
Chapter 3
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Introduction

In this chapter we will think about how to construct a suitable
prior distribution π(θ) for our parameter of interest θ.

For example:

Why did we use a Be(77,5) distribution for θ in the music

expert example?

Why did we use a Be(2.5,12) distribution for θ in the video
game pirate example?

Why did we assume a Ga(10,4000) distribution for θ in the

earthquake example?
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Introduction

Prior elicitation – the process by which we attempt to

construct the most suitable prior distribution for θ – is a huge

area of research in Bayesian Statistics.

The aim in this course is to give a brief (and relatively simple)

overview.
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Introduction

We will

have another case study lecture (before Easter)

have an interactive music session (using the

TURNINGPOINT voting system, after Easter)

to demonstrate the techniques.
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Introduction

We will consider the cases of:

Substantial prior knowledge

– turning expert opinion into a probability distribution for θ
– re–visit the examples about the music expert, the video

game pirate and earthquakes in Chapter 2.

Vague prior knowledge

– No expert available
– Choose a prior which “makes sense” and keeps the maths

simple!

Prior ignorance

– Assume all values of θ are equally likely
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Substantial prior knowledge

We will consider various methods for constructing prior

distributions when we have substantial prior knowledge:

Use of suggested prior summaries

The trial roulette method

The bisection method

We will make use of an online elicitation tool called MATCH,

courtesy of Professor Tony O’Hagan and Dr Jeremy Oakley
(Sheffield University).
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Example 3.1: Using suggested prior summaries

Let us return to Example 2.4 of Chapter 2.

Recall that we were given some data on the “waiting times”, in

days, between 21 earthquakes, and we discussed why an
exponenetial distribution Exp(θ) might be appropriate to model

the waiting times.

Further, we were told that an expert on earthquakes has prior

beliefs about the rate θ, described by a Ga(10,4000)
distribution.
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Example 3.1: Using suggested prior summaries
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How did we get from the expert’s beliefs to a Ga(10,4000)?
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Example 3.1: Using suggested prior summaries

Suppose the expert tells us that earthquakes in the region we

are interested in usually occur less than once per year.

In fact, they occur on average once every 400 days.

This gives us a rate of occurrence of about 1/400 = 0.0025 per
day.

Further, he is fairly certain about this and specifies a very

small variance of 6.25 × 10−7.
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Example 3.1: Using suggested prior summaries

A Ga(a,b) distribution seems sensible, since we can’t observe

a negative daily earthquake rate and the Gamma distribution is

specified over positive values only.

Using the information provided by the expert, verify our use of

a = 10 and b = 4000.
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Solution to Example 3.1 (1/1)

We know that, if θ ∼ Ga(a,b), then E(θ) = a/b and

Var(θ) = a/b2. Thus

a

b
= 0.0025 =⇒ a = 0.0025b.

Substituting into a/b2 = 0.000000625 gives

0.0025b

b2
= 0.000000625, giving

b = 4000.

Thus a = 0.0025 × 4000 = 10.
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Example 3.2: Using suggested prior summaries

Now let us return to Example 2.2 of Chapter 2.

We considered an experiment to determine how good a music

expert is at distinguishing between pages from Haydn and

Mozart scores.

When presented with a score from each composer, the expert

makes the correct choice with probability θ.
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Example 3.2: Using suggested prior summaries

Before conducting the experiment, we were told that the expert

is very competent. In fact, we were told that

θ should have a prior distribution peaking at around 0.95

Pr(θ < 0.8) should be very small

To achieve this, we assumed that θ ∼ Be(77,5), with density

given in Figure 2.4.
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Example 3.2: Using suggested prior summaries
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How did we know a Be(77,5) would work?
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Example 3.2: Using suggested prior summaries

We are told that the mode of the distribution should be around

0.95. Using the formulae on page 23, we can write

a − 1

a + b − 2
= 0.95

⇒ a − 1 = 0.95(a + b − 2)

⇒ a − 0.95a = 0.95b − 1.9 + 1

⇒ 0.05a = 0.95b − 0.9

⇒ a = 19b − 18.
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Example 3.2: Using suggested prior summaries

We are also told that Pr(θ < 0.8) must be small.

In fact, suppose we are told that θ < 0.8 might occur with

probability 0.0001.

This means that if we integrate the probability density function

for our beta distribution between 0 and 0.8, we would get

0.0001; from Equation (2.1) on page 23, we can write this as

∫ 0.8

0

θa−1(1 − θ)b−1

B(a,b)
dθ = 0.0001, i.e.

∫ 0.8

0

θ(19b−18)−1(1 − θ)b−1

B(19b − 18,b)
dθ = 0.0001.
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Example 3.2: Using suggested prior summaries

In other words, we set the cumulative distribution function for a

Be(19b − 18,b), evaluated at 0.8, equal to 0.0001 and solve for

b.

Although this would be tricky to do by hand, we can do this

quite easily in R.

Recall that the R command:

dbeta(x,a,b) evaluates the density of the Be(a,b)
distribution at the point x

pbeta(x,a,b) evaluates the cumulative distribution

function at x
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Example 3.2: Using suggested prior summaries

First of all, we re–write (3.3) to set it equal to zero:

∫ 0.8

0

θ(19b−18)−1(1 − θ)b−1

B(19b − 18,b)
dθ − 0.0001 = 0. (3.4)

We then write a function in R which computes the

left–hand–side of Equation (3.4):

f=function(b){
answer=pbeta(0.8,((19*b)-18),b)-0.0001

return(answer)}
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Example 3.2: Using suggested prior summaries

The trick now is to use a numerical procedure to find the root

of answer in our R function.

In other words, find the value b which equates answer to zero.

