
Chapter 2

Bayes’ Theorem for Distributions
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Bayes’ Theorem for Distributions

Suppose we have data x which we model using the probability

(density) function f (x |θ), which depends on a single

parameter θ.

Once we have observed the data, f (x |θ)

is the likelihood function for θ

is a function of θ (for fixed x) rather than

a function of x (for fixed θ).
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Bayes’ Theorem for Distributions

Also, suppose we have prior beliefs about likely values of θ
expressed by a probability (density) function π(θ).

We can combine both pieces of information using the following

version of Bayes Theorem.

The resulting distribution for θ is called the posterior

distribution for θ as it expresses our beliefs about θ after

seeing the data.

It summarises all our current knowledge about the parameter θ.
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Bayes’ Theorem for Distributions

The posterior probability (density) function for θ is

π(θ|x) = π(θ) f (x |θ)
f (x)

where

f (x) =











∫

Θ π(θ) f (x |θ)dθ if θ is continuous,

∑

Θ π(θ) f (x |θ) if θ is discrete.

Notice that, as f (x) is not a function of θ, Bayes Theorem can

be rewritten as

π(θ|x) ∝ π(θ)× f (x |θ)
i .e. posterior ∝ prior × likelihood.
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Bayes’ Theorem for Distributions

Thus, to obtain the posterior distribution, we need:

(1) data, from which we can form the likelihood f (x |θ), and

(2) a suitable distribution, π(θ), that represents our prior

beliefs about θ.
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Some important continuous distributions

Definition (Continuous Uniform distribution)

The random variable Y follows a Uniform U(a,b) distribution if

it has probability density function

f (y |a,b) = 1

b − a
, a ≤ y ≤ b.

This form of probability density function ensures that all values

in the range [a,b] are equally likely, hence the name “uniform”.

This distribution is sometimes called the rectangular

distribution because of its shape.

You should remember from MAS1604 that

E(Y ) =
a + b

2
and Var(Y ) =

(b − a)2

12
.
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Some important continuous distributions

Definition (Beta distribution)

The random variable Y follows a Beta Be(a,b) distribution

(a > 0, b > 0) if it has probability density function

f (y |a,b) = ya−1(1 − y)b−1

B(a,b)
, 0 < y < 1. (2.1)

The constant term B(a,b), also known as the beta function,

ensures that the density integrates to one. Therefore

B(a,b) =

∫ 1

0

ya−1(1 − y)b−1 dy . (2.2)
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Some important continuous distributions

It can be shown that the beta function can be expressed in

terms of another function, called the gamma function Γ(·), as

B(a,b) =
Γ(a)Γ(b)

Γ(a + b)
,

where

Γ(a) =

∫

∞

0

xa−1e−x dx . (2.3)
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Some important continuous distributions

Tables are available for both B(a,b) and Γ(a).

However, these functions are very simple to evaluate when a

and b are integers since the gamma function is a generalisation

of the factorial function.

In particular, when a and b are integers, we have

Γ(a) = (a − 1)! and B(a,b) =
(a − 1)!(b − 1)!

(a + b − 1)!
.
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Some important continuous distributions

It can be shown, using the identity Γ(a) = (a − 1)Γ(a − 1), that

E(Y ) =
a

a + b
, and Var(Y ) =

ab

(a + b)2(a + b + 1)
.

Also

Mode(Y ) =
a − 1

a + b − 2
, if a > 1 and b > 1.
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Some important continuous distributions

Definition (Gamma distribution)
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Bayes Theorem for distributions in action

We will now see Bayes’ Theorem for distributions "in action".

Recall that we have

π(θ|x) ∝ π(θ)× f (x |θ), i.e.

posterior ∝ prior × likelihood

Recall also that, for now, we will assume our prior for θ has

been given to us – we will look at how such priors are

constructed, or elicited, in the next chapter.
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Example 2.1

Consider an experiment with a possibly biased coin. Let

θ = Pr(Head).

