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Introduction

Consider the following three experiments.

Experiment 1: Fisher’s tea lady

The tea lady claims to know whether milk or tea is poured

in first: for 10 pairs of cups of tea she makes the correct

choice each time.

Experiment 2: Music expert

The expert claims he can distinguish between a page from

a Haydn score and a page from a Mozart score: he does

so correctly 10 times.

Experiment 3: The Drunk

A somewhat inebriated friend at a party claims they can

predict the outcome of the toss of a coin: they do so

correctly 10 times.
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Introduction

Let θ = Pr(correct choice).

Let’s suppose the tea lady, the music expert and the drunk

cannot do as they claim.

Then, just by guessing, we could expect each of them to ‘get it

right’ 5 times out of 10, i.e. θ = 1/2.
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Introduction

We could then test the null hypothesis

H0 : they were guessing, i.e.

H0 : θ = 1/2;

Graphically, assuming H0 is true, this gives:
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Introduction

This gives us:

p−value =

(

1

2

)10

= 0.00098 < 0.1%.

From this p−value, we would:

conclude that we had very strong evidence against H0

conclude that the choices were not just guesses

perhaps feel justified in validating each claim

But does this make sense?

Surely, we have some additional information about what values

of θ are plausible for each experiment?
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Introduction

Prior to each experiment, our beliefs about θ may be

Experiment 1: θ > 0.5 – folklore (and science!) suggests

this may be possible;

Experiment 2: 0.9 < θ < 1.0 – we expect an “expert” to be

correct;

Experiment 3: θ = 0.5 – no way of guessing correctly with

a “fair” coin.
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Introduction

The traditional approach to Statistics, sometimes called

Frequentist Statistics or Classical Statistics, may try to take

this prior information into account:

For example, in Experiment 2, the test may be of H0 : θ ≥ 0.9
against H1 : θ < 0.9.

However, in Bayesian Statistics, we attempt to calibrate our

prior information about unknown quantities.

We do this by constructing a probability distribution which

describes how likely we believe different values are to occur.
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Introduction

This prior information is then combined with that from

experimental data using Bayes Theorem.

The key ingredients of a Bayesian analysis are

a statistical model for the experimental data;

quantifiable prior information about any unknown

parameters.

Before we consider any detailed descriptions of Bayesian

analyses, we recap the various interpretations of probability

and highlight the subjective approach.
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Probability

The concept of probability (chance) has been around for a very

long time, particularly in the area of gambling.

Games of chance have been played since about 3500 B.C.

The Egyptians started using cubical dice around 2000 B.C.

The mathematical theory of probability was started around the

17th century by Galilei, Pascal and Fermat to solve (again)

gambling problems.

There are three main ways of understanding and thinking about

probability.
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Frequency interpretation

The probability of an outcome is the relative frequency with

which the outcome would be obtained if the experiment were

repeated a large number of times under similar conditions.

For example, if a coin is tossed 1,000,000 times and a head

appears n times then

Pr(Head) =
n

1,000,000
.

We would expect this probability to be about 0.5.
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Classical interpretation

This is based on the concept of equally likely outcomes

resulting from ideas of symmetry.

If the outcome of an experiment must be one of n different

outcomes and these n outcomes are equally likely, then the

probability of each outcome is 1/n.
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Subjective interpretation

Your subjective probability for an outcome A represents your

own judgement of the likelihood that the outcome will occur.

This judgement will be based on the beliefs and information H

you have at the time.

One way of determining (or quantifying) a subjective value for

PrH(A) is to consider a series of possible bets with outcome

win £c if A occurs and £0 if Ac occurs.

How much would you be prepared to pay (stake) for placing

such a bet?
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Subjective interpretation (1/1)

In terms of expected winnings, you should be prepared to stake

£cp if you believe that PrH(A) = p. Why?

Suppose you would win £10 if A occurs and £0 if it does not.

Suppose further that you believe A is likely to occur with

probability p = 0.3.

