Chapter 2

Bayes' Theorem for Distributions

Bayes' Theorem for Distributions

Suppose we have data \boldsymbol{x} which we model using the probability (density) function $f(\boldsymbol{x} \mid \theta)$, which depends on a single parameter θ.

Once we have observed the data, $f(\boldsymbol{x} \mid \theta)$

Bayes' Theorem for Distributions

Suppose we have data \boldsymbol{x} which we model using the probability (density) function $f(\boldsymbol{x} \mid \theta)$, which depends on a single parameter θ.

Once we have observed the data, $f(\boldsymbol{x} \mid \theta)$
\square is the likelihood function for θ

Bayes' Theorem for Distributions

Suppose we have data \boldsymbol{x} which we model using the probability (density) function $f(\boldsymbol{x} \mid \theta)$, which depends on a single parameter θ.

Once we have observed the data, $f(\boldsymbol{x} \mid \theta)$
\square is the likelihood function for θ
\square is a function of θ (for fixed \boldsymbol{x}) rather than

Bayes' Theorem for Distributions

Suppose we have data \boldsymbol{x} which we model using the probability (density) function $f(\boldsymbol{x} \mid \theta)$, which depends on a single parameter θ.

Once we have observed the data, $f(\boldsymbol{x} \mid \theta)$
\square is the likelihood function for θ
\square is a function of θ (for fixed \boldsymbol{x}) rather than

- a function of \boldsymbol{x} (for fixed θ).

Bayes' Theorem for Distributions

Also, suppose we have prior beliefs about likely values of θ expressed by a probability (density) function $\pi(\theta)$.

We can combine both pieces of information using the following version of Bayes Theorem.

The resulting distribution for θ is called the posterior distribution for θ as it expresses our beliefs about θ after seeing the data.

It summarises all our current knowledge about the parameter θ.

Bayes' Theorem for Distributions

The posterior probability (density) function for θ is

Bayes' Theorem for Distributions

The posterior probability (density) function for θ is

$$
\pi(\theta \mid \boldsymbol{x})=\frac{\pi(\theta) f(\boldsymbol{x} \mid \theta)}{f(\boldsymbol{x})}
$$

where

$$
f(\boldsymbol{x})= \begin{cases}\int_{\Theta} \pi(\theta) f(\boldsymbol{x} \mid \theta) d \theta & \text { if } \theta \text { is continuous, } \\ \sum_{\Theta} \pi(\theta) f(\boldsymbol{x} \mid \theta) & \text { if } \theta \text { is discrete }\end{cases}
$$

Notice that, as $f(\boldsymbol{x})$ is not a function of θ, Bayes Theorem can be rewritten as

$$
\pi(\theta \mid \boldsymbol{X}) \propto \pi(\theta) \times f(\boldsymbol{x} \mid \theta)
$$

i.e. posterior \propto prior \times likelihood.

Bayes' Theorem for Distributions

Thus, to obtain the posterior distribution, we need:

Bayes' Theorem for Distributions

Thus, to obtain the posterior distribution, we need:
(1) data, from which we can form the likelihood $f(\boldsymbol{x} \mid \theta)$, and

Thus, to obtain the posterior distribution, we need:
(1) data, from which we can form the likelihood $f(\boldsymbol{x} \mid \theta)$, and
(2) a suitable distribution, $\pi(\theta)$, that represents our prior beliefs about θ.

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

$$
f(y \mid a, b)=\frac{1}{b-a}, \quad a \leq y \leq b
$$

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

$$
f(y \mid a, b)=\frac{1}{b-a}, \quad a \leq y \leq b
$$

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

$$
f(y \mid a, b)=\frac{1}{b-a}, \quad a \leq y \leq b
$$

This form of probability density function ensures that all values in the range $[a, b]$ are equally likely, hence the name "uniform".

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

$$
f(y \mid a, b)=\frac{1}{b-a}, \quad a \leq y \leq b
$$

This form of probability density function ensures that all values in the range $[a, b]$ are equally likely, hence the name "uniform".

This distribution is sometimes called the rectangular distribution because of its shape.

Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform $U(a, b)$ distribution if it has probability density function

$$
f(y \mid a, b)=\frac{1}{b-a}, \quad a \leq y \leq b
$$

This form of probability density function ensures that all values in the range $[a, b]$ are equally likely, hence the name "uniform".

This distribution is sometimes called the rectangular distribution because of its shape.

You should remember from MAS1604 that

$$
E(Y)=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{(b-a)^{2}}{12}
$$

Some important continuous distributions

Definition (Beta distribution)

The random variable Y follows a $\operatorname{Beta} \operatorname{Be}(a, b)$ distribution ($a>0, b>0$) if it has probability density function

$$
\begin{equation*}
f(y \mid a, b)=\frac{y^{a-1}(1-y)^{b-1}}{B(a, b)}, \quad 0<y<1 . \tag{2.1}
\end{equation*}
$$

Some important continuous distributions

Definition (Beta distribution)

The random variable Y follows a $\operatorname{Beta} \operatorname{Be}(a, b)$ distribution ($a>0, b>0$) if it has probability density function

$$
\begin{equation*}
f(y \mid a, b)=\frac{y^{a-1}(1-y)^{b-1}}{B(a, b)}, \quad 0<y<1 . \tag{2.1}
\end{equation*}
$$

The constant term $B(a, b)$, also known as the beta function, ensures that the density integrates to one. Therefore

Some important continuous distributions

Definition (Beta distribution)

The random variable Y follows a $\operatorname{Beta} \operatorname{Be}(a, b)$ distribution ($a>0, b>0$) if it has probability density function

$$
\begin{equation*}
f(y \mid a, b)=\frac{y^{a-1}(1-y)^{b-1}}{B(a, b)}, \quad 0<y<1 . \tag{2.1}
\end{equation*}
$$

The constant term $B(a, b)$, also known as the beta function, ensures that the density integrates to one. Therefore

$$
\begin{equation*}
B(a, b)=\int_{0}^{1} y^{a-1}(1-y)^{b-1} d y . \tag{2.2}
\end{equation*}
$$

Some important continuous distributions

It can be shown that the beta function can be expressed in terms of another function, called the gamma function $\Gamma(\cdot)$, as

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)},
$$

where

Some important continuous distributions

It can be shown that the beta function can be expressed in terms of another function, called the gamma function $\Gamma(\cdot)$, as

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)},
$$

where

$$
\begin{equation*}
\Gamma(a)=\int_{0}^{\infty} x^{a-1} e^{-x} d x \tag{2.3}
\end{equation*}
$$

Some important continuous distributions

Tables are available for both $B(a, b)$ and $\Gamma(a)$.
However, these functions are very simple to evaluate when a and b are integers since the gamma function is a generalisation of the factorial function.

Some important continuous distributions

Tables are available for both $B(a, b)$ and $\Gamma(a)$.
However, these functions are very simple to evaluate when a and b are integers since the gamma function is a generalisation of the factorial function.

In particular, when a and b are integers, we have

$$
\Gamma(a)=(a-1)!\quad \text { and } \quad B(a, b)=\frac{(a-1)!(b-1)!}{(a+b-1)!} .
$$

Some important continuous distributions

It can be shown, using the identity $\Gamma(a)=(a-1) \Gamma(a-1)$, that

$$
E(Y)=\frac{a}{a+b}, \quad \text { and } \quad \operatorname{Var}(Y)=\frac{a b}{(a+b)^{2}(a+b+1)} .
$$

Also
$\operatorname{Mode}(Y)=\frac{a-1}{a+b-2}, \quad$ if $a>1$ and $b>1$.

Some important continuous distributions

Definition (Gamma distribution)

The random variable Y follows a Gamma $\operatorname{Ga}(a, b)$ distribution $(a>0, b>0)$ if it has probability density function

$$
f(y \mid a, b)=\frac{b^{a} y^{a-1} e^{-b y}}{\Gamma(a)}, \quad y>0
$$

where $\Gamma(a)$ is the gamma function defined in Equation (2.3).

Some important continuous distributions

Definition (Gamma distribution)

The random variable Y follows a Gamma $\operatorname{Ga}(a, b)$ distribution $(a>0, b>0)$ if it has probability density function

$$
f(y \mid a, b)=\frac{b^{a} y^{a-1} e^{-b y}}{\Gamma(a)}, \quad y>0
$$

where $\Gamma(a)$ is the gamma function defined in Equation (2.3).

It can be shown that

$$
E(Y)=\frac{a}{b} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{a}{b^{2}}
$$

Also

$$
\operatorname{Mode}(Y)=\frac{a-1}{b}, \quad \text { if } a \geq 1
$$

Bayes Theorem for distributions in action

We will now see Bayes' Theorem for distributions "in action".

Bayes Theorem for distributions in action

We will now see Bayes' Theorem for distributions "in action".
Recall that we have

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) \times f(\boldsymbol{x} \mid \theta), \quad \text { i.e. }
$$

posterior \propto prior \times likelihood

Bayes Theorem for distributions in action

We will now see Bayes' Theorem for distributions "in action".
Recall that we have

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) \times f(\boldsymbol{x} \mid \theta), \quad \text { i.e. }
$$

posterior \propto prior \times likelihood

Recall also that, for now, we will assume our prior for θ has been given to us -

Bayes Theorem for distributions in action

We will now see Bayes' Theorem for distributions "in action".
Recall that we have

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) \times f(\boldsymbol{x} \mid \theta), \quad \text { i.e. }
$$

posterior \propto prior \times likelihood

Recall also that, for now, we will assume our prior for θ has been given to us - we will look at how such priors are constructed, or elicited, in the next chapter.