Suppose that, before conducting the experiment, we believe

that all values of θ are equally likely.

This gives a prior distribution θ ∼ U(0,1), and so

π(θ) = 1, 0 < θ < 1. (2.4)

Note that with this prior distribution E(θ) = 0.5.

We now toss the coin 5 times and observe 1 head. Determine

the posterior distribution for θ given this data.
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“Full” solution to Example 2.1 (1/4)

The data is an observation on the random variable

X |θ ∼ Bin(5, θ). This gives a likelihood function

f (x = 1|θ) = 5C1θ
1(1 − θ)4

= 5θ(1 − θ)4 (2.5)

which favours values of θ near its maximum θ = 0.2 (we

observed 1 head out of 5 tosses).

Therefore, we have a conflict of opinions: the prior distribution

(2.4) suggests that θ is probably around 0.5 and the data (2.5)

suggest that it is around 0.2.

We can use Bayes’ Theorem to combine these two sources of

information in a coherent way.
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“Full” solution to Example 2.1 (2/4)

Recall the “full” version of Bayes’ Theorem for distributions:

π(θ|x) = π(θ)f (x |θ)
f (x)

,

where

f (x) =

∫

Θ
π(θ)f (x |θ)dθ;

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



“Full” solution to Example 2.1 (2/4)

Recall the “full” version of Bayes’ Theorem for distributions:

π(θ|x) = π(θ)f (x |θ)
f (x)

,

where

f (x) =

∫

Θ
π(θ)f (x |θ)dθ;

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



“Full” solution to Example 2.1 (2/4)

Recall the “full” version of Bayes’ Theorem for distributions:

π(θ|x) = π(θ)f (x |θ)
f (x)

,

where

f (x) =

∫

Θ
π(θ)f (x |θ)dθ;

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



“Full” solution to Example 2.1 (3/4)

First the denominator:

f (x = 1) =

∫

Θ
π(θ)f (x = 1|θ)dθ (2.6)

=

∫ 1

0

1 × 5θ(1 − θ)4 dθ

=

∫ 1

0

θ × 5(1 − θ)4 dθ

which, using integration by parts, gives

f (x = 1) =
[

−(1 − θ)5 θ
]1

0
+

∫ 1

0

(1 − θ)5 dθ

= 0 +

[

−(1 − θ)6

6

]1

0

=
1

6
.
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“Full” solution to Example 2.1 (4/4)

Therefore, the posterior density is

π(θ|x = 1) =
π(θ)f (x = 1|θ)

f (x = 1)

=
1 × 5θ(1 − θ)4

1/6
, 0 < θ < 1

= 30 θ(1 − θ)4, 0 < θ < 1

=
θ2−1(1 − θ)5−1

B(2,5)
, 0 < θ < 1,

as

B(2,5) =
(2 − 1)!(5 − 1)!

(2 + 5 − 1)!
=

24

720
=

1

30
,

and so the posterior distribution is θ|x = 1 ∼ Be(2,5) – see

Equation 2.1. This distribution has its mode at θ = 0.2, and

mean at E [θ|x = 1] = 2/7 = 0.286.
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Example 2.1

There were two “difficulties” in calculating the posterior

distribution:

Obtaining the f (x) term for the denominator in the “full”

version of Bayes’ Theorem

Manipulating the result to realise that we had a Be(2,5)
distribution
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Example 2.1: “Quick” solution

However, in many cases we can recognise the posterior

distribution without the need to calculate f (x).

In this example, we can calculate the posterior distribution as

π(θ|x) ∝ π(θ)f (x = 1|θ)

∝ 1 × 5θ(1 − θ)4, 0 < θ < 1

= kθ(1 − θ)4, 0 < θ < 1.

You should be able to recognise this as a Be(2,5) distribution –

we can re–write the above as

π(θ|x) = kθ2−1(1 − θ)5−1,

i.e. θ|x = 1 ∼ Be(2,5).
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Example 2.1: Summary

It is possible that we have a biased coin.