The R function uniroot(f, lower=, upper=)

uses a numerical search algorithm to find the root of the

expression provided by the function f

requires the user to provide a lower and upper bound to

search within

We know from the formulae on page 23 that a,b > 1 when

using expression (3.1) for the mode → so we search for a root

over some specified domain > 1.
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Example 3.2: Using suggested prior summaries

For example, we might use lower=1 and upper=100, giving:

> uniroot(f,lower=1,upper=100)

$root

[1] 5.06513

$f.root

[1] 6.008134e-09

$iter

[1] 14

$estim.prec

[1] 6.103516e-05
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Example 3.2: Using suggested prior summaries

Thus, the solution to Equation (3.3) is b = 5.06513.

For simplicity, rounding down to b = 5 and then substituting into

(3.2) gives

a = 19 × 5 − 18 = 77,

hence the use of θ ∼ Be(77,5) in Example 2.2 in Chapter 2.
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Example 3.3: Trial roulette method

We now return to Example 2.3 in Chapter 2.

Recall that Max is a video game pirate, and he is trying to

identify the proportion θ of potential customers who might be

interested in buying Call of Duty: Elite next month.

Why did we use θ ∼ Be(2.5,12)?
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Example 3.3: Trial roulette method

For each month over the last two years Max knows the

proportion of his customers who have bought similar games;

these proportions are shown below in Table 3.1.

0.32 0.25 0.28 0.15 0.33 0.12 0.14 0.18 0.12 0.05 0.25 0.08
0.07 0.16 0.24 0.38 0.18 0.15 0.22 0.05 0.01 0.19 0.08 0.15
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Example 3.3: Trial roulette method

The trial roulette method of elicitation works in the following

way:

Divide the sample space for θ into m “bins”

Ask the expert/person “in the know” to distribute n “chips”

amongst the bins

The proportion of chips in a particular bin represents the

probability that θ lies in that bin

Done graphically, we can see the shape of the distribution

forming as the expert allocates the chips

We then find a model that closely matches the distribution

of chips
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Example 3.3: Trial roulette method

We will implement the trial roulette method using the MATCH

Uncertainty Elicitation Tool.

This was developed by Dr. Jeremy Oakley and Professor

Tony O’Hagan at Sheffield University.

This can be accessed via any web browser:

http://optics.eee.nottingham.ac.uk/match/uncertainty.php
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Feedback on your feedback: The good

Lecture materials

– Booklet clearly structured
– Good amount of examples
– Like the amount of writing we have to do in notes
– Good cross-referencing
– Like the chapter summaries
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Feedback on your feedback: The good

Lee

– Quite engaging (at times)
– Jordy not an issue for me, Warm Jordy vocals, Soothing

Jordy tones
– Good pace
– Occasionally enthusiastic
– Oscar-worthy lectures
– At last, you’re free

Chris

– Prefer you to Chris anyway
– Lee >>> Chris
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Feedback on your feedback: The bad

Lecture materials

– Remove the boxes in notes!
– Mathematical font - difficult to tell difference between X and

x

– Do written stuff on visualiser, NOT SLIDES
– Less Geography please
– More time to write down from slides
– Need more examples. Use NUMBAS perhaps?

https://mas-shiny.ncl.ac.uk/2903Questions

– Too many formulas. Need formula sheet
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Lee

– Speak. More. S l o w l y
– You over-explain the simple things
– Always late, sort it out mate
– Owe us 20 minutes from MAS2602
– Go faster plz

Chris

– Where’s Chris? Like him
– Any more of Chris please?
– Still love Chris, my climbing boi
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Feedback on your feedback: The ugly

Was really disappointed to learn that Lee was teaching us

again

Please shut up while we’re copying down

Engage us more and give us more breaks

Less R code, it makes me angry that it’s in here

Bayesian sux frequentist 4 lyf

You’re much better at this, you were rubbish at R

Too much irrelevant talking

Not very engaging,... he just talks at us,...
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Taking stock

Posterior ∝ Prior × Likelihood

– Always look for a gamma or a beta distribution first

– Notation: π(θ) is just notation to represent our PDF for θ;
we usually use f (x) to represent the PDF of the data

– Prior distribution should not have x ’s in it – the random
variable is the parameter!

– Notation: E [θ] = prior mean, E [θ|x ] = posterior mean

– Notation: f (x |θ) is just our likelihood – form the product
over the PDF for each observation, if you have multiple
observations (careful with the Binomial!)

– Intepretation: Compare prior/posterior means and
variances; is the posterior closer to the data, or the prior?
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Taking stock

Constructing priors

– For a gamma or a beta prior: two parameters, so two bits of
information needed (e.g. mean/variance?
mode/probability?)

– Reference data: linear regression for the prior mean?
– Historical records: Trial roulette method?
– Bisection method (today)

Sufficiency

– Posterior using the likelihood for t is identical to that using
the full dataset x

– Much more efficient for “Bayesian updating" – e.g.
T =

∑

Xi
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Example 3.4: Bisection Method

Over the past 15 years there has been considerable scientific

interest in the rate of retreat, θ (feet per year), of glaciers in

Greenland (as discussed in the recent Frozen Planet series

shown on the BBC).

Indeed, this has often been used as an indicator of global

warming.

We are interested in eliciting a suitable prior distribution for θ for

the Zachariae Isstrøm glacier in Greenland.
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Example 3.4: Bisection Method

Records from an expert glaciologist show that glaciers in

Greenland have been retreating at a rate of between 0 and 70

feet per year since 1995.