Then the expected monetary value of the bet is

£10 × 0.3 = £3;

that is, on average, we can expect to win £3 from this bet.

Thus, staking any more than £3 would not be wise!
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Subjective interpretation

One problem with this approach is that, in general, p will

depend on c.

A person who is willing to bet £1 on the spin of a coin to win £2

if it lands heads may refuse to bet if the stakes are raised to

£1000: most people are risk–averse.

Therefore, we shall restrict our attention to the c = 1 case: pay

£p for the bet

win £1 if A occurs and £0 if Ac occurs.
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Subjective interpretation

You can make sure that your bet is “honest” by randomising

between whether you “host” the bet or “place” the bet.

For example, suppose you believe that PrH(A) = 0.5.

An “honest” bet would mean that you would buy the bet for a

maximum stake of £0.50.

However, if you weren’t honest you might try to buy the bet for

any amount less than £0.50, say £0.20.

If you were hosting the bet, you would take the bet for any

amount more than £p, say for £0.80.

These conflicting interests can be offset if, when choosing p, it

is equally likely that you are hosting the bet or placing the bet.
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Frequency interpretation: drawbacks

1 It does not say how many times the experiment should be

repeated

2 “Similar conditions” is a vague concept

3 It is not appropriate for many probability calculations of

one-off events

4 Standard statistical methods using the frequentist

approach are not totally objective since they require

subjective judgements about the validity of probability

models, choice of hypotheses and interpretation of results

(for instance, see BMI example in the preface to these

lecture notes)
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approach are not totally objective since they require
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Classical interpretation: drawbacks

1 Only applies to equally likely outcomes

2 Depends on a subjective assessment of whether symmetry

arguments apply

3 It is not appropriate for many probability calculations of

one–off events
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Subjective interpretation: drawbacks

1 It is not objective – but perhaps it is more obvious (honest)

about when subjective beliefs are used

2 It requires people to be coherent: they will not make any

wagers which they are certain to lose; also, they will not

prefer to suffer a given penalty when there is the option of

another penalty which is certainly smaller

Being coherent results in, inter alia, that

Pr(A1|H) > Pr(A2|H) and Pr(A2|H) > Pr(A3|H)

=⇒ Pr(A1|H) > Pr(A3|H).
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Probability

Each of these interpretations use quite different methods of

reasoning.

In this course – unlike any other course you have taken so far –

we will concentrate on the subjective interpretation and

describe how, if carefully used, it can be a more useful

approach than the other two methods.

Everything we do rests on Bayes’ Theorem, and we review

this now.
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Bayes’ Theorem

Before we state Bayes’ Theorem, we need a recap of

conditional probability.

Definition (Conditional Probability)

Consider two events E and F , where Pr(F ) > 0.

The conditional probability of E given that F has occurred is

Pr(E |F ) =
Pr(E ∩ F )

Pr(F )
.
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Bayes’ Theorem

Definition (Parition)

The events E1,E2, . . . ,En form a partition of the sample space

S if they are disjoint events (Ei ∩ Ej = ∅, i 6= j) with Pr(Ei) > 0,

i = 1,2, . . . ,n, and ∪n
i=1Ei = S.

Figure 1.1 gives a diagram of a typical partition with an

additional event F .
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Bayes’ Theorem
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Bayes’ Theorem

Fact (Law of Total Probability)

If E1,E2, . . . ,En are a partition of S and F is any event then

Pr(F ) =

n
∑

i=1

Pr(F |Ei)Pr(Ei).
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Law of Total Probability: Proof

As E1,E2, . . . ,En are a partition of S, we have

Pr(F ) = Pr(F ∩ E1) + Pr(F ∩ E2) + . . .+ Pr(F ∩ En)

= Pr(F |E1)Pr(E1) + Pr(F |E2)Pr(E2) + . . .+ Pr(F |En)Pr(En)

(by conditional probability)

=
n
∑

i=1

Pr(F |Ei)Pr(Ei).
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Bayes’ Theorem

Theorem (Bayes’ Theorem)