Recall that if Y ∼ U(a,b),

E(Y ) =
a + b

2
and Var(Y ) =

(b − a)2

12
.

Also, if Y ∼ Be(a,b),

E(Y ) =
a

a + b
and Var(Y ) =

ab

(a + b)2(a + b + 1)
.

Thus:

Prior U(0,1) Observed θ = 0.2 Posterior Be(2,5)

Mean 0.5 7−→ 0.286

St. dev. 0.289 7−→ 0.160
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Example 2.2

Consider an experiment to determine how good a music expert

is at distinguishing between pages from Haydn and Mozart

scores. Let θ = Pr(correct choice).

Suppose that, before conducting the experiment, we have been

told that the expert is very competent.

In fact, it is suggested that we should have a prior distribution

which has a mode around θ = 0.95 and for which Pr(θ < 0.8) is

very small.

We choose θ ∼ Be(77,5) (see Example 3.2, Chapter 3), with

probability density function

π(θ) =
θ76(1 − θ)4

B(77,5)
, 0 < θ < 1

= 128107980θ76(1 − θ)4, 0 < θ < 1. (2.7)
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Example 2.2

A graph of this prior density is given in Figure 2.4.
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Example 2.2

In the experiment, the music expert makes the correct choice 9

out of 10 times.

Determine the posterior distribution for θ given this information.
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Solution to Example 2.2 (1/2)

We have an observation on the random variable

X |θ ∼ Bin(10, θ).

This gives a likelihood function of

f (x = 9|θ) = 10C9θ
9(1 − θ)1

= 10θ9(1 − θ) (2.8)

which favours values of θ near its maximum θ = 0.9.

We combine these two sources of information using Bayes’

Theorem.
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Solution to Example 2.2 (2/2)

The posterior density function is

π(θ|x = 9) ∝ π(θ)f (x = 9|θ)

∝ θ76(1 − θ)4

B(77,5)
× 10 θ9(1 − θ), 0 < θ < 1

= 128107980θ76(1 − θ)4 × 10 θ9(1 − θ), 0 < θ < 1

= kθ85(1 − θ)5, 0 < θ < 1. (2.9)

We can recognise this density function as one from the Beta

family. In fact, the posterior distribution is θ|x = 9 ∼ Be(86,6).
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Example 2.2: Summary

The changes in our beliefs about θ are described by the prior

and posterior distributions shown in Figure 2.5 and summarised

in Table 2.1.
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Example 2.2: Summary

Prior Likelihood Posterior

(2.7) (2.8) (2.9)

Mode(θ) 0.950 0.900 0.944

E(θ) 0.939 – 0.935

SD(θ) 0.0263 – 0.0256

Notice that, having observed only a 90% success rate in the

experiment, the posterior mode and mean are smaller than

their prior values.

Also, the experiment has largely confirmed our ideas about θ,

with the uncertainty about θ being only very slightly reduced.
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Example 2.3

Max, a video game pirate, is trying to identify the proportion of

potential customers θ who might be interested in buying Call of

Duty: Elite next month.

Based on the proportion of customers who have bought

similarly violent games from him in the past, he assumes that

θ ∼ Be(2.5,12) (see Example 3.3, Chapter 3).
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Example 2.3

A plot of this prior density is shown in Figure 2.6.

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

θ

d
e
n
s
it
y

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Example 2.3

Max asks five potential customers if they would buy Call of

Duty: Elite from him, and four say they would.

Using this information, what is Max’s posterior distribution for θ?
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Solution to Example 2.3 (1/2)

We have been told that the prior for θ is a Be(2.5,12)
distribution – this has density given by

π(θ) =
θ2.5−1(1 − θ)12−1

B(2.5,12)

= 435.1867θ1.5(1 − θ)11. (2.10)

We have an observation on the random variable

X |θ ∼ Bin(5, θ). This gives a likelihood function of

f (x = 4|θ) = 5C4θ
4(1 − θ)1

= 5θ4(1 − θ), (2.11)

which favours values of θ near its maximum 0.8.
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Solution to Example 2.3 (2/2)

We combine our prior information (2.10) with the data (2.11) –

to obtain our posterior distribution – using Bayes’ Theorem.