Example 2.1

Consider an experiment with a possibly biased coin. Let $\theta=\operatorname{Pr}($ Head $)$.

Example 2.1

Consider an experiment with a possibly biased coin. Let $\theta=\operatorname{Pr}($ Head $)$.

Suppose that, before conducting the experiment, we believe that all values of θ are equally likely.

Example 2.1

Consider an experiment with a possibly biased coin. Let $\theta=\operatorname{Pr}($ Head $)$.

Suppose that, before conducting the experiment, we believe that all values of θ are equally likely.

This gives a prior distribution $\theta \sim U(0,1)$, and so

$$
\begin{equation*}
\pi(\theta)=1, \quad 0<\theta<1 . \tag{2.4}
\end{equation*}
$$

Example 2.1

Consider an experiment with a possibly biased coin. Let $\theta=\operatorname{Pr}($ Head $)$.

Suppose that, before conducting the experiment, we believe that all values of θ are equally likely.

This gives a prior distribution $\theta \sim U(0,1)$, and so

$$
\begin{equation*}
\pi(\theta)=1, \quad 0<\theta<1 . \tag{2.4}
\end{equation*}
$$

Note that with this prior distribution $E(\theta)=0.5$.

Example 2.1

Consider an experiment with a possibly biased coin. Let $\theta=\operatorname{Pr}($ Head $)$.

Suppose that, before conducting the experiment, we believe that all values of θ are equally likely.

This gives a prior distribution $\theta \sim U(0,1)$, and so

$$
\begin{equation*}
\pi(\theta)=1, \quad 0<\theta<1 . \tag{2.4}
\end{equation*}
$$

Note that with this prior distribution $E(\theta)=0.5$.
We now toss the coin 5 times and observe 1 head. Determine the posterior distribution for θ given this data.

The data is an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(5, \theta)$. This gives a likelihood function

$$
\begin{align*}
f(x=1 \mid \theta) & ={ }^{5} \mathrm{C}_{1} \theta^{1}(1-\theta)^{4} \\
& =5 \theta(1-\theta)^{4} \tag{2.5}
\end{align*}
$$

which favours values of θ near its maximum $\theta=0.2$ (we observed 1 head out of 5 tosses).

The data is an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(5, \theta)$. This gives a likelihood function

$$
\begin{align*}
f(x=1 \mid \theta) & ={ }^{5} \mathrm{C}_{1} \theta^{1}(1-\theta)^{4} \\
& =5 \theta(1-\theta)^{4} \tag{2.5}
\end{align*}
$$

which favours values of θ near its maximum $\theta=0.2$ (we observed 1 head out of 5 tosses).

Therefore, we have a conflict of opinions: the prior distribution (2.4) suggests that θ is probably around 0.5 and the data (2.5) suggest that it is around 0.2.

The data is an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(5, \theta)$. This gives a likelihood function

$$
\begin{align*}
f(x=1 \mid \theta) & ={ }^{5} \mathrm{C}_{1} \theta^{1}(1-\theta)^{4} \\
& =5 \theta(1-\theta)^{4} \tag{2.5}
\end{align*}
$$

which favours values of θ near its maximum $\theta=0.2$ (we observed 1 head out of 5 tosses).

Therefore, we have a conflict of opinions: the prior distribution (2.4) suggests that θ is probably around 0.5 and the data (2.5) suggest that it is around 0.2.

We can use Bayes' Theorem to combine these two sources of information in a coherent way.

"Full" solution to Example 2.1 (2/4)

Recall the "full" version of Bayes' Theorem for distributions:

"Full" solution to Example 2.1 (2/4)

Recall the "full" version of Bayes' Theorem for distributions:

$$
\pi(\theta \mid \boldsymbol{x})=\frac{\pi(\theta) f(\boldsymbol{x} \mid \theta)}{f(\boldsymbol{x})}
$$

Recall the "full" version of Bayes' Theorem for distributions:

$$
\pi(\theta \mid \boldsymbol{x})=\frac{\pi(\theta) f(\boldsymbol{x} \mid \theta)}{f(\boldsymbol{x})}
$$

where

$$
f(\boldsymbol{x})=\int_{\Theta} \pi(\theta) f(\boldsymbol{x} \mid \theta) d \theta
$$

"Full" solution to Example 2.1 (3/4)

First the denominator:

$$
\begin{align*}
f(x=1) & =\int_{\Theta} \pi(\theta) f(x=1 \mid \theta) d \theta \tag{2.6}\\
& =\int_{0}^{1} 1 \times 5 \theta(1-\theta)^{4} d \theta \\
& =\int_{0}^{1} \theta \times 5(1-\theta)^{4} d \theta
\end{align*}
$$

"Ful" solution to Example 2.1 (3/4)

First the denominator:

$$
\begin{align*}
f(x=1) & =\int_{\Theta} \pi(\theta) f(x=1 \mid \theta) d \theta \tag{2.6}\\
& =\int_{0}^{1} 1 \times 5 \theta(1-\theta)^{4} d \theta \\
& =\int_{0}^{1} \theta \times 5(1-\theta)^{4} d \theta
\end{align*}
$$

which, using integration by parts, gives

"Full" solution to Example 2.1 (3/4)

First the denominator:

$$
\begin{align*}
f(x=1) & =\int_{\Theta} \pi(\theta) f(x=1 \mid \theta) d \theta \tag{2.6}\\
& =\int_{0}^{1} 1 \times 5 \theta(1-\theta)^{4} d \theta \\
& =\int_{0}^{1} \theta \times 5(1-\theta)^{4} d \theta
\end{align*}
$$

which, using integration by parts, gives

$$
\begin{aligned}
f(x=1) & =\left[-(1-\theta)^{5} \theta\right]_{0}^{1}+\int_{0}^{1}(1-\theta)^{5} d \theta \\
& =0+\left[-\frac{(1-\theta)^{6}}{6}\right]_{0}^{1} \\
& =\frac{1}{6} .
\end{aligned}
$$

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\pi(\theta \mid x=1)=\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)}
$$

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1
\end{aligned}
$$

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1 \\
& =30 \theta(1-\theta)^{4}, \quad 0<\theta<1
\end{aligned}
$$

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1 \\
& =30 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =\frac{\theta^{2-1}(1-\theta)^{5-1}}{B(2,5)}, \quad 0<\theta<1,
\end{aligned}
$$

"Ful" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1 \\
& =30 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =\frac{\theta^{2-1}(1-\theta)^{5-1}}{B(2,5)}, \quad 0<\theta<1,
\end{aligned}
$$

as

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1 \\
& =30 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =\frac{\theta^{2-1}(1-\theta)^{5-1}}{B(2,5)}, \quad 0<\theta<1,
\end{aligned}
$$

as

$$
B(2,5)=\frac{(2-1)!(5-1)!}{(2+5-1)!}=\frac{24}{720}=\frac{1}{30}
$$

"Full" solution to Example 2.1 (4/4)

Therefore, the posterior density is

$$
\begin{aligned}
\pi(\theta \mid x=1) & =\frac{\pi(\theta) f(x=1 \mid \theta)}{f(x=1)} \\
& =\frac{1 \times 5 \theta(1-\theta)^{4}}{1 / 6}, \quad 0<\theta<1 \\
& =30 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =\frac{\theta^{2-1}(1-\theta)^{5-1}}{B(2,5)}, \quad 0<\theta<1,
\end{aligned}
$$

as

$$
B(2,5)=\frac{(2-1)!(5-1)!}{(2+5-1)!}=\frac{24}{720}=\frac{1}{30},
$$

and so the posterior distribution is $\theta \mid x=1 \sim \operatorname{Be}(2,5)$ - see Equation 2.1. This distribution has its mode at $\theta=0.2$, and mean at $E[\theta \mid x=1]=2 / 7=0.286$.

Example 2.1

There were two "difficulties" in calculating the posterior distribution:

Example 2.1

There were two "difficulties" in calculating the posterior distribution:

■ Obtaining the $f(x)$ term for the denominator in the "full" version of Bayes' Theorem

Example 2.1

There were two "difficulties" in calculating the posterior distribution:

- Obtaining the $f(x)$ term for the denominator in the "full" version of Bayes' Theorem
- Manipulating the result to realise that we had a $\operatorname{Be}(2,5)$ distribution

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(x=1 \mid \theta)
$$

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1
\end{aligned}
$$

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1
\end{aligned}
$$

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =k \theta(1-\theta)^{4}, \quad 0<\theta<1 .
\end{aligned}
$$

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =k \theta(1-\theta)^{4}, \quad 0<\theta<1 .
\end{aligned}
$$

You should be able to recognise this as a $\operatorname{Be}(2,5)$ distribution we can re-write the above as

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =k \theta(1-\theta)^{4}, \quad 0<\theta<1 .
\end{aligned}
$$

You should be able to recognise this as a $\operatorname{Be}(2,5)$ distribution we can re-write the above as

$$
\pi(\theta \mid \boldsymbol{x})=k \theta^{2-1}(1-\theta)^{5-1},
$$

Example 2.1: "Quick" solution

However, in many cases we can recognise the posterior distribution without the need to calculate $f(x)$.

In this example, we can calculate the posterior distribution as

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(x=1 \mid \theta) \\
& \propto 1 \times 5 \theta(1-\theta)^{4}, \quad 0<\theta<1 \\
& =k \theta(1-\theta)^{4}, \quad 0<\theta<1 .
\end{aligned}
$$

You should be able to recognise this as a $\operatorname{Be}(2,5)$ distribution we can re-write the above as

$$
\pi(\theta \mid \boldsymbol{x})=k \theta^{2-1}(1-\theta)^{5-1},
$$

i.e. $\theta \mid x=1 \sim \operatorname{Be}(2,5)$.