We will use these values as the lower and upper limits for θ,
respectively. We now attempt to elicit the median and

quartiles for θ from the glaciologist.
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Example 3.4: Bisection Method

Step 1: Eliciting the median

Ask the expert to provide a value m (in the range of
permissable values for θ), such that

Pr(minimum < θ < m) = Pr(m < θ < maximum) =
1

2
.

The value m bisects the range for θ into two halves of

equal probability

If the expert is “statistically aware”, it might be possible to
ask them for their median for θ

Otherwise, m might be the value that the expert believes θ
is most likely to take.
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Example 3.4: Bisection Method

Step 1: Eliciting the median from the glaciologist

Glaciers in Greenland have been retreating at a rate of

between 0 and 70 feet per year since 1995, depending on

how far north the glacier is. Thus, we will say that

θ ∈ (0,70).

The Zachariae Isstrøm glacier lies in quite a northerly

location, so is not quite so prone to rapid retreat.

The glaciologist specifies that m = 24 might be suitable for

bisecting the range for θ – notice how m is closer to the

lower bound than the upper.
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Example 3.4: Bisection Method

Step 2: Eliciting the lower quartile

Ask the expert to provide a value ℓ such that

Pr(minimum < θ < ℓ) = Pr(ℓ < θ < m),

i.e. ℓ bisects the lower half of the range for θ.

This can be more tricky for the expert to do – it’s not quite

so intuitive a task.

If the expert struggles, help him/her a bit:

– Split the lower half into two, and ask them in which part θ is
most likely to occur

– Then ℓ should probably lie in the part which is more likely to
occur

Note that the more certain the expert is, the closer ℓ will be

to m
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Example 3.4: Bisection Method

Step 2: Eliciting the lower quartile from the glaciologist

The glaciologist found this task a bit more difficult...

We ask the expert whether [0,12] or [12,24] is more likely

The expert is fairly sure about m = 24, so says [12,24] is
more likely for θ than [0,12]

– Areas further north than the Zachariae Isstrøm glacier have
much slower rates of retreat

– Only the most northerly glaciers have zero retreat

Focussing on [12,24], the glaciologist settles on ℓ = 19.
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Example 3.4: Bisection Method

Step 3: Eliciting the upper quartile

Same sort of process for u as for ℓ.

Step 3: Eliciting the lower quartile from the glaciologist

Using the same process as for ℓ, the glaciologist settles on

u = 30.
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Example 3.4: Bisection Method

Step 4: Reflection

Based on the elicited values for ℓ, m and u, the expert should
be asked to reflect, i.e., does the following seem plausible:

Pr(min < θ < ℓ) = Pr(ℓ < θ < m) = Pr(m < θ < u) = Pr(u < θ < max)?

Step 4: Let the glaciologist reflect

The glaciologist seems fine with this!
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Example 3.4: Bisection Method

Step 5: Fit a parametric distribution to these judgements

We can use the MATCH software for this.

Step 5: Fitting a parametric distribution to the glaciologist’s

judgements

Doing this in MATCH gives θ ∼ Ga(9,0.36).
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Example 3.4: Bisection Method

Step 6: Feedback and refinement

From the fitted parametric distribution, provide the expert

with some summaries: for example, tail probabilities.

See if these tail probabilities correspond closely to the
expert’s intuition!

If not, perhaps ask the expert to refine their choices of ℓ or

m or u, or perhaps all three!
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Example 3.4: Bisection Method

Step 6: Feedback to the glaciologist, and possible refinement

We show the glaciologist the plot of the Ga(9,0.36)
density. Does this look OK? Yes!

Now feedback some specific properties:

– The 1%–ile and 99%–iles are about 10 feet and 48 feet,
respectively. This means that

Pr(θ < 10) = Pr(θ > 48) = 0.01, or once in a hundred years.

– Does this seem OK?

– The glaciologist thinks this is “imaginable”...

No refinement needed here!
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Example 3.5

Let Y be the retreat, in feet, of the Zachariae Isstrøm glacier. A

Pareto distribution with rate θ is often used to model such

geophysical activity, with probability density function

f (y |κ, θ) = θκθy−(θ+1), θ, κ > 0and y > κ.

(a) Obtain the likelihood function for θ given the parameter κ
and some observed data y1, y2, . . . , yn (independent).

(b) Suppose we observe a retreat of 20 feet at the Zachariae

Isstrøm glacier in 2012. Write down the likelihood function

for θ.

(c) Using the elicted prior for the rate of retreat we obtained

from the expert glaciologist in Example 3.4, and assuming

κ is known to be 12, obtain the posterior distribution

π(θ|y1 = 20).
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Solution to Example 3.5(a) (1/1)

We have

f (y |θ, κ) = θκθy
−(θ+1)
1 × · · · × θκθy

−(θ+1)
n

= θnκnθ
n
∏

i=1

y
−(θ+1)
i . (3.5)
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Solution to Example 3.5(a) (1/1)

We have

f (y |θ, κ) = θκθy
−(θ+1)
1 × · · · × θκθy

−(θ+1)
n

= θnκnθ
n
∏

i=1

y
−(θ+1)
i . (3.5)
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Solution to Example 3.5(b) (1/1)

We simply substitute n = 1 and y1 = 20 into Equation (3.5),

giving

f (y1 = 20|θ, κ) = θκθ20−(θ+1).

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 3.5(c) (1/3)

Using Bayes’ Theorem, and following the examples in Chapter

2, we know that

π(θ|y1 = 20) ∝ π(θ)× f (y1 = 20|θ, κ).