If E1,E2, . . . ,En are a partition of S and F is any event with

Pr(F ) > 0 then

Pr(Ei |F ) =
Pr(F |Ei)Pr(Ei)

n
∑

j=1

Pr(F |Ej)Pr(Ej)

, i = 1,2, . . . ,n.
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Bayes’ Theorem: Proof (slide 1/1)

Using the definition of conditional probability, for i = 1,2, . . . ,n,

Pr(Ei |F ) =
Pr(Ei ∩ F )

Pr(F )

=
Pr(F ∩ Ei)

Pr(F )

=
Pr(F |Ei)Pr(Ei)

Pr(F )
again using the definition

=
Pr(F |Ei)Pr(Ei)

n
∑

j=1

Pr(F |Ej)Pr(Ej)

using the Law of Total Probability.
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Example 1.2

A laboratory blood test is 95% effective in detecting a certain

disease when it is present.

However, the test also yields a “false positive” result for 1% of

healthy people tested.

Also, 0.5% of the population actually have the disease.

(a) Calculate the probability that a person who tests positive

actually has the disease.

(b) Find the probability that a person who tests negative does

not have the disease.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.2 (slide 1/3)

Let D = person has the disease, +ve = result is postive and

–ve = result is negative.

We require (a) Pr(D|+ve), and (b) Pr(Dc|–ve).

From the question we have

Pr(+ve|D) = 0.95

Pr(+ve|Dc) = 0.01

Pr(D) = 0.005 and

Pr(Dc) = 0.995

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.2 (slide 1/3)

Let D = person has the disease, +ve = result is postive and

–ve = result is negative.

We require (a) Pr(D|+ve), and (b) Pr(Dc|–ve).

From the question we have

Pr(+ve|D) = 0.95

Pr(+ve|Dc) = 0.01

Pr(D) = 0.005 and

Pr(Dc) = 0.995

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.2 (slide 1/3)

Let D = person has the disease, +ve = result is postive and

–ve = result is negative.

We require (a) Pr(D|+ve), and (b) Pr(Dc|–ve).

From the question we have

Pr(+ve|D) = 0.95

Pr(+ve|Dc) = 0.01

Pr(D) = 0.005 and

Pr(Dc) = 0.995

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.2 (slide 1/3)

Let D = person has the disease, +ve = result is postive and

–ve = result is negative.

We require (a) Pr(D|+ve), and (b) Pr(Dc|–ve).

From the question we have

Pr(+ve|D) = 0.95

Pr(+ve|Dc) = 0.01

Pr(D) = 0.005 and

Pr(Dc) = 0.995

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.2 (slide 2/3)

Also, D and Dc form a partition of S. Therefore, by Bayes’

Theorem

Pr(D|+ve) =
Pr(+ve|D)Pr(D)

Pr(+ve|D)Pr(D) + Pr(+ve|Dc)Pr(Dc)

=
0.95 × 0.005

0.95 × 0.005 + 0.01 × 0.995

≃ 0.323.

Thus, only 32.3% of people who test positive actually have the

disease – 67.7% of people who test positive do not have the

disease!
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Solution to Example 1.2 (slide 3/3)

Now for part (b),

Pr(Dc |–ve) =
Pr(–ve|Dc)Pr(Dc)

Pr(–ve|Dc)Pr(Dc) + Pr(–ve|D)Pr(D)

=
0.99 × 0.995

0.99 × 0.995 + 0.05 × 0.005

≃ 0.9997.

Therefore, nearly everyone who tests negative does not have

the disease – very few people who test negative will have the

disease.
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Quick recap

General intro to Bayesian methods

Deciphering Enigma messages

Air France 447
Body Mass Index

Recap of probability

Frequency, classical and subjective interpretations

Limitations

Rules: conditional probability, total probability, Bayes
Examples: blood test, car diagnosis, multiple choice exam
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Example 1.3

Suppose that your car suffers from two intermittent problems,

one caused by a fault in the engine (θ1) and the other due to a

fault in the gearbox (θ2).