Example 2.1: Summary

It is possible that we have a biased coin.

Example 2.1: Summary

It is possible that we have a biased coin.
Recall that if $Y \sim U(a, b)$,

$$
E(Y)=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{(b-a)^{2}}{12}
$$

Example 2.1: Summary

It is possible that we have a biased coin.
Recall that if $Y \sim U(a, b)$,

$$
E(Y)=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{(b-a)^{2}}{12}
$$

Also, if $Y \sim \operatorname{Be}(a, b)$,

$$
E(Y)=\frac{a}{a+b} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{a b}{(a+b)^{2}(a+b+1)} .
$$

Example 2.1: Summary

It is possible that we have a biased coin.
Recall that if $Y \sim U(a, b)$,

$$
E(Y)=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{(b-a)^{2}}{12} .
$$

Also, if $Y \sim \operatorname{Be}(a, b)$,

$$
E(Y)=\frac{a}{a+b} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{a b}{(a+b)^{2}(a+b+1)} .
$$

Thus:

Example 2.1: Summary

It is possible that we have a biased coin.
Recall that if $Y \sim U(a, b)$,

$$
E(Y)=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{(b-a)^{2}}{12} .
$$

Also, if $Y \sim \operatorname{Be}(a, b)$,

$$
E(Y)=\frac{a}{a+b} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{a b}{(a+b)^{2}(a+b+1)} .
$$

Thus:

	Prior $U(0,1)$	Observed $\theta=0.2$	Posterior $B e(2,5)$
Mean	0.5	\longmapsto	0.286
St. dev.	0.289	\longmapsto	0.160

Example 2.1: Summary

Dr. Lee Fawcett

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores.

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores. Let $\theta=\operatorname{Pr}$ (correct choice).

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores. Let $\theta=\operatorname{Pr}$ (correct choice).

Suppose that, before conducting the experiment, we have been told that the expert is very competent.

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores. Let $\theta=\operatorname{Pr}$ (correct choice).

Suppose that, before conducting the experiment, we have been told that the expert is very competent.

In fact, it is suggested that we should have a prior distribution which has a mode around $\theta=0.95$ and for which $\operatorname{Pr}(\theta<0.8)$ is very small.

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores. Let $\theta=\operatorname{Pr}($ correct choice $)$.

Suppose that, before conducting the experiment, we have been told that the expert is very competent.

In fact, it is suggested that we should have a prior distribution which has a mode around $\theta=0.95$ and for which $\operatorname{Pr}(\theta<0.8)$ is very small.

We choose $\theta \sim \operatorname{Be}(77,5)$ (see Example 3.2, Chapter 3), with probability density function

Example 2.2

Consider an experiment to determine how good a music expert is at distinguishing between pages from Haydn and Mozart scores. Let $\theta=\operatorname{Pr}($ correct choice).

Suppose that, before conducting the experiment, we have been told that the expert is very competent.

In fact, it is suggested that we should have a prior distribution which has a mode around $\theta=0.95$ and for which $\operatorname{Pr}(\theta<0.8)$ is very small.

We choose $\theta \sim \operatorname{Be}(77,5)$ (see Example 3.2, Chapter 3), with probability density function

$$
\begin{align*}
\pi(\theta) & =\frac{\theta^{76}(1-\theta)^{4}}{B(77,5)}, \quad 0<\theta<1 \\
& =128107980 \theta^{76}(1-\theta)^{4}, \quad 0<\theta<1 . \tag{2.7}
\end{align*}
$$

Example 2.2

A graph of this prior density is given in Figure 2.4.

Example 2.2

A graph of this prior density is given in Figure 2.4.

Example 2.2

In the experiment, the music expert makes the correct choice 9 out of 10 times.

Example 2.2

In the experiment, the music expert makes the correct choice 9 out of 10 times.

Determine the posterior distribution for θ given this information.

Solution to Example 2.2 (1/2)

We have an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(10, \theta)$.

Solution to Example 2.2 (1/2)

We have an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(10, \theta)$.

This gives a likelihood function of

$$
\begin{align*}
f(x=9 \mid \theta) & ={ }^{10} \mathrm{C}_{9} \theta^{9}(1-\theta)^{1} \\
& =10 \theta^{9}(1-\theta) \tag{2.8}
\end{align*}
$$

Solution to Example 2.2 (1/2)

We have an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(10, \theta)$.

This gives a likelihood function of

$$
\begin{align*}
f(x=9 \mid \theta) & ={ }^{10} \mathrm{C}_{9} \theta^{9}(1-\theta)^{1} \\
& =10 \theta^{9}(1-\theta) \tag{2.8}
\end{align*}
$$

which favours values of θ near its maximum $\theta=0.9$.

Solution to Example 2.2 (1/2)

We have an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(10, \theta)$.

This gives a likelihood function of

$$
\begin{align*}
f(x=9 \mid \theta) & ={ }^{10} \mathrm{C}_{9} \theta^{9}(1-\theta)^{1} \\
& =10 \theta^{9}(1-\theta) \tag{2.8}
\end{align*}
$$

which favours values of θ near its maximum $\theta=0.9$.
We combine these two sources of information using Bayes' Theorem.

Solution to Example 2.2 (2/2)

The posterior density function is

$$
\pi(\theta \mid x=9) \propto \pi(\theta) f(x=9 \mid \theta)
$$

$$
\begin{align*}
& \propto \frac{\theta^{76}(1-\theta)^{4}}{B(77,5)} \times 10 \theta^{9}(1-\theta), \quad 0<\theta<1 \\
& =128107980 \theta^{76}(1-\theta)^{4} \times 10 \theta^{9}(1-\theta), \quad 0<\theta<1 \\
& =k \theta^{85}(1-\theta)^{5}, \quad 0<\theta<1 \tag{2.9}
\end{align*}
$$

Solution to Example 2.2 (2/2)

The posterior density function is
$\pi(\theta \mid x=9) \propto \pi(\theta) f(x=9 \mid \theta)$

$$
\begin{align*}
& \propto \frac{\theta^{76}(1-\theta)^{4}}{B(77,5)} \times 10 \theta^{9}(1-\theta), \quad 0<\theta<1 \\
& =128107980 \theta^{76}(1-\theta)^{4} \times 10 \theta^{9}(1-\theta), \quad 0<\theta<1 \\
& =k \theta^{85}(1-\theta)^{5}, \quad 0<\theta<1 \tag{2.9}
\end{align*}
$$

We can recognise this density function as one from the Beta family. In fact, the posterior distribution is $\theta \mid x=9 \sim B e(86,6)$.

Example 2.2: Summary

The changes in our beliefs about θ are described by the prior and posterior distributions shown in Figure 2.5 and summarised in Table 2.1.

Example 2.2: Summary

	Prior	Likelihood	Posterior
	(2.7)	(2.8)	(2.9)
Mode (θ)	0.950	0.900	0.944
$E(\theta)$	0.939	-	0.935
$S D(\theta)$	0.0263	-	0.0256

Example 2.2: Summary

	Prior	Likelihood	Posterior
(2.7)	(2.8)	(2.9)	
Mode (θ)	0.950	0.900	0.944
$E(\theta)$	0.939	-	0.935
$S D(\theta)$	0.0263	-	0.0256

Notice that, having observed only a 90% success rate in the experiment, the posterior mode and mean are smaller than their prior values.

Example 2.2: Summary

	Prior	Likelihood	Posterior
(2.7)	(2.8)	(2.9)	
$\operatorname{Mode}(\theta)$	0.950	0.900	0.944
$E(\theta)$	0.939	-	0.935
$S D(\theta)$	0.0263	-	0.0256

Notice that, having observed only a 90% success rate in the experiment, the posterior mode and mean are smaller than their prior values.

Also, the experiment has largely confirmed our ideas about θ, with the uncertainty about θ being only very slightly reduced.

Example 2.3

Max, a video game pirate, is trying to identify the proportion of potential customers θ who might be interested in buying Call of Duty: Elite next month.

Based on the proportion of customers who have bought similarly violent games from him in the past, he assumes that $\theta \sim \operatorname{Be}(2.5,12)$ (see Example 3.3, Chapter 3).

Example 2.3

A plot of this prior density is shown in Figure 2.6.

Example 2.3

Max asks five potential customers if they would buy Call of Duty: Elite from him, and four say they would.

Using this information, what is Max's posterior distribution for θ ?

Solution to Example 2.3 (1/2)

We have been told that the prior for θ is a $\operatorname{Be}(2.5,12)$ distribution - this has density given by

Solution to Example 2.3 (1/2)

We have been told that the prior for θ is a $\operatorname{Be}(2.5,12)$ distribution - this has density given by

$$
\begin{align*}
\pi(\theta) & =\frac{\theta^{2.5-1}(1-\theta)^{12-1}}{B(2.5,12)} \\
& =435.1867 \theta^{1.5}(1-\theta)^{11} \tag{2.10}
\end{align*}
$$

Solution to Example 2.3 (1/2)

We have been told that the prior for θ is a $\operatorname{Be}(2.5,12)$ distribution - this has density given by

$$
\begin{align*}
\pi(\theta) & =\frac{\theta^{2.5-1}(1-\theta)^{12-1}}{B(2.5,12)} \\
& =435.1867 \theta^{1.5}(1-\theta)^{11} \tag{2.10}
\end{align*}
$$

We have an observation on the random variable $X \mid \theta \sim \operatorname{Bin}(5, \theta)$. This gives a likelihood function of

$$
\begin{align*}
f(x=4 \mid \theta) & ={ }^{5} \mathrm{C}_{4} \theta^{4}(1-\theta)^{1} \\
& =5 \theta^{4}(1-\theta) \tag{2.11}
\end{align*}
$$

which favours values of θ near its maximum 0.8.

Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) to obtain our posterior distribution - using Bayes' Theorem.

Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) to obtain our posterior distribution - using Bayes' Theorem.

The posterior density function is
$\pi(\theta \mid x=4) \propto \pi(\theta) f(x=4 \mid \theta)$

Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) to obtain our posterior distribution - using Bayes' Theorem.

The posterior density function is
$\pi(\theta \mid x=4) \propto \pi(\theta) f(x=4 \mid \theta)$

$$
\begin{align*}
& \propto 435.1867 \theta^{1.5}(1-\theta)^{11} \times 5 \theta^{4}(1-\theta), \quad 0<\theta<1 \\
& =k \theta^{5.5}(1-\theta)^{12}, \quad 0<\theta<1 . \tag{2.12}
\end{align*}
$$

Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) to obtain our posterior distribution - using Bayes' Theorem.

The posterior density function is
$\pi(\theta \mid x=4) \propto \pi(\theta) f(x=4 \mid \theta)$

$$
\begin{align*}
& \propto 435.1867 \theta^{1.5}(1-\theta)^{11} \times 5 \theta^{4}(1-\theta), \quad 0<\theta<1 \\
& =k \theta^{5.5}(1-\theta)^{12}, \quad 0<\theta<1 \tag{2.12}
\end{align*}
$$

You should recognise this density function as one from the beta family. In fact, we have a $\operatorname{Be}(6.5,13)$,

Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) to obtain our posterior distribution - using Bayes' Theorem.

The posterior density function is
$\pi(\theta \mid x=4) \propto \pi(\theta) f(x=4 \mid \theta)$

$$
\begin{align*}
& \propto 435.1867 \theta^{1.5}(1-\theta)^{11} \times 5 \theta^{4}(1-\theta), \quad 0<\theta<1 \\
& =k \theta^{5.5}(1-\theta)^{12}, \quad 0<\theta<1 \tag{2.12}
\end{align*}
$$

You should recognise this density function as one from the beta family. In fact, we have a $\operatorname{Be}(6.5,13)$, i.e. $\theta \mid x=4 \sim \operatorname{Be}(6.5,13)$.

Example 2.3: Summary

The changes in our beliefs about θ are described by the prior and posterior distributions shown in Figure 2.7 and summarised in Table 2.2.

Example 2.3: Summary

The changes in our beliefs about θ are described by the prior and posterior distributions shown in Figure 2.7 and summarised in Table 2.2.

Example 2.3: Summary

	Prior		
(2.10)			Likelihood
:---:			
(2.11)		Posterior	
:---:			
(2.12)			
Mode (θ)			
0.12			
$E(\theta)$			
0.172			
$S D(\theta)$			
0.096			

Example 2.3: Summary

	Prior		
	(2.10)	Likelihood (2.11)	Posterior (2.12)
Mode (θ)	0.12	0.8	0.314
$E(\theta)$	0.172	-	0.333
$S D(\theta)$	0.096	-	0.104

Notice how the posterior has been "pulled" from the prior towards the observed value: the mode has moved up from 0.12 to 0.314 , and the mean has moved up from 0.172 to 0.333 .

Example 2.3: Summary

	Prior		
(2.10)	Likelihood	(2.11)	Posterior (2.12)
Mode (θ)	0.12	0.8	0.314
$E(\theta)$	0.172	-	0.333
$S D(\theta)$	0.096	-	0.104

Notice how the posterior has been "pulled" from the prior towards the observed value: the mode has moved up from 0.12 to 0.314 , and the mean has moved up from 0.172 to 0.333 .

Having just one observation in the likelihood, we see that there is hardly any change in the standard deviation from prior to posterior: we would expect to see a decrease in standard deviation with the addition of more data values.

■ Assignment drop-in this Thursday, 2pm (questions 4, 9, 10, 11, 12). Good place for hints, tips etc.

■ First computer practical this Friday, 1pm, Herschel PC cluster

■ ReCap problems...?
■ Next week: 2 lectures and a problems class (case study 1)

Example 2.4

Table 2.3 shows some data on the times between serious earthquakes.

An earthquake is included if its magnitude is at least 7.5 on the Richter scale or if over 1000 people were killed.

Recording starts on 16 December 1902 (4500 killed in Turkistan).

The table includes data on 21 earthquakes, that is, 20 "waiting times" between earthquakes.

840	157	145	44	33	121	150	280	434	736
584	887	263	1901	695	294	562	721	76	710

Example 2.4

It is believed that earthquakes happen in a random haphazard kind of way and that times between earthquakes can be described by an exponential distribution.

Data over a much longer period suggest that this exponential assumption is plausible.

Therefore, we will assume that these data are a random sample from an exponential distribution with rate θ (and mean $1 / \theta$). The parameter θ describes the rate at which earthquakes occur.

Example 2.4

An expert on earthquakes has prior beliefs about the rate of earthquakes, θ, described by a $\operatorname{Ga}(10,4000)$ distribution (see Example 3.1, Chapter 3), which has density density

$$
\begin{equation*}
\pi(\theta)=\frac{4000^{10} \theta^{9} e^{-4000 \theta}}{\Gamma(10)}, \quad \theta>0 \tag{2.13}
\end{equation*}
$$

and mean $E(\theta)=0.0025$.

Example 2.4

A plot of this prior distribution can be found in Figure 2.8. As you might expect, the expert believes that only very small values of θ are likely, though larger values are not ruled out!

Example 2.4

A plot of this prior distribution can be found in Figure 2.8. As you might expect, the expert believes that only very small values of θ are likely, though larger values are not ruled out!

Solution to Example 2.4 (1/2)

The data are observations on $X_{i} \mid \theta \sim \operatorname{Exp}(\theta), i=1,2, \ldots, 20$ (independent).

Solution to Example 2.4 (1/2)

The data are observations on $X_{i} \mid \theta \sim \operatorname{Exp}(\theta), i=1,2, \ldots, 20$ (independent).

Therefore, the likelihood function for θ is

$$
f(\boldsymbol{x} \mid \theta)=\prod_{i=1}^{20} \theta e^{-\theta x_{i}}, \quad \theta>0
$$

Solution to Example 2.4 (1/2)

The data are observations on $X_{i} \mid \theta \sim \operatorname{Exp}(\theta), i=1,2, \ldots, 20$ (independent).

Therefore, the likelihood function for θ is

$$
\begin{align*}
f(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{20} \theta e^{-\theta x_{i}}, \quad \theta>0 \\
& =\theta^{20} \exp \left(-\theta \sum_{i=1}^{20} x_{i}\right), \quad \theta>0 \\
& =\theta^{20} e^{-9633 \theta}, \quad \theta>0 . \tag{2.14}
\end{align*}
$$

Solution to Example 2.4 (2/2)

We now apply Bayes Theorem to combine the expert opinion with the observed data. The posterior density function is

Solution to Example 2.4 (2/2)

We now apply Bayes Theorem to combine the expert opinion with the observed data. The posterior density function is

$$
\begin{align*}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \frac{4000^{10} \theta^{9} e^{-4000 \theta}}{\Gamma(10)} \times \theta^{20} e^{-9633 \theta}, \quad \theta>0 \\
& =k \theta^{30-1} e^{-13633 \theta}, \quad \theta>0 \tag{2.15}
\end{align*}
$$

Solution to Example 2.4 (2/2)

We now apply Bayes Theorem to combine the expert opinion with the observed data. The posterior density function is

$$
\begin{align*}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \frac{4000^{10} \theta^{9} e^{-4000 \theta}}{\Gamma(10)} \times \theta^{20} e^{-9633 \theta}, \quad \theta>0 \\
& =k \theta^{30-1} e^{-13633 \theta}, \quad \theta>0 \tag{2.15}
\end{align*}
$$

The only continuous distribution which takes the form $k \theta^{g-1} e^{-h \theta}, \theta>0$ is the $\operatorname{Ga}(g, h)$ distribution.

Solution to Example 2.4 (2/2)

We now apply Bayes Theorem to combine the expert opinion with the observed data. The posterior density function is

$$
\begin{align*}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \frac{4000^{10} \theta^{9} e^{-4000 \theta}}{\Gamma(10)} \times \theta^{20} e^{-9633 \theta}, \quad \theta>0 \\
& =k \theta^{30-1} e^{-13633 \theta}, \quad \theta>0 . \tag{2.15}
\end{align*}
$$

The only continuous distribution which takes the form $k \theta^{g-1} e^{-h \theta}, \theta>0$ is the $\operatorname{Ga}(g, h)$ distribution.

Therefore, the posterior distribution must be $\theta \mid \boldsymbol{X} \sim \operatorname{Ga}(30,13633)$.

Example 2.4: Summary

The data have updated our beliefs about θ from a $\operatorname{Ga}(10,4000)$ distribution to a $G a(30,13633)$ distribution.

Example 2.4: Summary

The data have updated our beliefs about θ from a $G a(10,4000)$ distribution to a $G a(30,13633)$ distribution.