The posterior density function is

π(θ|x = 4) ∝ π(θ)f (x = 4|θ)

∝ 435.1867θ1.5(1 − θ)11 × 5θ4(1 − θ), 0 < θ < 1,

= kθ5.5(1 − θ)12, 0 < θ < 1. (2.12)

You should recognise this density function as one from the beta

family. In fact, we have a Be(6.5,13), i.e. θ|x = 4 ∼ Be(6.5,13).
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family. In fact, we have a Be(6.5,13), i.e. θ|x = 4 ∼ Be(6.5,13).
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Example 2.3: Summary

The changes in our beliefs about θ are described by the prior

and posterior distributions shown in Figure 2.7 and summarised

in Table 2.2.
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Example 2.3: Summary

Prior Likelihood Posterior

(2.10) (2.11) (2.12)

Mode(θ) 0.12 0.8 0.314

E(θ) 0.172 – 0.333

SD(θ) 0.096 – 0.104

Notice how the posterior has been “pulled” from the prior

towards the observed value: the mode has moved up from 0.12

to 0.314, and the mean has moved up from 0.172 to 0.333.

Having just one observation in the likelihood, we see that there

is hardly any change in the standard deviation from prior to

posterior: we would expect to see a decrease in standard

deviation with the addition of more data values.
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Announcements

Assignment drop-in this Thursday, 2pm (questions 4, 9, 10,

11, 12). Good place for hints, tips etc.

First computer practical this Friday, 1pm, Herschel PC

cluster

ReCap problems...?

Next week: 2 lectures and a problems class (case study 1)

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Example 2.4

Table 2.3 shows some data on the times between serious

earthquakes.

An earthquake is included if its magnitude is at least 7.5 on the

Richter scale or if over 1000 people were killed.

Recording starts on 16 December 1902 (4500 killed in

Turkistan).

The table includes data on 21 earthquakes, that is, 20 “waiting

times” between earthquakes.

840 157 145 44 33 121 150 280 434 736

584 887 263 1901 695 294 562 721 76 710
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Example 2.4

It is believed that earthquakes happen in a random haphazard

kind of way and that times between earthquakes can be

described by an exponential distribution.

Data over a much longer period suggest that this exponential

assumption is plausible.

Therefore, we will assume that these data are a random sample

from an exponential distribution with rate θ (and mean 1/θ). The

parameter θ describes the rate at which earthquakes occur.
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Example 2.4

An expert on earthquakes has prior beliefs about the rate of

earthquakes, θ, described by a Ga(10,4000) distribution (see

Example 3.1, Chapter 3), which has density density

π(θ) =
400010 θ9e−4000θ

Γ(10)
, θ > 0, (2.13)

and mean E(θ) = 0.0025.
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Example 2.4

A plot of this prior distribution can be found in Figure 2.8. As

you might expect, the expert believes that only very small

values of θ are likely, though larger values are not ruled out!
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Solution to Example 2.4 (1/2)

The data are observations on Xi |θ ∼ Exp(θ), i = 1,2, . . . ,20

(independent).

Therefore, the likelihood function for θ is

f (x |θ) =
20
∏

i=1

θe−θxi , θ > 0

= θ20 exp

(

−θ
20
∑

i=1

xi

)

, θ > 0

= θ20e−9633θ, θ > 0. (2.14)
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Solution to Example 2.4 (2/2)

We now apply Bayes Theorem to combine the expert opinion

with the observed data. The posterior density function is

π(θ|x) ∝ π(θ)f (x |θ)

∝ 400010 θ9e−4000θ

Γ(10)
× θ20e−9633θ, θ > 0

= k θ30−1e−13633θ, θ > 0. (2.15)

The only continuous distribution which takes the form

kθg−1e−hθ, θ > 0 is the Ga(g,h) distribution.