These occur with probabilities 0.4 and 0.6 respectively.

When examined your car exhibits one of the following

symptoms

x1 : overheating only,

x2 : irregular traction only,

x3 : both symptoms.
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Example 1.3

Suppose it is known in the garage trade that these symptoms

occur with probabilities that depend on the fault.

The probabilities Pr(X = x |θ) are given in Table 1.1.

O/H I/T Both

x1 x2 x3

θ1: fault in engine 0.1 0.4 0.5

θ2: fault in gearbox 0.5 0.3 0.2

Construct a diagnostic rule for these symptoms and determine

the probability of misdiagnosis.
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Solution to Example 1.3 (1/3)

First we must calculate the posterior probabilities Pr(θ1|x)
and Pr(θ2|x) for x = x1, x2, x3.

Since θ1 and θ2 form a partition, we can use Bayes’ Theorem

as follows.

We have

Pr(θ1|x1) =
Pr(X = x1|θ1)Pr(θ1)

Pr(X = x1|θ1)Pr(θ1) + Pr(X = x1|θ2)Pr(θ2)

=
0.1 × 0.4

0.1 × 0.4 + 0.5 × 0.6

=
4

34
= 0.118.
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Solution to Example 1.3 (2/3)

Also,

Pr(θ1|x2) =
Pr(X = x2|θ1)Pr(θ1)

Pr(X = x2|θ1)Pr(θ1) + Pr(X = x2|θ2)Pr(θ2)

=
0.4 × 0.4

0.4 × 0.4 + 0.3 × 0.6

=
16

34
= 0.471.
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Solution to Example 1.3 (2/3)
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Solution to Example 1.3 (3/3)

And

Pr(θ1|x3) =
Pr(X = x3|θ1)Pr(θ1)

Pr(X = x3|θ1)Pr(θ1) + Pr(X = x3|θ2)Pr(θ2)

=
0.5 × 0.4

0.5 × 0.4 + 0.2 × 0.6

=
20

32
= 0.625.

Also, Pr(θ2|xi) = 1 − Pr(θ1|xi ), i = 1,2,3, and so we obtain the

posterior distributions Pr(θ|x) given in Table 1.2.
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Example 1.3

O/H I/T Both

x1 x2 x3

θ1: fault in engine 0.118 0.471 0.625

θ2: fault in gearbox 0.882 0.529 0.375

This table is very informative. For example, it shows that if both

symptoms (x3) are observed, then the probability that the fault

is in the engine (θ1) changes from 0.4 to 0.625.

In terms of odds:

Prior odds :
Pr(θ1)

Pr(θ2)
=

0.4

0.6
=

2

3
or 3:2 in favour of θ2

Posterior odds :
Pr(θ1|x3)

Pr(θ2|x3)
=

0.625

0.375
=

5

3
or 5:3 in favour of θ1.
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Example 1.3

We are now in a position to design our diagnostic rule.

This is simply a rule which diagnoses a symptom (x) as being

due to some particular fault (θ).

Consider first that we observe overheating only (x1). The

posterior probabilities are in favour of declaring the fault as in

the gearbox (θ2) since Pr(θ2|x1) > Pr(θ1|x1).

In the same way, we can determine the most likely diagnosis

having observed irregular traction only (x2) and both

symptoms (x3), giving the diagnostic rule in Table 1.3.

Symptom Diagnosis

overheating only (x1) fault in gearbox (θ2)

irregular traction only (x2) fault in gearbox (θ2)

both symptoms (x3) fault in engine (θ1)
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In the same way, we can determine the most likely diagnosis

having observed irregular traction only (x2) and both

symptoms (x3), giving the diagnostic rule in Table 1.3.