Plots of these distributions are given in Figure 2.9, and Table 2.4 gives a summary of the main changes induced by incorporating the data.

Example 2.4: Summary

Example 2.4: Summary

	Prior Mode (θ)	Likelihood (2.14)	Posterior (2.15)
$E(\theta)$	0.00225	0.00208	0.00213
$S D(\theta)$	0.00250	-	0.00220

Example 2.4: Summary

	Prior 	Likelihood (2.13)	Posterior (2.15)
Mode (θ)	0.00225	0.00208	0.00213
$E(\theta)$	0.00250	-	0.00220
$S D(\theta)$	0.00079	-	0.00040

Notice that, as the mode of the likelihood function is close to that of the prior distribution, the information in the data is consistent with that in the prior distribution.

Example 2.4: Summary

	Prior 	Likelihood (2.13)	Posterior (2.15)
Mode (θ)	0.00225	0.00208	0.00213
$E(\theta)$	0.00250	-	0.00220
$S D(\theta)$	0.00079	-	0.00040

Notice that, as the mode of the likelihood function is close to that of the prior distribution, the information in the data is consistent with that in the prior distribution.

This results in a reduction in variability from the prior to the posterior distributions.

Example 2.4: Summary

	Prior (2.13)	Likelihood (2.14)	Posterior (2.15)
Mode (θ)	0.00225	0.00208	0.00213
$E(\theta)$	0.00250	-	0.00220
$S D(\theta)$	0.00079	-	0.00040

Notice that, as the mode of the likelihood function is close to that of the prior distribution, the information in the data is consistent with that in the prior distribution.

This results in a reduction in variability from the prior to the posterior distributions.

The similarity between the prior beliefs and the data has reduced the uncertainty we have about the likely earthquake rate θ.

Example 2.5

We now consider the general case of the problem discussed in Example 2.4.

Suppose $X_{i} \mid \theta \sim \operatorname{Exp}(\theta), i=1,2, \ldots, n$ (independent) and our prior beliefs about θ are summarised by a $G a(g, h)$ distribution (with g and h known), with density

$$
\begin{equation*}
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0 . \tag{2.16}
\end{equation*}
$$

Determine the posterior distribution for θ.

Solution to Example 2.5 (1/2)

The likelihood function for θ is

$$
\begin{align*}
f(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{n} \theta e^{-\theta x_{i}}, \quad \theta>0 \\
& =\theta^{n} e^{-\theta x_{1}-\theta x_{2}-\ldots-\theta x_{n}} \\
& =\theta^{n} e^{-\theta \sum x} \\
& =\theta^{n} e^{-n \bar{x} \theta}, \quad \theta>0 \tag{2.17}
\end{align*}
$$

Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function is

Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function is

$$
\begin{align*}
& \pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \\
& \propto \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \theta^{n} e^{-n \bar{x} \theta}, \quad \theta>0 . \tag{2.18}\\
& \pi(\theta \mid \boldsymbol{x})=k \theta^{g+n-1} e^{-(h+n \bar{x}) \theta}, \quad \theta>0,
\end{align*}
$$

Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function is

$$
\begin{align*}
& \pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \\
& \quad \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \theta^{n} e^{-n \bar{x} \theta}, \quad \theta>0 . \tag{2.18}\\
& \pi(\theta \mid \boldsymbol{x})=k \theta^{g+n-1} e^{-(h+n \bar{x}) \theta}, \quad \theta>0,
\end{align*}
$$

where k is a constant that does not depend on θ.

Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function is

$$
\begin{align*}
& \pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \\
& \quad \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \theta^{n} e^{-n \bar{x} \theta}, \quad \theta>0 . \tag{2.18}\\
& \pi(\theta \mid \boldsymbol{x})=k \theta^{g+n-1} e^{-(h+n \bar{x}) \theta}, \quad \theta>0,
\end{align*}
$$

where k is a constant that does not depend on θ.
Therefore, the posterior distribution takes the form $k \theta^{g-1} e^{-h \theta}$, $\theta>0$ and so must be a gamma distribution.

Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function is

$$
\begin{align*}
& \pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \quad \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \theta^{n} e^{-n \bar{x} \theta}, \quad \theta>0 . \\
& \pi(\theta \mid \boldsymbol{x})=k \theta^{g+n-1} e^{-(h+n \bar{x}) \theta}, \quad \theta>0, \tag{2.18}
\end{align*}
$$

where k is a constant that does not depend on θ.
Therefore, the posterior distribution takes the form $k \theta^{g-1} e^{-h \theta}$, $\theta>0$ and so must be a gamma distribution.

Thus we have $\theta \mid \boldsymbol{x} \sim \operatorname{Ga}(g+n, h+n \bar{x})$.

Example 2.5: Summary

■ $X_{i} \sim \operatorname{Exp}(\theta)$ and

Example 2.5: Summary

If

- $X_{i} \sim \operatorname{Exp}(\theta)$ and
$\square \theta \sim \operatorname{Ga}(g, h)$, then

Example 2.5: Summary

If

- $X_{i} \sim \operatorname{Exp}(\theta)$ and

■ $\theta \sim \operatorname{Ga}(g, h)$, then
■ $\theta \mid \boldsymbol{x} \sim \operatorname{Ga}(g+n, h+n \bar{x})$
The changes in our beliefs about θ are summarised in Table 2.5 , taking $g \geq 1$.

Example 2.5: Summary

If
■ $X_{i} \sim \operatorname{Exp}(\theta)$ and
■ $\theta \sim \operatorname{Ga}(g, h)$, then
■ $\theta \mid \boldsymbol{X} \sim \operatorname{Ga}(g+n, h+n \bar{x})$
The changes in our beliefs about θ are summarised in Table 2.5 , taking $g \geq 1$.

	Prior 	Likelihood (2.17)	Posterior (2.18)
Mode (θ)	$(g-1) / h$	$1 / \bar{x}$	$(g+n-1) /(h+n \bar{x})$
$E(\theta)$	g / h	-	$(g+n) /(h+n \bar{x})$
$S D(\theta)$	\sqrt{g} / h	-	$\sqrt{g+n} /(h+n \bar{x})$

Chapter 2 so far...

Model	Prior	Posterior
Binomial (k, θ)	$\theta \sim U(0,1)$	Beta
	$\theta \sim \operatorname{Beta}(a, b)$	Beta

Chapter 2 so far...

Model	Prior	Posterior
Binomial (k, θ)	$\theta \sim U(0,1)$	Beta
	$\theta \sim \operatorname{Beta}(a, b)$	Beta
$\operatorname{Exponential}(\theta)$	$\theta \sim \operatorname{Ga}(g, h)$	Gamma

Chapter 2 so far...

Model	Prior	Posterior
Binomial (k, θ)	$\theta \sim U(0,1)$	Beta
	$\theta \sim \operatorname{Beta}(a, b)$	Beta
Exponential (θ)	$\theta \sim \operatorname{Ga(g}(g)$	Gamma
	$\theta \sim \exp (g)$	$? ?$

Chapter 2 so far...

Model	Prior	Posterior
Binomial (k, θ)	$\theta \sim U(0,1)$	Beta
	$\theta \sim \operatorname{Beta}(a, b)$	Beta
Exponential (θ)	$\theta \sim \operatorname{Ga}(g, h)$	Gamma
	$\theta \sim \exp (g)$	$? ?$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$	$\mu \sim N(b, 1 / d)$	Normal

Conjugacy

Definition (Conjugacy)

Suppose that data \boldsymbol{x} are to be observed with distribution $f(\boldsymbol{x} \mid \theta)$.
A family \mathfrak{F} of prior distributions for θ is said to be conjugate to $f(\boldsymbol{x} \mid \theta)$ if for every prior distribution $\pi(\theta) \in \mathfrak{F}$, the posterior distribution $\pi(\theta \mid \boldsymbol{x})$ is also in \mathfrak{F}.

Example 2.6

Suppose we have a random sample from a Normal distribution.
In Bayesian statistics, when dealing with the Normal distribution, the mathematics is more straightforward if we work with the precision ($=1 /$ variance) of the distribution rather than the variance itself.

Example 2.6

Suppose we have a random sample from a Normal distribution.
In Bayesian statistics, when dealing with the Normal distribution, the mathematics is more straightforward if we work with the precision ($=1 /$ variance) of the distribution rather than the variance itself.

So we will assume that this population has unknown mean μ but known precision $\tau: X_{i} \mid \mu \sim N(\mu, 1 / \tau), i=1,2, \ldots, n$ (independent), where τ is known.

Example 2.6

Suppose we have a random sample from a Normal distribution.
In Bayesian statistics, when dealing with the Normal distribution, the mathematics is more straightforward if we work with the precision ($=1 /$ variance) of the distribution rather than the variance itself.

So we will assume that this population has unknown mean μ but known precision $\tau: X_{i} \mid \mu \sim N(\mu, 1 / \tau), i=1,2, \ldots, n$ (independent), where τ is known.

Suppose our prior beliefs about μ can be summarised by a $N(b, 1 / d)$ distribution,

Example 2.6

Suppose we have a random sample from a Normal distribution. In Bayesian statistics, when dealing with the Normal distribution, the mathematics is more straightforward if we work with the precision (= 1 /variance) of the distribution rather than the variance itself.

So we will assume that this population has unknown mean μ but known precision $\tau: X_{i} \mid \mu \sim N(\mu, 1 / \tau), i=1,2, \ldots, n$ (independent), where τ is known.

Suppose our prior beliefs about μ can be summarised by a $N(b, 1 / d)$ distribution, with probability density function

$$
\begin{equation*}
\pi(\mu)=\left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\} \tag{2.19}
\end{equation*}
$$

Determine the posterior distribution for μ.