Therefore, the posterior distribution must be

θ|x ∼ Ga(30,13633).
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Example 2.4: Summary

The data have updated our beliefs about θ from a Ga(10,4000)
distribution to a Ga(30,13633) distribution.

Plots of these distributions are given in Figure 2.9, and Table

2.4 gives a summary of the main changes induced by

incorporating the data.
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Example 2.4: Summary
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Example 2.4: Summary

Prior Likelihood Posterior

(2.13) (2.14) (2.15)

Mode(θ) 0.00225 0.00208 0.00213

E(θ) 0.00250 – 0.00220

SD(θ) 0.00079 – 0.00040

Notice that, as the mode of the likelihood function is close to

that of the prior distribution, the information in the data is

consistent with that in the prior distribution.

This results in a reduction in variability from the prior to the

posterior distributions.

The similarity between the prior beliefs and the data has

reduced the uncertainty we have about the likely earthquake

rate θ.
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Example 2.5

We now consider the general case of the problem discussed in

Example 2.4.

Suppose Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent) and our

prior beliefs about θ are summarised by a Ga(g,h) distribution

(with g and h known), with density

π(θ) =
hg θg−1e−hθ

Γ(g)
, θ > 0. (2.16)

Determine the posterior distribution for θ.
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Solution to Example 2.5 (1/2)

The likelihood function for θ is

f (x |θ) =
n
∏

i=1

θe−θxi , θ > 0

= θne−θx1−θx2−...−θxn

= θne−θ
∑

x

= θne−nx̄θ, θ > 0. (2.17)
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Solution to Example 2.5 (2/2)

We now apply Bayes Theorem. The posterior density function

is

π(θ|x) ∝ π(θ)f (x |θ)

∝ hg θg−1e−hθ

Γ(g)
× θne−nx̄θ, θ > 0.

π(θ|x) = kθg+n−1e−(h+nx̄)θ, θ > 0, (2.18)

where k is a constant that does not depend on θ.

Therefore, the posterior distribution takes the form kθg−1e−hθ,

θ > 0 and so must be a gamma distribution.

Thus we have θ|x ∼ Ga(g + n,h + nx̄).
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Example 2.5: Summary

If

Xi ∼ Exp(θ) and

θ ∼ Ga(g,h), then

θ|x ∼ Ga(g + n,h + nx̄)

The changes in our beliefs about θ are summarised in Table

2.5, taking g ≥ 1.

Prior Likelihood Posterior

(2.16) (2.17) (2.18)

Mode(θ) (g − 1)/h 1/x̄ (g + n − 1)/(h + nx̄)
E(θ) g/h – (g + n)/(h + nx̄)
SD(θ)

√
g/h –

√
g + n/(h + nx̄)
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Chapter 2 so far...

Model Prior Posterior

Binomial(k , θ) θ ∼ U(0,1) Beta

θ ∼ Beta(a,b) Beta

Exponential(θ) θ ∼ Ga(g,h) Gamma

θ ∼ exp(g) ??

Normal
(

µ, σ2
)

µ ∼ N(b,1/d) Normal
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Conjugacy

Definition (Conjugacy)

Suppose that data x are to be observed with distribution f (x |θ).

A family F of prior distributions for θ is said to be conjugate to

f (x |θ) if for every prior distribution π(θ) ∈ F, the posterior

distribution π(θ|x) is also in F.
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Example 2.6

Suppose we have a random sample from a Normal distribution.

In Bayesian statistics, when dealing with the Normal

distribution, the mathematics is more straightforward if we work

with the precision (= 1/variance) of the distribution rather than

the variance itself.

So we will assume that this population has unknown mean µ
but known precision τ : Xi |µ ∼ N(µ,1/τ), i = 1,2, . . . ,n
(independent), where τ is known.