Symptom Diagnosis

overheating only (x1) fault in gearbox (θ2)

irregular traction only (x2) fault in gearbox (θ2)

both symptoms (x3) fault in engine (θ1)
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Solution to Example 1.3 (1/1)

If we were to carry out this diagnostic rule repeatedly then the

probability of misdiagnosing a fault is

Pr(Misdiagnosis)

= Pr(θ1,X = x1) + Pr(θ1,X = x2) + Pr(θ2,X = x3)

= Pr(X = x1|θ1)Pr(θ1) + Pr(X = x2|θ1)Pr(θ1)

+ Pr(X = x3|θ2)Pr(θ2)

= (0.1 × 0.4) + (0.4 × 0.4) + (0.2 × 0.6)

= 0.32.

Therefore, in repeated use of this rule, around a third of the

diagnoses will be wrong.
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Example 1.4

A student sits a multiple choice exam in which there are m

alternative answers to each question.

The student either knows the answer (with probability θ) or

guesses randomly (with probability 1 − θ).

What is the probability that the student actually knew the

answer to a question they answered correctly?
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Solution to Example 1.4 (1/2)

Let

C = student answers question correctly

K = student knows answer.

We require Pr(K |C). From the question we have

Pr(K ) = θ

Pr(K c) = 1 − θ

Pr(C|K ) = 1 and

Pr(C|K c) = 1
m

.
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Solution to Example 1.4 (2/2)

Also, K and K c form a partition of S. Therefore, by Bayes’

Theorem,

Pr(K |C) =
Pr(C|K )Pr(K )

Pr(C|K )Pr(K ) + Pr(C|K c)Pr(K c)

=
1 × θ

1 × θ + 1
m
× (1 − θ)

=
θ

mθ+(1−θ)
m

=
mθ

1 + (m − 1)θ
.
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Example 1.4

Suppose that there are m = 5 alternative answers for each

question. Then

Pr(K |C) =
5θ

1 + 4θ
.

We can see the effect of observing a correct answer on our

belief that the student actually knows the answer by calculating

Pr(K |C) for various θ – see Table 1.4.
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Example 1.4

Pr(K ) Pr(K |C)
= θ = 5θ/(1 + 4θ)

0.0 0.000

0.1 0.357

0.2 0.556

0.3 0.682

0.4 0.769

0.5 0.833

0.6 0.882

0.7 0.921

0.8 0.952

0.9 0.978

1.0 1.000
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Likelihood

Suppose that an experiment results in data

x = (x1, x2, . . . , xn)
T and we decide to model the data using a

probability (density) function f (x |θ).

This p(d)f describes how likely different data x are to occur

given a value of the (unknown) parameter θ.

However, once we have observed the data, f (x |θ) tells us how

likely different values of the parameters θ are: it is then known

as the likelihood function for θ.

In other courses you may have seen it written as L(θ|x) or L(θ)
but, whatever the notation used for the likelihood function, it is

simply the joint probability (density) function of the data, f (x |θ),
regarded as a function of θ rather than of x .
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Likelihood

The likelihood function can be simplified if we have further

structure in the data.

For example, we may have independent observations, in which

case

f (x |θ) =
n
∏

i=1

fXi
(xi |θ), (1.1)

or independent and identically distributed observations (random

sample), so that

f (x |θ) =
n
∏

i=1

fX (xi |θ). (1.2)
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Example 1.5

Suppose we have a random sample x = (x1, x2, . . . , xn)
T of

radioactive particle counts.

A typical model for such data would be Xi |θ ∼ Poisson(θ),
usually abbreviated Xi |θ ∼ Po(θ), (independent).

Determine the likelihood function for θ.
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Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Solution to Example 1.5 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =

n
∏

i=1

e−θθxi

xi !

=
e−θ × . . .× e−θ × θx1 × . . .× θxn

∏n
i=1 xi !

=
e−θ−θ−...−θθx1+...+xn

∏n
i=1 xi !

=
e−nθθ

∑
xi

∏n
i=1 xi !

=
e−nθθnx̄

∏n
i=1 xi !

.

Dr. Lee Fawcett MAS2903: Introduction to Bayesian Methods



Example 1.6

Suppose we have a random sample x = (x1, x2, . . . , xn)
T of

times between radioactive particle emissions.