Solution to Example 2.6 (1/5)

The likelihood function for μ is

$$
f(\boldsymbol{x} \mid \mu)=\prod_{i=1}^{n}\left(\frac{\tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\tau}{2}\left(x_{i}-\mu\right)^{2}\right\}
$$

Solution to Example 2.6 (1/5)

The likelihood function for μ is

$$
\begin{aligned}
f(\boldsymbol{x} \mid \mu) & =\prod_{i=1}^{n}\left(\frac{\tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\tau}{2}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.6 (1/5)

The likelihood function for μ is

$$
\begin{aligned}
f(\boldsymbol{x} \mid \mu) & =\prod_{i=1}^{n}\left(\frac{\tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\tau}{2}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.6 (1/5)

The likelihood function for μ is

$$
\begin{aligned}
f(\boldsymbol{x} \mid \mu) & =\prod_{i=1}^{n}\left(\frac{\tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\tau}{2}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2}\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2} \sum_{i=1}^{n}\left(\left[x_{i}-\bar{x}\right]+[\bar{x}-\mu]\right)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.6 (2/5)

Giving
$f(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right.\right.$

$$
\left.\left.+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n}(\bar{x}-\mu)^{2}\right]\right\}
$$

Solution to Example 2.6 (2/5)

Giving
$f(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right.\right.$
$\left.\left.+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n}(\bar{x}-\mu)^{2}\right]\right\}$

$$
=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\}
$$

Let

Solution to Example 2.6 (2/5)

Giving
$f(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right.\right.$
$\left.\left.+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n}(\bar{x}-\mu)^{2}\right]\right\}$

$$
=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\}
$$

Let

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Solution to Example 2.6 (2/5)

Giving
$f(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right.\right.$
$\left.\left.+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n}(\bar{x}-\mu)^{2}\right]\right\}$

$$
=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{\tau}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\},
$$

Let

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Then

$$
\begin{equation*}
f(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\} \tag{2.20}
\end{equation*}
$$

Solution to Example $2.6(3 / 5)$

Applying Bayes Theorem, the posterior density function is $\pi(\mu \mid \boldsymbol{X}) \propto \pi(\mu) f(\boldsymbol{x} \mid \mu)$

Solution to Example 2.6 (3/5)

Applying Bayes Theorem, the posterior density function is

$$
\pi(\mu \mid \boldsymbol{x}) \propto \pi(\mu) f(\boldsymbol{x} \mid \mu)
$$

$$
\propto\left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\}
$$

$$
\times\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\}
$$

$$
=k_{1} \exp \left\{-\frac{d}{2}(\mu-b)^{2}-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\}
$$

$$
=k_{1} \exp \left\{-\frac{1}{2}\left[d(\mu-b)^{2}+n \tau(\bar{x}-\mu)^{2}\right]\right\}
$$

Solution to Example 2.6 (3/5)

Applying Bayes Theorem, the posterior density function is

$$
\pi(\mu \mid \boldsymbol{x}) \propto \pi(\mu) f(\boldsymbol{x} \mid \mu)
$$

$$
\propto\left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\}
$$

$$
\times\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\}
$$

$$
=k_{1} \exp \left\{-\frac{d}{2}(\mu-b)^{2}-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\}
$$

$$
=k_{1} \exp \left\{-\frac{1}{2}\left[d(\mu-b)^{2}+n \tau(\bar{x}-\mu)^{2}\right]\right\}
$$

where k_{1} is a constant that does not depend on μ.

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
d(\mu-b)^{2}+n_{\tau}(\bar{x}-\mu)^{2}
$$

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
\begin{aligned}
d(\mu-b)^{2} & +n \tau(\bar{x}-\mu)^{2} \\
& =d\left(\mu^{2}-2 b \mu+b^{2}\right)+n \tau\left(\bar{x}^{2}-2 \bar{x} \mu+\mu^{2}\right)
\end{aligned}
$$

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
\begin{aligned}
d(\mu-b)^{2} & +n \tau(\bar{x}-\mu)^{2} \\
& =d\left(\mu^{2}-2 b \mu+b^{2}\right)+n_{\tau}\left(\bar{x}^{2}-2 \bar{x} \mu+\mu^{2}\right) \\
& =d \mu^{2}+n \tau \mu^{2}-2 d b \mu-2 n \tau \bar{x} \mu+d b^{2}+n_{\tau} \bar{x}^{2}
\end{aligned}
$$

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
\begin{aligned}
d(\mu-b)^{2} & +n \tau(\bar{x}-\mu)^{2} \\
& =d\left(\mu^{2}-2 b \mu+b^{2}\right)+n \tau\left(\bar{x}^{2}-2 \bar{x} \mu+\mu^{2}\right) \\
& =d \mu^{2}+n \tau \mu^{2}-2 d b \mu-2 n \tau \bar{x} \mu+d b^{2}+n \tau \bar{x}^{2} \\
& =(d+n \tau) \mu^{2}-2(d b+n \tau \bar{x}) \mu+d b^{2}+n \tau \bar{x}^{2}
\end{aligned}
$$

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
\begin{aligned}
d(\mu-b)^{2} & +n_{\tau}(\bar{x}-\mu)^{2} \\
& =d\left(\mu^{2}-2 b \mu+b^{2}\right)+n \tau\left(\bar{x}^{2}-2 \bar{x} \mu+\mu^{2}\right) \\
& =d \mu^{2}+n \tau \mu^{2}-2 d b \mu-2 n \tau \bar{x} \mu+d b^{2}+n \tau \bar{x}^{2} \\
& =(d+n \tau) \mu^{2}-2(d b+n \tau \bar{x}) \mu+d b^{2}+n \tau \bar{x}^{2} \\
& =(d+n \tau)\left(\mu^{2}-\frac{2(d b+n \tau \bar{x})}{d+n \tau} \mu+c\right)
\end{aligned}
$$

Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

$$
\begin{aligned}
d(\mu-b)^{2} & +n_{\tau}(\bar{x}-\mu)^{2} \\
& =d\left(\mu^{2}-2 b \mu+b^{2}\right)+n_{\tau}\left(\bar{x}^{2}-2 \bar{x} \mu+\mu^{2}\right) \\
& =d \mu^{2}+n \tau \mu^{2}-2 d b \mu-2 n \tau \bar{x} \mu+d b^{2}+n \tau \bar{x}^{2} \\
& =(d+n \tau) \mu^{2}-2(d b+n \tau \bar{x}) \mu+d b^{2}+n_{\tau} \bar{x}^{2} \\
& =(d+n \tau)\left(\mu^{2}-\frac{2(d b+n \tau \bar{x})}{d+n \tau} \mu+c\right) \\
& =(d+n \tau)\left\{\mu-\left(\frac{d b+n \tau \bar{x}}{d+n \tau}\right)\right\}^{2}+c
\end{aligned}
$$

where c does not depend on μ.

Solution to Example 2.6 (5/5)

Let

$$
\begin{equation*}
B=\frac{d b+n \tau \bar{x}}{d+n \tau} \quad \text { and } \quad D=d+n \tau \tag{2.21}
\end{equation*}
$$

Solution to Example 2.6 (5/5)

Let

$$
\begin{equation*}
B=\frac{d b+n \tau \bar{x}}{d+n \tau} \quad \text { and } \quad D=d+n \tau \tag{2.21}
\end{equation*}
$$

Then

$$
\begin{align*}
\pi(\mu \mid \boldsymbol{x}) & =k_{1} \exp \left\{-\frac{D}{2}(\mu-B)^{2}-\frac{c}{2}\right\} \\
& =k \exp \left\{-\frac{D}{2}(\mu-B)^{2}\right\} \tag{2.22}
\end{align*}
$$

where k is a constant that does not depend on μ.

Solution to Example 2.6 (5/5)

Let

$$
\begin{equation*}
B=\frac{d b+n \tau \bar{x}}{d+n \tau} \quad \text { and } \quad D=d+n \tau \tag{2.21}
\end{equation*}
$$

Then

$$
\begin{align*}
\pi(\mu \mid \boldsymbol{x}) & =k_{1} \exp \left\{-\frac{D}{2}(\mu-B)^{2}-\frac{c}{2}\right\} \\
& =k \exp \left\{-\frac{D}{2}(\mu-B)^{2}\right\} \tag{2.22}
\end{align*}
$$

where k is a constant that does not depend on μ.
Therefore, the posterior distribution takes the form
$k \exp \left\{-D(\mu-B)^{2} / 2\right\},-\infty<\mu<\infty$ and so must be a normal distribution: we have $\mu \mid \boldsymbol{x} \sim N(B, 1 / D)$.

Example 2.6: Summary

If we have a random sample from a $N(\mu, 1 / \tau)$ distribution (with τ known) and our prior beliefs about μ follow a $N(b, 1 / d)$ distribution then, after incorporating the data, our (posterior) beliefs about μ follow a $N(B, 1 / D)$ distribution.

Example 2.6: Summary

If we have a random sample from a $N(\mu, 1 / \tau)$ distribution (with τ known) and our prior beliefs about μ follow a $N(b, 1 / d)$ distribution then, after incorporating the data, our (posterior) beliefs about μ follow a $N(B, 1 / D)$ distribution.

Example 2.6: Summary

The changes in our beliefs about μ are summarised in Table 2.6.

Example 2.6: Summary

The changes in our beliefs about μ are summarised in Table 2.6.