Recall from Example 3.4 that our elicited prior for θ is

Ga(9,0.36), which has density

π(θ) =
0.369θ8e−0.36θ

Γ(9)
.
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Ga(9,0.36), which has density

π(θ) =
0.369θ8e−0.36θ

Γ(9)
.
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Solution to Example 3.5(c) (2/3)

Combining this with the likelihood above (and using κ = 12)

gives

π(θ|y1 = 20) =
0.369θ8e−0.36θ

Γ(9)
× θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−θ. (3.6)

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 3.5(c) (2/3)

Combining this with the likelihood above (and using κ = 12)

gives

π(θ|y1 = 20) =
0.369θ8e−0.36θ

Γ(9)
× θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−θ. (3.6)

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 3.5(c) (3/3)

Now consider the term 12θ20−θ. Taking logs, we get

θln12 − θln20 = (ln12 − ln20)θ;

exponentiating to ‘re–balance’, you should see that

12θ20−θ = e(ln12−ln20)θ.

Substituting back into (3.6) gives

π(θ|y1 = 20) ∝ θ9e−0.36θe(ln12−ln20)θ i.e.

∝ θ9e−0.36θ+(ln12−ln20)θ

∝ θ9e−0.87θ,

i.e. θ|y1 = 20 ∼ Ga(10,0.87).
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Substantial prior information

Definition (Substantial prior information)

We have substantial prior information for θ when the prior

distribution dominates the posterior distribution, that is

π(θ|x) ∼ π(θ).
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Substantial prior information

An example of substantial prior knowledge was given in

Example 2.2 where a music expert was trying to distinguish
between pages from Mozart and Haydn scores.

Figure 3.9 shows the prior and posterior distributions for θ, the

probability that the expert makes the correct choice.

Notice the similarity between the prior and posterior

distributions. Observing the data has not altered our beliefs

about θ very much.
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Substantial prior information

0.80 0.85 0.90 0.95 1.00

0
5

1
0

1
5

θ

d
e

n
s
it
y

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Substantial prior information

When we have substantial prior information there can be some

difficulties:

1 the intractability of the mathematics in deriving the

posterior distribution — though with modern computing

facilities this is less of a problem,

2 the practical formulation of the prior distribution —

coherently specifying prior beliefs in the form of a

probability distribution is far from straightforward although,
as we have seen, this can be attempted using computer

software.
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Parameter Constraints

[We will come back to this soon... For now, turn to page 73!]
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Vague Prior Knowledge/Prior Ignorance

If we have very little or no prior information about the model

parameter θ, we must still choose a prior distribution in order to

operate Bayes Theorem.

Obviously, it would be sensible to choose a prior distribution

which is not concentrated about any particular value, that is,
one with a very large variance.

In particular, most of the information about θ will be passed

through to the posterior distribution via the data, and so we

have π(θ|x) ∼ f (x |θ).
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Vague Prior Knowledge/Prior Ignorance

An example of vague prior knowledge was given in Example

2.1 where a possibly biased coin was assessed.

Figure 3.13 shows the prior and posterior distributions for

θ = Pr(Head).

Notice that the prior and posterior distributions look very

different.

In fact, in this example, the posterior distribution is simply a

scaled version of the likelihood function – likelihood functions

are not usually proper probability (density) functions and so

scaling is required to ensure that it integrates to one.

Most of our beliefs about θ have come from observing the data.
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Vague Prior Knowledge/Prior Ignorance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

θ

d
e

n
s
it
y

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Vague prior knowledge

We represent vague prior knowledge by using a prior

distribution which is conjugate to the model for x and which has

“infinite” variance.
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Example 3.9

Suppose we have a random sample from a N(µ,1/τ)
distribution (with τ known).

Determine the posterior distribution assuming a vague prior for

µ.
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Solution to Example 3.9 (1/1)

Conjugate prior: Normal distribution. From Example 2.6, if

µ ∼ N(b,1/d) then µ|x ∼ N(B,1/D) where

B =
db + nτ x̄

d + nτ
and D = d + nτ.

If we now make our prior knowledge vague about µ by letting

the prior variance tend to infinity (d → 0), we obtain

B → x̄ and D → nτ.

giving µ|x ∼ N(x̄ ,1/(nτ)) posterior distribution. Notice that the

posterior mean is the sample mean (the likelihood mode) and

that the posterior variance 1/D → 0 as n → ∞.
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Example 3.10

Suppose we have a random sample from an exponential

distribution, that is, Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent).

Determine the posterior distribution assuming a vague prior for

θ.
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Solution to Example 3.10 (1/1)

Conjugate prior: Gamma distribution. Recall that a Ga(g,h)
distribution has mean m = g/h and variance v = g/h2.

Rearranging these formulae we obtain

g =
m2

v
and h =

m

v
.

Clearly g → 0 and h → 0 as v → ∞ (for fixed m).

We have seen how taking a Ga(g,h) prior distribution results in

a Ga(g + n,h + nx̄) posterior distribution (Example 2.5).

Therefore, taking a vague prior distribution will give a Ga(n,nx̄)
posterior distribution.

Note that the posterior mean is 1/x̄ (the likelihood mode) and
that the posterior variance 1/(nx̄2) → 0 and n → ∞.
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Prior ignorance

We could represent ignorance by the concept “all values of θ
are equally likely”.

If θ were discrete with m possible values then we could assign

each value the same probability 1/m.

However, if θ is continuous, we need some limiting argument

(from the discrete case).
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Prior ignorance

Suppose that θ can take values between a and b, where

−∞ < a < b <∞.

Letting all (permitted) values of θ be equally likely results in

taking a uniform U(a,b) distribution as our prior distribution

for θ.

However, if the parameter space is not finite then we cannot do

this: there is no such thing as a U(−∞,∞) distribution.
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Prior ignorance

Convention suggests that we should use the “improper”

uniform prior distribution

π(θ) = constant.