If the emissions occur randomly in time then a plausible model

for such data would be Xi |θ ∼ Exponential(θ), usually

abbreviated Xi |θ ∼ Exp(θ), (independent).

Determine the likelihood function for θ.
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Solution to Example 1.6 (1/1)

Using Equation (1.2), the likelihood function is

f (x |θ) =
n
∏

i=1

θe−θxi

= θ × . . .× θ × e−θx1 × . . .× e−θxn

= θne−θx1−θx2−...−θxn

= θne−θ(x1+...+xn)

= θne−θnx̄ .
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Example 1.7

Suppose we have a random sample x = (x1, x2, . . . , xn)
T from

a Normal distribution: Xi |µ, σ ∼ N(µ, σ2), i = 1,2, . . . ,n
(independent).

Determine the likelihood function for (µ, σ).
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Solution to Example 1.7 (1/1)

The (joint) probability density function is

f (x |µ, σ) =
n
∏

i=1

1√
2πσ2

exp

{

−(xi − µ)2

2σ2

}

= (2π)−n/2σ−n exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

= (2π)−n/2σ−n exp

{

− 1

2σ2

(

∑

x2
i − 2µ

∑

xi + nµ2
)

}

.
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Sufficiency

Consider again the Poisson model in Example 1.5. The

likelihood function is

f (x |θ) = θnx̄e−nθ

∏n
i=1 xi !

=

(

n
∏

i=1

xi !

)

−1

× θnx̄e−nθ.

Notice that this likelihood function depends on the data only

through
∏n

i=1(xi !)
−1 and x̄ .

Further, in f (x |θ), θ only “interacts” with x̄ — the other term

simply scales f (x |θ) — so that, for example, the point at which

f (x |θ) is maximized is determined only by x̄ .
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Sufficiency

Informally, we think of all the information about θ in the data

being contained in x̄ .

More formally, we can show that the distribution of the data

given the value x̄ does not depend on θ.
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Sufficiency

Definition (Statistic)

A statistic is any function of the data (and not of unknown

parameters).

Definition (Sufficiency)

The statistic T (X ) is sufficient for θ if f (x |T (X) = t) does not

depend on θ.
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Example 1.8

Consider again the Poisson model in Example 1.5.

Suppose we had just two observations.

Then n = 2 and Xi |θ ∼ Po(θ), i = 1,2 (independent).

Show that T = X1 + X2 is sufficient for θ. Note that

T |θ ∼ Po(2θ).
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Solution to Example 1.8 (1/2)

Consider the conditional distribution of the data X on T = t .

As X1 and X2 are discrete random variables, we have

f (x |T (X ) = t) =
Pr(X1 = x1,X2 = x2,T = t)

Pr(T = t)

=
Pr(X1 = x1,X2 = t − x1)

Pr(T = t)
.

Now, as X1 and X2 are independent, for the numerator we have:

Pr(X1 = x1,X2 = t − x1|θ) = Pr(X1 = x1|θ)Pr(X2 = t − x1|θ)

=
e−θθx1

x1!
× e−θθt−x1

(t − x1)!

=
e−2θθx1+t−x1

x1!(t − x1)!
=

e−2θθt

x1!(t − x1)!
.
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Solution to Example 1.8 (2/2)

For the denominator we know that

Pr(T = t |θ) =
e−2θ(2θ)t

t!
(sum of two Poissons).

Therefore

f (x |T (X) = t) =
e−2θθt

x1!(t − x1)!

/

e−2θ(2θ)t

t!

=
t!e−2θθt

x1!(t − x1)!e−2θ(2θ)t

=
t!

2tx1!(t − x1)!

which does not depend on θ. Hence, by Definition 1.4,

T = X1 + X2 is sufficient for θ.
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Sufficiency

Definition (Joint sufficiency)

The statistics T (X ) =
(

T1(X ),T2(X ), . . . ,Tk (X )
)T

are jointly

sufficient for θ if f (x |T (X ) = t) does not depend on θ.