	Prior (2.19)	Likelihood (2.20)	Posterior (2.21)
Mode (μ)	b	\bar{x}	$(d b+n \tau \bar{x}) /(d+n \tau)$
$E(\mu)$	b	-	$(d b+n \tau \bar{x}) /(d+n \tau)$
Precision (μ)	d	-	$d+n \tau$

Example 2.6: Summary

Notice that the way prior information and observed data combine is through the parameters of the normal distribution:

Example 2.6: Summary

Notice that the way prior information and observed data combine is through the parameters of the normal distribution:

$$
b \rightarrow \frac{d b+n \tau \bar{x}}{d+n \tau} \quad \text { and } \quad d \rightarrow d+n \tau
$$

Example 2.6: Summary

Notice also that the posterior variance (and precision) does not depend on the data, and the posterior mean is a convex combination of the prior and sample means, that is,

$$
B=\frac{d b+n \tau \bar{x}}{d+n \tau}
$$

Example 2.6: Summary

Notice also that the posterior variance (and precision) does not depend on the data, and the posterior mean is a convex combination of the prior and sample means, that is,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{d b}{d+n \tau}+\frac{n \tau \bar{x}}{d+n \tau}
\end{aligned}
$$

Example 2.6: Summary

Notice also that the posterior variance (and precision) does not depend on the data, and the posterior mean is a convex combination of the prior and sample means, that is,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{d b}{d+n \tau}+\frac{n \tau \bar{x}}{d+n \tau} \\
& =\frac{d}{d+n \tau} b+\frac{n \tau}{d+n \tau} \bar{x}
\end{aligned}
$$

Example 2.6: Summary

Notice also that the posterior variance (and precision) does not depend on the data, and the posterior mean is a convex combination of the prior and sample means, that is,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{d b}{d+n \tau}+\frac{n \tau \bar{x}}{d+n \tau} \\
& =\frac{d}{d+n \tau} b+\frac{n \tau}{d+n \tau} \bar{x} \\
& =\left(\frac{d}{d+n \tau}\right) b+\left(\frac{d+n \tau-d}{d+n \tau}\right) \bar{x}
\end{aligned}
$$

Example 2.6: Summary

Notice also that the posterior variance (and precision) does not depend on the data, and the posterior mean is a convex combination of the prior and sample means, that is,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{d b}{d+n \tau}+\frac{n \tau \bar{x}}{d+n \tau} \\
& =\frac{d}{d+n \tau} b+\frac{n \tau}{d+n \tau} \bar{x} \\
& =\left(\frac{d}{d+n \tau}\right) b+\left(\frac{d+n \tau-d}{d+n \tau}\right) \bar{x} \\
& =\alpha b+(1-\alpha) \bar{x}, \quad \alpha=\frac{d}{d+n \tau} .
\end{aligned}
$$

Example 2.6: Summary

This equation for the posterior mean, which can be rewritten as

$$
E(\mu \mid \boldsymbol{x})=\alpha E(\mu)+(1-\alpha) \bar{x}
$$

arises in other models and is known as the Bayes linear rule (see Problems Sheet 2, question 3).

Example 2.6: Summary

Notice that the posterior mean is greater than the prior mean if and only if the likelihood mode (sample mean) is greater than the prior mean, that is

$$
E(\mu \mid \boldsymbol{x})>E(\mu) \quad \Longleftrightarrow \quad \operatorname{Mode}[f(\boldsymbol{x} \mid \mu)]>E(\mu) .
$$

Example 2.6: Summary

Notice that the posterior mean is greater than the prior mean if and only if the likelihood mode (sample mean) is greater than the prior mean, that is

$$
E(\mu \mid \boldsymbol{x})>E(\mu) \quad \Longleftrightarrow \quad \operatorname{Mode}[f(\boldsymbol{x} \mid \mu)]>E(\mu) .
$$

Also, the standard deviation of the posterior distribution is smaller than that of the prior distribution.

Example 2.7

The ages of Ennerdale granophyre rocks can be determined using the relative proportions of rubidium-87 and strontium-87 in the rock.

An expert in the field suggests that the ages of such rocks (in millions of years) $X \mid \mu \sim N\left(\mu, 8^{2}\right)$ and that a prior distribution $\mu \sim N\left(370,20^{2}\right)$ is appropriate.

A rock is found whose chemical analysis yields $x=421$. What is the posterior distribution for μ and what is the probability that the rock will be older than 400 million years?

Solution to Example 2.7 (1/2)

We have $n=1, \bar{x}=x=421, \tau=1 / 64, b=370$ and $d=1 / 400$.

Solution to Example 2.7 (1/2)

We have $n=1, \bar{x}=x=421, \tau=1 / 64, b=370$ and $d=1 / 400$. Therefore, using the results in Example 2.6,

$$
B=\frac{d b+n \tau \bar{x}}{d+n \tau}
$$

Solution to Example 2.7 (1/2)

We have $n=1, \bar{x}=x=421, \tau=1 / 64, b=370$ and $d=1 / 400$. Therefore, using the results in Example 2.6,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{370 / 400+421 / 64}{1 / 400+1 / 64}=414.0 \quad \text { and }
\end{aligned}
$$

Solution to Example 2.7 (1/2)

We have $n=1, \bar{x}=x=421, \tau=1 / 64, b=370$ and $d=1 / 400$. Therefore, using the results in Example 2.6,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{370 / 400+421 / 64}{1 / 400+1 / 64}=414.0 \quad \text { and } \\
D & =d+n \tau
\end{aligned}
$$

Solution to Example 2.7 (1/2)

We have $n=1, \bar{x}=x=421, \tau=1 / 64, b=370$ and $d=1 / 400$. Therefore, using the results in Example 2.6,

$$
\begin{aligned}
B & =\frac{d b+n \tau \bar{x}}{d+n \tau} \\
& =\frac{370 / 400+421 / 64}{1 / 400+1 / 64}=414.0 \quad \text { and } \\
D & =d+n \tau \\
& =1 / 400+1 / 64=1 / 7.43^{2} .
\end{aligned}
$$

Solution to Example 2.7 (2/2)

Thus, the posterior distribution is $\mu \mid x=421 \sim N\left(414.0,7.43^{2}\right)$.

Solution to Example 2.7 (2/2)

Thus, the posterior distribution is $\mu \mid x=421 \sim N\left(414.0,7.43^{2}\right)$.
The (posterior) probability that the rock will be older than 400 million years is

$$
\operatorname{Pr}(\mu>400 \mid x=421)=0.9702
$$

calculated using the R commands 1-pnorm (400, 414, 7.43) or 1-pnorm (-1.884) (or indeed by hand using tables).

Solution to Example 2.7 (2/2)

Thus, the posterior distribution is $\mu \mid x=421 \sim N\left(414.0,7.43^{2}\right)$.
The (posterior) probability that the rock will be older than 400 million years is

$$
\operatorname{Pr}(\mu>400 \mid x=421)=0.9702
$$

calculated using the R commands 1-pnorm (400, 414, 7.43) or 1-pnorm (-1.884) (or indeed by hand using tables).

Without the chemical analysis, the only basis for determining the age of the rock is via the prior distribution.

Solution to Example 2.7 (2/2)

Thus, the posterior distribution is $\mu \mid x=421 \sim N\left(414.0,7.43^{2}\right)$.
The (posterior) probability that the rock will be older than 400 million years is

$$
\operatorname{Pr}(\mu>400 \mid x=421)=0.9702
$$

calculated using the R commands 1-pnorm ($400,414,7.43$) or 1-pnorm (-1.884) (or indeed by hand using tables).

Without the chemical analysis, the only basis for determining the age of the rock is via the prior distribution.

The (prior) probability that the rock will be older than 400 million years is $\operatorname{Pr}(\mu>400)=0.0668$ calculated using the R command 1-pnorm (400,370,20).

Example 2.7: Summary

This highlights the benefit of taking the chemical measurements.

Note that the large difference between these probabilities is not necessarily due to the expert's prior distribution being inaccurate, per se.

It is probably due to the large prior uncertainty about rock ages, as shown in Figure 2.10.

Example 2.7: Summary

Posterior distributions and sufficient statistics

We have already met the concept of sufficient statistics. Not surprisingly they also play a role in Bayesian Inference.

Posterior distributions and sufficient statistics

We have already met the concept of sufficient statistics. Not surprisingly they also play a role in Bayesian Inference.

Suppose that we have data $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ available and we want to make inferences about the parameter θ in the statistical model $f(\boldsymbol{x} \mid \theta)$.

We have already met the concept of sufficient statistics. Not surprisingly they also play a role in Bayesian Inference.

Suppose that we have data $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ available and we want to make inferences about the parameter θ in the statistical model $f(\boldsymbol{x} \mid \theta)$.