This distribution is improper because

∫ ∞

−∞
π(θ)dθ

is not a convergent integral, let alone equal to one.
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Prior ignorance

We have a similar problem if θ takes positive values — we

cannot use a U(0,∞) prior distribution.

Now if θ ∈ (0,∞) then φ = log θ ∈ (−∞,∞), and so we could

use an “improper” uniform prior for φ: π(φ) = constant .

In turn, this induces a distribution on θ. Recall the result from

Distribution Theory:

Fact (Distribution of a transformation)

Suppose that X is a random variable with probability density

function fX (x). If g is a bijective (1–1) function then the random

variable Y = g(X ) has probability density function

fY (y) = fX

(

g−1(y)
)

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

. (3.7)
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fY (y) = fX

(

g−1(y)
)

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

. (3.7)
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∣

∣
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∣

∣

∣
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Prior ignorance

Applying this result to θ = eφ gives

πθ(θ) = πφ(log θ)

∣

∣

∣

∣

d

dθ
log θ

∣

∣

∣

∣

, θ > 0

= constant ×
∣

∣

∣

∣

1

θ

∣

∣

∣

∣

, θ > 0

∝ 1

θ
, θ > 0.

This too is an improper distribution.
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Prior ignorance

There is a drawback of using uniform or improper priors to

represent prior ignorance: if we are “ignorant” about θ then we
are also “ignorant” about any function of θ, for example, about

φ1 = θ3, φ2 = eθ, φ3 = 1/θ, . . . .

Is it possible to choose a distribution where we are ignorant

about all these functions of θ?

If not, on which function of θ should we place the

uniform/improper prior distribution?
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Prior ignorance

There is no distribution which can represent ignorance for

all functions of θ

Assigning an ignorance prior to φ means we do not have

an ignorance prior for eφ

A solution to problems of this type was suggested by Sir

Harold Jeffreys.
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Sir Harold Jeffreys, FRS

April 1891 – March 1989

Mathematician, Statistician, Geophysicist, Astronomer

Studied at Armstrong College, Durham, now Newcastle

University (see plaque)

Seminal book – Theory of Probability – revived the

Bayesian view of probability

Married a Physicist – Bertha Swirles – together they wrote

Methods of Mathematical Physics
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Jeffrey’s prior

Jeffreys’ suggestion was specified in terms of Fisher’s

Information

I(θ) = EX |θ

[

− ∂2

∂θ2
log f (X |θ)

]

. (3.8)

He recommended that we represent prior ignorance by the

prior distribution

π(θ) ∝
√

I(θ). (3.9)

Such a prior distribution is known as a Jeffreys prior

distribution.
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Jeffrey’s prior

Advantages of using a Jeffrey’s prior

satisfies the local uniformity property: it does not change

much in the region over which the likelihood is significant

⇒ represents ignornace

It is invariant with respect to one–to–one transformations

Disadvantages

Often improper, and can lead to improper posteriors

Can be cumbersome to use in high dimensions
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Example 3.11

Suppose we have a random sample from a distribution with

probability density function

f (x |θ) = 2x e−x2/θ

θ
, x > 0, θ > 0.

Determine the Jeffreys prior for this model.
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Solution to Example 3.11 (1/5)

The likelihood function is

f (x |θ) =
n
∏

i=1

2xi e−x2
i
/θ

θ

=
2n

θn

(

n
∏

i=1

xi

)

exp

{

−1

θ

n
∑

i=1

x2
i

}

.
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The likelihood function is

f (x |θ) =
n
∏
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2xi e−x2
i
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θ

=
2n
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(

n
∏
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xi

)

exp

{

−1

θ

n
∑
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x2
i

}

.
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Solution to Example 3.11 (2/5)

Therefore

log f (x |θ) = n log 2 − n log θ +
n
∑

i=1

log xi −
1

θ

n
∑

i=1

x2
i

⇒ ∂

∂θ
log f (x |θ) = −n

θ
+

1

θ2

n
∑

i=1

x2
i

⇒ ∂2

∂θ2
log f (x |θ) =

n

θ2
− 2

θ3

n
∑

i=1

x2
i
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Solution to Example 3.11 (3/5)

⇒ I(θ) = EX |θ

[

− ∂2

∂θ2
log f (X |θ)

]

= − n

θ2
+

2

θ3
EX |θ

[

n
∑

i=1

X 2
i

]

= − n

θ2
+

2

θ3

(

EX |θ

[

X 2
1

]

+ . . . + EX |θ

[

X 2
n

])

= − n

θ2
+

2n

θ3
EX |θ

[

X 2
]

since the Xi are identically distributed.
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Solution to Example 3.11 (4/5)

Now

EX |θ

[

X 2
]

=

∫ ∞

0
x2 ×

(

2x e−x2/θ

θ

)

dx .

If we let y =
x2

θ
, then

dy

dx
=

2x

θ
⇒ dx =

θ

2x
dy .

Substituting into the integral above gives
∫ ∞

0

y 2xe−y θ

2x
dy = θ

∫ ∞

0

ye−ydy

= θ × 1 = θ,

since the remaining integral is the mean of a unit exponential.
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Solution to Example 3.11 (5/5)

Therefore

I(θ) = − n

θ2
+

(

2n

θ3
× θ

)

=
n

θ2
.

Hence, the Jeffreys prior for this model is

π(θ) ∝ I(θ)1/2

∝
√

n

θ
, θ > 0

∝ 1

θ
, θ > 0.
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Example 3.11

Notice that this distribution is improper since
∫∞

0 dθ/θ is a

divergent integral, and so we cannot find a constant which

ensures that the density function integrates to one.
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Example 3.12

Suppose we have a random sample from an exponential

distribution, that is, Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent).

