.960203e-12

$iter

[1] 12

$estim.prec

[1] 9.430276e-05
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Therefore, we have b = 5.17.

(e) We have b = 5.17. Therefore

a =
7× 5.17− 4

3
= 10.73,

and so we have λ ∼ Be(10.73, 5.17).

44. (a) The mean and standard deviation, as found in R, are:

> mean(rate.coastal)

[1] 0.1330711

> mean(rate.inland)

[1] 0.05500738

> sd(rate.coastal)

[1] 0.04766444

> sd(rate.inland)

[1] 0.02595326

(b) We can estimate θC and θI as the proportion of gravestones with an annual rate of
degradation of at least 0.12mm at the coastal and inland locations, respectively. Looking
at the data in R:

> rate.coastal

[1] 0.22025231 0.18373611 0.15552727 0.13451462 0.12195733 0.13273000

[7] 0.14519588 0.09990640 0.06345654 0.07343473

> rate.inland

[1] 0.05206567 0.11985773 0.08846387 0.07917771 0.07800750 0.06193125

[7] 0.04544318 0.04938312 0.04901284 0.03702157 0.03068259 0.03173200

[13] 0.03168775 0.03482604 0.03581794

we see that

θ̂C =
7

10
= 0.7 and θ̂I =

0

15
= 0.

The likelihood functions are:

fθC(x = 7|θC) = 10C7θ
7
C(1− θC)

3 and

fθI(x = 0|θI) = 15C0θ
0
I (1− θI)

15 = (1− θI)
15.

(c) (i) The trial roulette method might be suitable, since the expert has specified proba-
bilities for different ranges for both θC and θI.

(ii) Using MATCH, we find that

θC ∼ Beta(10, 2) and

θI ∼ Beta(1, 9).

(iii) The expert has told us that we can expect a higher proportion of gravestones to
have a rate of degradation of at least 0.12mm at Savannah than at Macon, due to
the effects of salt in the air at the coastal location. This is reflected in the fitted
distributions for θC and θI; MATCH shows π(θC) having a mode at around 0.9,
whereas π(θI) has a mode around 0.02.
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(d) For the coastal location, we have

π(θC|x = 7) ∝ θ9C(1− θC)× θ7C(1− θC)
3

∝ θ16C (1− θC)
4,

and so θC|x = 7 ∼ Beta(17, 5).

For the inland location, we have

π(θI|x = 0) ∝ θ0I (1− θI)
8 × θ0I (1− θI)

15

∝ θ0I (1− θI)
23,

and so θI|x = 0 ∼ Beta(1, 24).

(e) In R, we can obtain the following plots of prior (dashed) and posterior (solid) densities:
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(i) Comparing prior and posterior beliefs about θC it is obvious that we had substantial
prior knowledge since there is very little difference between π(θC) and π(θC|x). The
posterior distribution is shifted down slightly, relative the the prior, and the stan-
dard deviation for θC seems to have reduced slightly after observing the data.

Comparing prior and posterior beliefs about θI again, we see that we had fairly
substantial prior knowledge. Having observed the data, our beliefs about θI have
been shifted down even closer to zero, and it seems the standard deviation for θI
has reduced substantially.

(ii) Having observed the data at both locations, the differences in beliefs about the rate
of granite degradation at the coast and inland are still quite pronounced; beliefs
about θC have been modified somewhat, with a slight downwards shift in the mode,
but beliefs about θI also shifted down slightly, preserving the expert’s original ideas
about the difference in rate of degrdation between Savannah and Macon.

(f) It is obvious from the plot in part (e) that the 95% HDI for θI must include zero, i.e.
we have (0, b). In fact, example 4.1 in the lecture notes shows that, for a 95% HDI for

10



a Beta(1, 24) distribution,
b = 1− 0.051/24 = 0.1173.

Thus, for θI, the 95% HDI is (0, 0.1173).

(g) The 95% HDI for θC is more awkward to find because the density of a Beta(17, 5) does
not increase or decrease monotonically as θC → 0 or θC → 1.

In R, we can find the 95% HDI for θC using the following code:

> g=function(x)

+ {

+ a=x[1]

+ b=x[2]

+ (pbeta(b,17,5)-pbeta(a,17,5)-0.95)^2+0.0001*(dbeta(b,17,5)-dbeta(a,17,5))^2

+ }

> initiala=qbeta(0.025,17,5)

> initialb=qbeta(0.975,17,5)

> res=optim(c(initiala,initialb),g,method="L-BFGS-B",lower=0,upper=1)

> a=res$par[1]

> b=res$par[2]

> a

[1] 0.6005299

> b

[1] 0.9308117

giving the 95% HDI for θC as (0.6005, 0.9308).

(h) In light of the data, it appears there is a significant difference in the rate of degradation
of granite at the two locations – the HDI for θI and θC are completely separate and do
not overlap.
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