If T is a sufficient statistic then by the Factorisation Theorem

$$
f(\boldsymbol{x} \mid \theta)=h(\boldsymbol{x}) g(t, \theta)
$$

Posterior distributions and sufficient statistics

Therefore, using Bayes Theorem,

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f(\boldsymbol{x} \mid \theta)
$$

Posterior distributions and sufficient statistics

Therefore, using Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \pi(\theta) h(\boldsymbol{x}) g(t, \theta) \\
& \propto \pi(\theta) g(t, \theta)
\end{aligned}
$$

It can be shown that, up to a constant not depending on θ, $g(t, \theta)$ is equal to the probability (density) function of T;

Posterior distributions and sufficient statistics

Therefore, using Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \pi(\theta) h(\boldsymbol{x}) g(t, \theta) \\
& \propto \pi(\theta) g(t, \theta)
\end{aligned}
$$

It can be shown that, up to a constant not depending on θ, $g(t, \theta)$ is equal to the probability (density) function of T; that is

Therefore, using Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid \boldsymbol{x}) & \propto \pi(\theta) f(\boldsymbol{x} \mid \theta) \\
& \propto \pi(\theta) h(\boldsymbol{x}) g(t, \theta) \\
& \propto \pi(\theta) g(t, \theta)
\end{aligned}
$$

It can be shown that, up to a constant not depending on θ, $g(t, \theta)$ is equal to the probability (density) function of T; that is

$$
g(t, \theta) \propto f_{T}(t \mid \theta)
$$

Hence

$$
\pi(\theta \mid \boldsymbol{x}) \propto \pi(\theta) f_{T}(t \mid \theta)
$$

Posterior distributions and sufficient statistics

However, applying Bayes Theorem to the data t gives

However, applying Bayes Theorem to the data t gives

$$
\pi(\theta \mid t) \propto \pi(\theta) f_{T}(t \mid \theta)
$$

and so, since

$$
\pi(\theta \mid \boldsymbol{X}) \propto \pi(\theta \mid t)
$$

and both are probability (density) functions, we have

Posterior distributions and sufficient statistics

However, applying Bayes Theorem to the data t gives

$$
\pi(\theta \mid t) \propto \pi(\theta) f_{T}(t \mid \theta)
$$

and so, since

$$
\pi(\theta \mid \boldsymbol{X}) \propto \pi(\theta \mid t)
$$

and both are probability (density) functions, we have

$$
\pi(\theta \mid \boldsymbol{x})=\pi(\theta \mid t)
$$

Posterior distributions and sufficient statistics

Therefore, our (posterior) beliefs about θ having observed the full data \boldsymbol{x} are the same as if we had observed only the sufficient statistic T.

Posterior distributions and sufficient statistics

Therefore, our (posterior) beliefs about θ having observed the full data \boldsymbol{x} are the same as if we had observed only the sufficient statistic T.

This is what we would expect if all the information about θ in the data were contained in the sufficient statistic.

Example 2.8

Suppose we have a random sample from an exponential distribution with a gamma prior distribution, that is, $X_{i} \mid \theta \sim \operatorname{Exp}(\theta), i=1,2, \ldots, n$ (independent) and $\theta \sim G a(g, h)$.

Determine a sufficient statistic T for θ and verify that $\pi(\theta \mid \boldsymbol{x})=\pi(\theta \mid t)$.

Solution to Example 2.8 (1/2)

The density of the data is

$$
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \theta)=\prod_{i=1}^{n} \theta e^{-\theta x_{i}}
$$

Solution to Example 2.8 (1/2)

The density of the data is

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{n} \theta e^{-\theta x_{i}} \\
& =\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right)
\end{aligned}
$$

Solution to Example 2.8 (1/2)

The density of the data is

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{n} \theta e^{-\theta x_{i}} \\
& =\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right) \\
& =1 \times \theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right)
\end{aligned}
$$

Solution to Example 2.8 (1/2)

The density of the data is

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{n} \theta e^{-\theta x_{i}} \\
& =\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right) \\
& =1 \times \theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right) \\
& =h(\boldsymbol{x}) g\left(\sum x_{i}, \theta\right)
\end{aligned}
$$

Solution to Example 2.8 (1/2)

The density of the data is

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \theta) & =\prod_{i=1}^{n} \theta e^{-\theta x_{i}} \\
& =\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right) \\
& =1 \times \theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right) \\
& =h(\boldsymbol{x}) g\left(\sum x_{i}, \theta\right)
\end{aligned}
$$

and therefore, by the Factorisation Theorem, $T=\sum_{i=1}^{n} X_{i}$ is sufficient for θ.

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim G a(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Also

$$
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0
$$

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Also

$$
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0
$$

Therefore, by Bayes Theorem,

$$
\pi(\theta \mid t) \propto \pi(\theta) f(t \mid \theta)
$$

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Also

$$
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0
$$

Therefore, by Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid t) & \propto \pi(\theta) f(t \mid \theta) \\
& \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
\end{aligned}
$$

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Also

$$
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0
$$

Therefore, by Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid t) & \propto \pi(\theta) f(t \mid \theta) \\
& \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0 \\
& \propto \theta^{g+n-1} e^{-(h+t) \theta}, \quad \theta>0
\end{aligned}
$$

and so the posterior distribution is $\theta \mid t \sim \operatorname{Ga}(g+n, h+t)$.

Solution to Example 2.8 (2/2)

Now $T \mid \theta \sim \operatorname{Ga}(n, \theta)$ and so

$$
f_{T}(t \mid \theta)=\frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0
$$

Also

$$
\pi(\theta)=\frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)}, \quad \theta>0
$$

Therefore, by Bayes Theorem,

$$
\begin{aligned}
\pi(\theta \mid t) & \propto \pi(\theta) f(t \mid \theta) \\
& \propto \frac{h^{g} \theta^{g-1} e^{-h \theta}}{\Gamma(g)} \times \frac{\theta^{n} t^{n-1} e^{-\theta t}}{\Gamma(n)}, \quad \theta>0 \\
& \propto \theta^{g+n-1} e^{-(h+t) \theta}, \quad \theta>0
\end{aligned}
$$

and so the posterior distribution is $\theta \mid t \sim \operatorname{Ga}(g+n, h+t)$. This is the same as the result we obtained previously for $\theta \mid \boldsymbol{x}$.

Example 2.9

Suppose we have a random sample from a normal distribution with known variance and a normal prior distribution for the mean parameter, that is, $X_{i} \mid \mu \sim N(\mu, 1 / \tau), i=1,2, \ldots, n$ (independent) and $\mu \sim N(b, 1 / d)$.

Determine a sufficient statistic T for μ and verify that $\pi(\mu \mid \boldsymbol{x})=\pi(\mu \mid t)$.

Solution to Example 2.9 (1/3)

Recall from Equation (2.20) that

$$
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \mu)=\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\}
$$

Solution to Example 2.9 (1/3)

Recall from Equation (2.20) that

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \mu) & =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau s^{2}}{2}\right\} \times \exp \left\{-\frac{n \tau}{2}(\bar{x}-\mu)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.9 (1/3)

Recall from Equation (2.20) that

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x} \mid \mu) & =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau}{2}\left[s^{2}+(\bar{x}-\mu)^{2}\right]\right\} \\
& =\left(\frac{\tau}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{n \tau s^{2}}{2}\right\} \times \exp \left\{-\frac{n \tau}{2}(\bar{x}-\mu)^{2}\right\} \\
& =h(\boldsymbol{x}) g(\bar{x}, \mu)
\end{aligned}
$$

and therefore, by the Factorisation Theorem, $T=\bar{X}$ is sufficient for μ.

Solution to Example 2.9 (2/3)

Now $T \mid \mu \sim N(\mu, 1 /(n \tau))$ (by the Central Limit Theorem) and so

$$
f_{T}(t \mid \mu)=\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\}
$$

Solution to Example 2.9 (2/3)

Now $T \mid \mu \sim N(\mu, 1 /(n \tau))$ (by the Central Limit Theorem) and so

$$
f_{T}(t \mid \mu)=\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\}
$$

Also

$$
\pi(\mu)=\left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\}
$$

Solution to Example 2.9 (3/3)

Therefore, by Bayes' Theorem,
$\pi(\mu \mid t) \propto \pi(\mu) f(t \mid \mu)$

Solution to Example 2.9 (3/3)

Therefore, by Bayes' Theorem,

$$
\begin{aligned}
\pi(\mu \mid t) \propto & \pi(\mu) f(t \mid \mu) \\
\propto & \left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\} \\
& \times\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.9 (3/3)

Therefore, by Bayes' Theorem,

$$
\begin{aligned}
\pi(\mu \mid t) \propto & \pi(\mu) f(t \mid \mu) \\
\propto & \left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\} \\
& \times\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\} \\
\propto & \exp \left\{-\frac{d}{2}(\mu-b)^{2}-\frac{n \tau}{2}(t-\mu)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.9 (3/3)

Therefore, by Bayes' Theorem,

$$
\begin{aligned}
\pi(\mu \mid t) \propto & \pi(\mu) f(t \mid \mu) \\
\propto & \left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\} \\
& \times\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\} \\
\propto & \exp \left\{-\frac{d}{2}(\mu-b)^{2}-\frac{n \tau}{2}(t-\mu)^{2}\right\} \\
& \vdots \\
\propto & \exp \left\{-\frac{D}{2}(\mu-B)^{2}\right\}
\end{aligned}
$$

Solution to Example 2.9 (3/3)

Therefore, by Bayes' Theorem,

$$
\begin{aligned}
\pi(\mu \mid t) \propto & \pi(\mu) f(t \mid \mu) \\
\propto & \left(\frac{d}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{d}{2}(\mu-b)^{2}\right\} \\
& \times\left(\frac{n \tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{n \tau}{2}(t-\mu)^{2}\right\} \\
\propto & \exp \left\{-\frac{d}{2}(\mu-b)^{2}-\frac{n \tau}{2}(t-\mu)^{2}\right\} \\
& \vdots \\
\propto & \exp \left\{-\frac{D}{2}(\mu-B)^{2}\right\}
\end{aligned}
$$

where B and D are as in Equation (2.21), with t replacing \bar{x}; that is, $\mu \mid t \sim N(B, 1 / D)$, the same distribution as $\mu \mid \boldsymbol{x}$.