Determine the Jeffreys prior for this model.
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Solution to Example 3.12 (1/2)

Recall that

fX (x |θ) = θne−nx̄θ,

and therefore

logf (x |θ) = n log θ − nx̄θ

⇒ ∂

∂θ
log f (x |θ) = n

θ
− nx̄

⇒ ∂2

∂θ2
log f (x |θ) = − n

θ2

⇒ I(θ) = EX |θ

[

− ∂2

∂θ2
log f (X |θ)

]

=
n

θ2
.
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Solution to Example 3.12 (2/2)

Hence, the Jeffreys prior for this model is

π(θ) ∝ I(θ)1/2

∝
√

n

θ
, θ > 0

∝ 1

θ
, θ > 0.
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Solution to Example 3.12 (2/2)

Hence, the Jeffreys prior for this model is

π(θ) ∝ I(θ)1/2

∝
√

n

θ
, θ > 0

∝ 1

θ
, θ > 0.
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Example 3.12

Notice that this distribution is improper since
∫∞

0 dθ/θ is a

divergent integral, and so we cannot find a constant which
ensures that the density function integrates to one.

Notice also that this density is, in fact, a limiting form of a

Ga(g,h) density (ignoring the integration constant) since

hg θg−1e−hθ

Γ(g)
∝ θg−1e−hθ → 1

θ
, as g → 0, h → 0.

Therefore, we obtain the same posterior distribution whether
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Example 3.13

Suppose we have a random sample from a N(µ,1/τ)
distribution (with τ known).

Determine the Jeffreys prior for this model.
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Solution to Example 3.13 (1/2)

Recall from Example 2.6 that

fX (x |µ) =
( τ

2π

)n/2
exp

{

−τ
2

n
∑

i=1

(xi − µ)2

}

,

and therefore

log f (x |µ) = n

2
log(τ)− n

2
log(2π)− τ

2

n
∑

i=1

(xi − µ)2

⇒ ∂

∂µ
log f (x |µ) = −τ

2
×

n
∑

i=1

−2(xi − µ)

= τ

n
∑

i=1

(xi − µ)

= τ(nx̄ − nµ)

= nτ(x̄ − µ)
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Solution to Example 3.13 (2/2)

Also

⇒ ∂2

∂µ2
log f (x |µ) = −nτ

⇒ I(µ) = EX |µ

[

− ∂2

∂µ2
log f (X |µ)

]

= nτ.

Hence, the Jeffreys prior for this model is

π(µ) ∝ I(µ)1/2

∝
√

nτ , −∞ < µ <∞
= constant , −∞ < µ <∞.
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Example 3.13

Notice that this distribution is improper since
∫∞
−∞ dµ is a

divergent integral, and so we cannot find a constant which

ensures that the density function integrates to one.

Also it is a limiting form of a N(b,1/d) density (ignoring the

integration constant) since

(

d

2π

)1/2

exp

{

−d

2
(µ− b)2

}

∝ exp

{

−d

2
(µ − b)2

}

→ 1,

as d → 0.

Therefore, we obtain the same posterior distribution whether

we adopt the Jeffreys prior or vague prior knowledge.
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Announcements

Assignment 1

– Currently being marked, almost done
– Will try to release marks/return scripts this week/early next

week

Assignment 2

– Questions to complete: 14, 40, 41 and also 30

– Due in by 4pm, Friday 3rd May
– Associated practical: currently scheduled at 1pm, Friday

3rd May (not helpful!), so trying to reschedule (perhaps next
week), check emails!

Mid-semester test

– Work looking good so far
– Hoping to get the work back to you very soon
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Professor Richard Boys

Sadly died on Tuesday 5th March

Preface of your lecture notes:

‘‘Since 1980, the number of academic staff in Mathematics & Statistics at

Newcastle publishing advanced research using Bayesian methods has increased

dramatically. In the 1980s, there was only one Bayesian at Newcastle. Now there

are at least 12."

“...one Bayesian at Newcastle": Professor Boys
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Professor Richard Boys

Richard was a big personality in the department, an

extremely talented Statistician and a good friend and

colleague to many staff

His funeral will be taking place this coming Thursday, so

our scheduled session at 2pm is cancelled
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Dangerous stapling

Several assignments were poorly stapled

Staples like this are dangerous and can cause pages to go

missing. Many of your assignments had to be re-stapled.
It is your responsibility to make sure your work is held together

securely and safely, by pushing the stapler down firmly.

Assignments with unsafe staples will not be marked!

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Dangerous stapling

Several assignments were poorly stapled

Staples like this are dangerous and can cause pages to go

missing. Many of your assignments had to be re-stapled.
It is your responsibility to make sure your work is held together

securely and safely, by pushing the stapler down firmly.

Assignments with unsafe staples will not be marked!

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Asymptotic posterior distribution

There are many limiting results in Statistics.

The one you will probably remember is the Central Limit

Theorem.

This concerns the distribution of X̄n, the mean of n independent

and identically distributed random variables (each with known

mean µ and known variance σ2), as the sample size n → ∞.

It is easy to show that E(X̄n) = µ and Var(X̄n) = σ2/n, and so if

we define

Z =
X̄n − µ

σ/
√

n
=

√
n(X̄n − µ)

σ
,

then we know that√
n(X̄n − µ)

σ

D−→ N(0,1) as n → ∞.

The following theorem gives a similar result for the posterior
distribution.
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Asymptotic posterior distribution

Theorem (Asymptotic posterior distribution)

Suppose we have a statistical model f (x |θ) for data

x = (x1, x2, . . . , xn)
T , together with a prior distribution π(θ) for θ.