Suppose our prior beliefs about µ can be summarised by a

N(b,1/d) distribution, with probability density function

π(µ) =

(

d

2π

)1/2

exp

{

−d

2
(µ − b)2

}

(2.19)

Determine the posterior distribution for µ.
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Solution to Example 2.6 (1/5)

The likelihood function for µ is

f (x |µ) =

n
∏

i=1

( τ

2π

)1/2
exp

{

−τ

2
(xi − µ)2

}

=
( τ

2π

)n/2
exp

{

−τ

2

n
∑

i=1

(xi − µ)2

}

=
( τ

2π

)n/2
exp

{

−τ

2

n
∑

i=1

(xi − x̄ + x̄ − µ)2

}

=
( τ

2π

)n/2
exp

{

−τ

2

n
∑

i=1

([xi − x̄ ] + [x̄ − µ])2

}
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Solution to Example 2.6 (2/5)

Giving

f (x |µ) =
( τ

2π

)n/2
exp

{

−τ

2

[

n
∑

i=1

(xi − x̄)2

+ 2(x̄ − µ)

n
∑

i=1

(xi − x̄) +

n
∑

i=1

(x̄ − µ)2

]}

=
( τ

2π

)n/2
exp

{

−τ

2

[

n
∑

i=1

(xi − x̄)2 + n(x̄ − µ)2

]}

,

Let

s2 =
1

n

n
∑

i=1

(xi − x̄)2;

Then

f (x |µ) =
( τ

2π

)n/2
exp

{

−nτ

2

[

s2 + (x̄ − µ)2
]}

. (2.20)
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Solution to Example 2.6 (3/5)

Applying Bayes Theorem, the posterior density function is

π(µ|x) ∝ π(µ)f (x |µ)

∝
(

d

2π

)1/2

exp

{

−d

2
(µ − b)2

}

×
( τ

2π

)n/2
exp

{

−nτ

2

[

s2 + (x̄ − µ)2
]}

= k1 exp

{

−d

2
(µ − b)2 − nτ

2

[

s2 + (x̄ − µ)2
]

}

= k1 exp

{

−1

2

[

d(µ− b)2 + nτ(x̄ − µ)2
]

}

where k1 is a constant that does not depend on µ.
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Solution to Example 2.6 (4/5)

We can also simplify the exponent. We have

d(µ− b)2 + nτ(x̄ − µ)2

= d(µ2 − 2bµ+ b2) + nτ(x̄2 − 2x̄µ+ µ2)

= dµ2 + nτµ2 − 2dbµ− 2nτ x̄µ+ db2 + nτ x̄2

= (d + nτ)µ2 − 2(db + nτ x̄)µ+ db2 + nτ x̄2

= (d + nτ)

(

µ2 − 2(db + nτ x̄)

d + nτ
µ+ c

)

= (d + nτ)

{

µ−
(

db + nτ x̄

d + nτ

)}2

+ c

where c does not depend on µ.
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Solution to Example 2.6 (5/5)

Let

B =
db + nτ x̄

d + nτ
and D = d + nτ. (2.21)

Then

π(µ|x) = k1 exp

{

−D

2
(µ− B)2 − c

2

}

= k exp

{

−D

2
(µ− B)2

}

, (2.22)

where k is a constant that does not depend on µ.

Therefore, the posterior distribution takes the form

k exp{−D(µ− B)2/2}, −∞ < µ < ∞ and so must be a normal

distribution: we have µ|x ∼ N(B,1/D).
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Example 2.6: Summary

If we have a random sample from a N(µ,1/τ) distribution (with

τ known) and our prior beliefs about µ follow a N(b,1/d)
distribution then, after incorporating the data, our (posterior)

beliefs about µ follow a N(B,1/D) distribution.
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Example 2.6: Summary

The changes in our beliefs about µ are summarised in Table

2.6.