Theorem (Factorisation Theorem)

Under certain regularity conditions

T (X ) is sufficient for θ ⇐⇒ f (x |θ) = h(x)g(t(x), θ)

for some functions h and g.
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Example 1.9

Consider again the Poisson model in Example 1.5 with n = 2:

Xi |θ ∼ Po(θ), i = 1,2 (independent). Determine a sufficient

statistic for θ.
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Solution to Example 1.9 (1/1)

The (joint) probability function is

f (x |θ) =
e−θθx1

x1!
× e−θθx2

x2!

=
e−2θθx1+x2

x1!x2!

=
1

x1!x2!
× e−2θθx1+x2

= h(x)g(x1 + x2, θ),

where h(x) = 1/(x1!x2!) and g(t , θ) = e−2θθt .

Therefore, by the Factorisation Theorem, T = X1 + X2 is

sufficient for θ.
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Example 1.10

Suppose we have a random sample from an exponential

distribution: Xi |θ ∼ Exp(θ), i = 1,2, . . . ,n (independent).

Determine a sufficient statistic for θ.
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Solution to Example 1.10 (1/1)

The (joint) probability density function is

f (x |θ) =

n
∏

i=1

θe−θxi

= θn exp

(

−θ

n
∑

i=1

xi

)

= 1 × θn exp

(

−θ
n
∑

i=1

xi

)

= h(x)g(Σ xi , θ),

where h(x) = 1 and g(t , θ) = θne−θt . Therefore, by the

Factorisation Theorem, T =
∑n

i=1 Xi is sufficient for θ.
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Example 1.11

Suppose we have a random sample from a Normal distribution:

Xi |µ, σ ∼ N(µ, σ2), i = 1,2, . . . ,n (independent).

Determine sufficient statistics for (µ, σ).
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Solution to Example 1.11 (1/1)

The (joint) probability density function is

f (x |µ, σ) =
n
∏

i=1

1√
2πσ2

exp

{

−(xi − µ)2

2σ2

}

= (2π)−n/2σ−n exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

= (2π)−n/2σ−n exp

{

− 1

2σ2

(

∑

x2
i − 2µ

∑

xi + nµ2
)

}

= h(x)g(Σ xi ,Σ x2
i , µ, σ),

where h(x) = (2π)−n/2 and

g(t1, t2, µ, σ) = σ−n exp{−(t2 − 2µt1 + nµ2)/(2σ2)}.

Therefore, by the Factorisation Theorem, T1 =
∑n

i=1 Xi and

T2 =
∑n

i=1 X 2
i are (jointly) sufficient for µ and σ.
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}

= (2π)−n/2σ−n exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

= (2π)−n/2σ−n exp

{

− 1

2σ2

(

∑

x2
i − 2µ

∑

xi + nµ2
)

}

= h(x)g(Σ xi ,Σ x2
i , µ, σ),

where h(x) = (2π)−n/2 and

g(t1, t2, µ, σ) = σ−n exp{−(t2 − 2µt1 + nµ2)/(2σ2)}.

Therefore, by the Factorisation Theorem, T1 =
∑n

i=1 Xi and

T2 =
∑n

i=1 X 2
i are (jointly) sufficient for µ and σ.
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Quick quiz

If X1,X2, . . . ,Xn are independent random variables with

probability density function

f (x |θ) = θ(1 − θ)x−1, x = 1,2, . . . ,

(a) Form the likelihood function f (x |θ);
(b) Use the Factorisation Theorem to obtain a sufficient

statistic for θ.
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Quick quiz: solution

The joint probability function is

f (x |θ) =

n
∏

i=1

θ(1 − θ)xi−1

= θn(1 − θ)x1−1(1 − θ)x2−1 × . . .× (1 − θ)xn−1

= θn(1 − θ)
∑

xi−n

= 1 × θn(1 − θ)
∑

xi−n

= h(x)g
(

∑

xi , θ
)

where h(x) = 1 and g(t , θ) = θn(1 − θ)t−n. Therefore, by the

Factorisation Theorem, T =
∑

Xi is sufficient for θ.
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