Then
√

J(θ̂) (θ − θ̂)|x D−→ N(0,1) as n → ∞,

where θ̂ is the likelihood mode and J(θ) is the observed

information

J(θ) = − ∂2

∂θ2
log f (x |θ).
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Outline proof (1/7)

Using Bayes Theorem, the posterior distribution for θ is

π(θ|x) ∝ π(θ) f (x |θ).

Let ψ =
√

n(θ − θ̂) and

ℓn(θ) =
1

n
log f (x |θ)

be the average log–likelihood per observation, in which case,

f (x |θ) = enℓn(θ).
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Outline proof (2/7)

Recall Equation (3.7), which tells us about the distribution of a

random variable Y = g(X ):

fY (y) = fX

(

g−1(y)
)

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.

We want to know the distribution of ψ = g(θ), where

g(θ) =
√

n(θ − θ̂).

Now

g−1(ψ) = θ̂ +
ψ√
n

and
d

dψ
g−1(ψ) =

1√
n
,

giving

πψ(ψ) = πθ

(

θ̂ +
ψ√
n

∣

∣

∣

∣

x

)

× 1√
n
.
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Outline proof (3/7)

Thus

πψ(ψ) = πθ

(

θ̂ +
ψ√
n

∣

∣

∣

∣

x

)

× 1√
n

∝ πθ

(

θ̂ +
ψ√
n

)

exp

{

nℓn

(

θ̂ +
ψ√
n

)}

.

Taking Taylor series expansions about ψ = 0 gives

πθ

(

θ̂ +
ψ√
n

)

= πθ(θ̂) + π′θ(θ̂)
ψ√
n
+

1

2!
π′′θ (θ̂)

[

ψ√
n

]2

+
1

3!
π′′′θ (θ̂)

[

ψ√
n

]3

+ . . .

≈ πθ(θ̂).
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Outline proof (4/7)
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nℓn

(

θ̂ +
ψ√
n

)

= n

{

ℓn(θ̂) + ℓ′n(θ̂)
ψ√
n
+

1

2!
ℓ′′n(θ̂)

[

ψ√
n

]2

+
1

3!
ℓ′′′n (θ̂)

[

ψ√
n

]3

+ . . .

}

≈ nℓn(θ̂) + nℓ′n(θ̂)
ψ√
n
+ n

1

2!
ℓ′′n(θ̂)

[

ψ√
n

]2

≈ nℓn(θ̂) +
1

2
ℓ′′n(θ̂)ψ

2.
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Outline proof (5/7)

This gives

πψ(ψ|x) ∝ πθ

(

θ̂ +
ψ√
n

)

exp

{

nℓn

(

θ̂ +
ψ√
n

)}

≈ πθ(θ̂)exp

{

nℓn(θ̂) +
1

2
ℓ′′n(θ̂)ψ

2

}

∝ exp

{

1

2
ℓ′′n(θ̂)ψ

2

}

∝ exp







−

[

−ℓ′′n(θ̂)
]

2
(ψ − 0)2







,

showing that

ψ|x ∼ N
(

0, [−ℓ′′n(θ̂)]−1
)

as n → ∞.
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Outline proof (6/7)

The result on the last slide gives

Var
{√

n(θ − θ̂)
}

=
[

−ℓ′′n(θ̂)
]−1

.

Multiplying the term inside {} by

√

−ℓ′′n(θ̂) gives

Var

{

√

−ℓ′′n(θ̂)×
√

n(θ − θ̂)

}

= −ℓ′′n(θ̂)× Var
{√

n(θ − θ̂)
}

, i.e.

Var

{

√

−nℓ′′n(θ̂)(θ − θ̂)

}

= −ℓ′′n(θ̂)×
[

−ℓ′′n(θ̂)
]−1

, i.e.

Var

{

√

J(θ̂)(θ − θ̂)

}

= 1.
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Outline proof (7/7)

Thus, we have the equivalent result

√

J(θ̂)
(

θ − θ̂
)

∣

∣

∣
x

D−→ N(0,1) as n → ∞.

Dividing by

√

J(θ̂) and adding θ̂ also gives

θ|x ∼ N
(

θ̂, J(θ̂)−1
)

.

MEMORISE!
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Example 3.14

Suppose we have a random sample from a distribution with

probability density function

f (x |θ) = 2x e−x2/θ

θ
, x > 0, θ > 0.

Determine the asymptotic posterior distribution for θ. Note that

from Example 3.11 we have

∂

∂θ
log f (x |θ) = −n

θ
+

1

θ2

n
∑

i=1

x2
i ,

J(θ) = − ∂2

∂θ2
log f (x |θ) = − n

θ2
+

2

θ3

n
∑

i=1

x2
i =

n

θ3

(

−θ + 2

n

n
∑

i=1

x2
i

)

.
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Solution to Example 3.14 (1/2)

The asymptotic posterior distribution is given by

θ|x ∼ N
(

θ̂, J(θ̂)−1
)

.

First, let’s find θ̂. Now

∂

∂θ
log f (x |θ) = −n

θ
+

1

θ2

n
∑

i=1

x2
i ;

Setting equal to zero and solving for θ = θ̂ gives

θ̂ =
1

n

n
∑

i=1

x2
i = x2.
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Solution to Example 3.14 (2/2)

Also,

J(θ̂) =
n

θ̂3

(

−θ̂ + 2

n

n
∑

i=1

x2
i

)

=
n

(

x2
)3

(

−x2 + 2x2
)

=
n

(

x2
)3

x2 =
n

(

x2
)2
.

Therefore, for large n, the (approximate) posterior distribution

for θ is

θ|x ∼ N

(

x2,
1

n

(

x2
)2
)

.
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Example 3.15

Suppose we have a random sample from an exponential

distribution, that is, Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent).