Prior Likelihood Posterior

(2.19) (2.20) (2.21)

Mode(µ) b x̄ (db + nτ x̄)/(d + nτ)
E(µ) b – (db + nτ x̄)/(d + nτ)
Precision(µ) d – d + nτ
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Example 2.6: Summary

Notice that the way prior information and observed data

combine is through the parameters of the normal distribution:

b → db + nτ x̄

d + nτ
and d → d + nτ.
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Example 2.6: Summary

Notice also that the posterior variance (and precision) does not

depend on the data, and the posterior mean is a convex

combination of the prior and sample means, that is,

B =
db + nτ x̄

d + nτ

=
db

d + nτ
+

nτ x̄

d + nτ

=
d

d + nτ
b +

nτ

d + nτ
x̄

=

(

d

d + nτ

)

b +

(

d + nτ − d

d + nτ

)

x̄

= αb + (1 − α)x̄ , α =
d

d + nτ
.
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Example 2.6: Summary

This equation for the posterior mean, which can be rewritten as

E(µ|x) = αE(µ) + (1 − α)x̄ ,

arises in other models and is known as the Bayes linear rule

(see Problems Sheet 2, question 3).
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Example 2.6: Summary

Notice that the posterior mean is greater than the prior mean if

and only if the likelihood mode (sample mean) is greater than

the prior mean, that is

E(µ|x) > E(µ) ⇐⇒ Mode[f (x|µ)] > E(µ).

Also, the standard deviation of the posterior distribution is

smaller than that of the prior distribution.
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Example 2.7

The ages of Ennerdale granophyre rocks can be determined

using the relative proportions of rubidium–87 and strontium–87

in the rock.

An expert in the field suggests that the ages of such rocks (in

millions of years) X |µ ∼ N(µ,82) and that a prior distribution

µ ∼ N(370,202) is appropriate.

A rock is found whose chemical analysis yields x = 421. What

is the posterior distribution for µ and what is the probability that

the rock will be older than 400 million years?
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Solution to Example 2.7 (1/2)

We have n = 1, x̄ = x = 421, τ = 1/64, b = 370 and

d = 1/400. Therefore, using the results in Example 2.6,

B =
db + nτ x̄

d + nτ

=
370/400 + 421/64

1/400 + 1/64
= 414.0 and

D = d + nτ

= 1/400 + 1/64 = 1/7.432.
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= 1/400 + 1/64 = 1/7.432.
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Solution to Example 2.7 (2/2)

Thus, the posterior distribution is µ|x = 421 ∼ N(414.0,7.432).

The (posterior) probability that the rock will be older than 400

million years is

Pr(µ > 400|x = 421) = 0.9702

calculated using the R commands 1-pnorm(400,414,7.43)

or 1-pnorm(-1.884) (or indeed by hand using tables).

Without the chemical analysis, the only basis for determining

the age of the rock is via the prior distribution.

The (prior) probability that the rock will be older than 400 million

years is Pr(µ > 400) = 0.0668 calculated using the R

command 1-pnorm(400,370,20).
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Example 2.7: Summary

This highlights the benefit of taking the chemical

measurements.

Note that the large difference between these probabilities is not

necessarily due to the expert’s prior distribution being

inaccurate, per se.

It is probably due to the large prior uncertainty about rock ages,

as shown in Figure 2.10.
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Example 2.7: Summary
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Posterior distributions and sufficient statistics

We have already met the concept of sufficient statistics. Not

surprisingly they also play a role in Bayesian Inference.

Suppose that we have data X = (X1,X2, . . . ,Xn)
T available and

we want to make inferences about the parameter θ in the

statistical model f (x |θ).

If T is a sufficient statistic then by the Factorisation Theorem

f (x |θ) = h(x)g(t , θ).
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Posterior distributions and sufficient statistics

Therefore, using Bayes Theorem,

π(θ|x) ∝ π(θ) f (x |θ)
∝ π(θ)h(x)g(t , θ)

∝ π(θ)g(t , θ).

It can be shown that, up to a constant not depending on θ,

g(t , θ) is equal to the probability (density) function of T ; that is

g(t , θ) ∝ fT (t |θ).

Hence

π(θ|x) ∝ π(θ) fT (t |θ).
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Posterior distributions and sufficient statistics

However, applying Bayes Theorem to the data t gives

π(θ|t) ∝ π(θ) fT (t |θ)

and so, since

π(θ|x) ∝ π(θ|t)

and both are probability (density) functions, we have

π(θ|x) = π(θ|t).
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Posterior distributions and sufficient statistics

Therefore, our (posterior) beliefs about θ having observed the

full data x are the same as if we had observed only the

sufficient statistic T .

This is what we would expect if all the information about θ in the

data were contained in the sufficient statistic.
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Example 2.8

Suppose we have a random sample from an exponential

distribution with a gamma prior distribution, that is,

Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent) and θ ∼ Ga(g,h).

Determine a sufficient statistic T for θ and verify that

π(θ|x) = π(θ|t).
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Solution to Example 2.8 (1/2)

The density of the data is

fX (x |θ) =
n
∏

i=1

θe−θxi

= θn exp

(

−θ
n
∑

i=1

xi

)

= 1 × θn exp

(

−θ
n
∑

i=1

xi

)

= h(x)g(Σxi , θ)

and therefore, by the Factorisation Theorem, T =
∑n

i=1 Xi is

sufficient for θ.
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Solution to Example 2.8 (2/2)

Now T |θ ∼ Ga(n, θ) and so

fT (t |θ) =
θntn−1e−θt

Γ(n)
, θ > 0.

Also

π(θ) =
hg θg−1e−hθ

Γ(g)
, θ > 0.

Therefore, by Bayes Theorem,

π(θ|t) ∝ π(θ)f (t |θ)

∝ hg θg−1e−hθ

Γ(g)
× θntn−1e−θt

Γ(n)
, θ > 0

∝ θg+n−1e−(h+t)θ, θ > 0

and so the posterior distribution is θ|t ∼ Ga(g + n,h + t). This

is the same as the result we obtained previously for θ|x.
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Example 2.9

Suppose we have a random sample from a normal distribution

with known variance and a normal prior distribution for the

mean parameter, that is, Xi |µ ∼ N(µ,1/τ), i = 1,2, . . . ,n
(independent) and µ ∼ N(b,1/d).

Determine a sufficient statistic T for µ and verify that

π(µ|x) = π(µ|t).
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Solution to Example 2.9 (1/3)

Recall from Equation (2.20) that

fX (x |µ) =
( τ

2π

)n/2
exp

{

−nτ

2

[

s2 + (x̄ − µ)2
]}

=
( τ

2π

)n/2
exp

{

−nτs2

2

}

× exp
{

−nτ

2
(x̄ − µ)2

}

= h(x)g(x̄ , µ)

and therefore, by the Factorisation Theorem, T = X̄ is sufficient

for µ.
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Solution to Example 2.9 (2/3)

Now T |µ ∼ N(µ,1/(nτ)) (by the Central Limit Theorem) and so

fT (t |µ) =
(nτ

2π

)1/2

exp
{

−nτ

2
(t − µ)2

}

.

Also

π(µ) =

(

d

2π

)1/2

exp

{

−d

2
(µ− b)2

}

.
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Solution to Example 2.9 (3/3)

Therefore, by Bayes’ Theorem,

π(µ|t) ∝ π(µ)f (t |µ)

∝
(

d

2π

)1/2

exp

{

−d

2
(µ − b)2

}

×
(nτ

2π

)1/2

exp
{

−nτ

2
(t − µ)2

}

∝ exp

{

−d

2
(µ− b)2 − nτ

2
(t − µ)2

}

...

∝ exp

{

−D

2
(µ− B)2

}

where B and D are as in Equation (2.21), with t replacing x̄ ;

that is, µ|t ∼ N(B,1/D), the same distribution as µ|x .
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