Determine the asymptotic posterior distribution for θ.

Note that from Example 3.12 we have

∂

∂θ
log f (x |θ) = n

θ
− nx̄ ,

J(θ) = − ∂2

∂θ2
log f (x |θ) = n

θ2
.
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Solution to Example 3.15 (1/1)

We have

∂

∂θ
log f (x |θ) = 0 =⇒ θ̂ =

1

x̄

=⇒ J(θ̂) =
n
(

1
x̄

)2
= nx̄2

=⇒ J(θ̂)−1 =
1

nx̄2
.

Therefore, for large n, the (approximate) posterior distribution

for θ is

θ|x ∼ N

(

1

x̄
,

1

nx̄2

)

.
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1
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)
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Example 3.15

Recall that, assuming a vague prior distribution, the posterior

distribution is a Ga(n,nx̄) distribution, with mean 1/x̄ and

variance 1/(nx̄2).

The Central Limit Theorem tells us that, for large n, the gamma

distribution tends to a normal distribution, matched, of course,
for mean and variance.

Therefore, we have shown that, for large n, the asymptotic

posterior distribution is the same as the posterior distribution

under vague prior knowledge. Not a surprising result!
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Example 3.16

Suppose we have a random sample from a N(µ,1/τ)
distribution (with τ known). Determine the asymptotic posterior

distribution for µ. Note that from Example 3.13 we have

∂

∂µ
log f (x |µ) = nτ(x̄ − µ),

J(µ) = − ∂2

∂µ2
log f (x |µ) = nτ.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 3.16 (1/1)

We have

∂

∂µ
log f (x |µ) = 0 =⇒ µ̂ = x̄

=⇒ J(µ̂) = nτ

=⇒ J(µ̂)−1 =
1

nτ
.

Therefore, for large n, the (approximate) posterior distribution

for µ is

µ|x ∼ N

(

x̄ ,
1

nτ

)

.
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Example 3.16

Again, we have shown that the asymptotic posterior distribution

is the same as the posterior distribution under vague prior

knowledge.
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Chapter 5: Question 29

Using a random sample from a Bin(k , θ) (with k known),
determine the posterior distribution for θ assuming

(i) vague prior knowledge;

(ii) the Jeffreys prior distribution;

(iii) a very large sample.
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Solution

The conjugate prior distribution is a Beta(g,h) distribution.

Using this prior distribution, the posterior density is

π(θ|x) ∝ π(θ) f (x |θ)

∝ θg−1(1 − θ)h−1 ×
n
∏

i=1

θxi (1 − θ)k−xi , 0 < θ < 1

∝ θg+nx̄−1(1 − θ)h+nk−nx̄−1, 0 < θ < 1

i .e. θ|x ∼ Beta(G = g + nx̄ ,H = h + nk − nx̄).
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Solution

We represent vague prior information by taking a conjugate

prior distribution with large variance.

As the beta distribution restricts values to the range (0,1), there

is a finite upper limit to the variance.

Intuitively, the maximum variance is achieved when the

probability density is pushed to the extremes of the range, that

is, equal mass at θ = 0 and θ = 1 – this distribution is obtained

in the limit g → 0 and h → 0.

Thus we will take this limit to represent vague prior
information.Hence the posterior distribution under vague prior

information is

θ|x ∼ Beta(nx̄ ,nk − nx̄).
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Solution

The Jeffreys prior distribution is

π(θ) ∝
√

I(θ).

Now

f (x |θ) ∝
n
∏

i=1

θxi (1 − θ)k−xi

∝ θnx̄(1 − θ)kn−nx̄ .
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Solution

Therefore

log f (x |θ) = constant + nx̄ log θ + n(k − x̄) log(1 − θ)

⇒ ∂

∂θ
log f (x |θ) = nx̄

θ
− n(k − x̄)

1 − θ

⇒ ∂2

∂θ2
log f (x |θ) = −nx̄

θ2
− n(k − x̄)

(1 − θ)2

⇒ I(θ) = EX |θ

[

− ∂2

∂θ2
log f (X |θ)

]

=
nEX |θ(X̄ )

θ2
+

n[k − EX |θ(X̄ )]

(1 − θ)2
.
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Now EX |θ(X̄ ) = EX |θ(X ) = kθ. Therefore

I(θ) =
nk

θ
+

nk

1 − θ
=

nk

θ(1 − θ)
.

Hence the Jeffreys prior for this model is

π(θ) ∝
√

I(θ)

∝
√

nk

θ(1 − θ)
, 0 < θ < 1

∝ θ−1/2(1 − θ)−1/2, 0 < θ < 1.
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Now EX |θ(X̄ ) = EX |θ(X ) = kθ. Therefore
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Solution

This is a Beta(1/2,1/2) prior distribution and so the resulting

posterior distribution is

θ|x ∼ Beta(1/2 + nx̄ ,1/2 + nk − nx̄).
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Solution

The asymptotic posterior distribution (as n → ∞) is

θ|x ∼ N
(

θ̂, J(θ̂)−1
)

,

where

J(θ) = − ∂2

∂θ2
log f (x |θ) = nx̄

θ2
+

n(k − x̄)

(1 − θ)2
.
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Solution

Now

∂

∂θ
log f (x |θ) = 0 =⇒ nx̄

θ̂
− n(k − x̄)

1 − θ̂
= 0

=⇒ θ̂ =
x̄

k

=⇒ J(θ̂) =
nk3

x̄(k − x̄)

=⇒ J(θ̂)−1 =
x̄(k − x̄)

nk3
.
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Therefore, for large n, the posterior distribution for θ is

θ|x ∼ N

(

x̄

k
,

x̄(k − x̄)

nk3

)

approximately.
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