
Chapter 3

Priors

3.1 Introduction

In this chapter we will think about how to construct a suitable prior distribution π(θ)
for our parameter of interest θ. For example, why did we use a Be(77, 5) distribution
for θ in the music expert example (page 31)? Why did we use a Be(2.5, 12) distribution
for θ in the example about the video game pirate (page 34)? And why did we assume
a Ga(10, 4000) distribution for θ in the earthquake example (page 37)? Prior elicitation
– the process by which we attempt to construct the most suitable prior distribution for
θ – is a huge area of research in Bayesian Statistics; the aim in this course is to give a
brief (and relatively simple) overview.

We will consider the case of substantial prior knowledge, where expert opinion, for ex-
ample, gives us good reason to believe that some values in a permissable range for θ are
more likely to occur than others. In particular, we will re–visit the examples about the
music expert, the video game pirate and earthquakes in Chapter 2.

Of course, sometimes it might be very difficult to properly elicit a prior distribution
for θ. For example, there may be no expert available to help guide your choice of
distribution. In this case, the chosen prior distribution π(θ) might be one which keeps
the mathematics simple when operating Bayes’ Theorem, whilst also assuming a large or
“infinite” variance for θ (vague prior knowledge). Alternatively, a prior which assumes
all values of θ are equally likely could be used to represent complete prior ignornace, as
in the example about the possibly biased coin on page 28.

In this chapter we will also consider the construction of priors for θ under certain pa-
rameter constraints, including the construction of truncated priors.
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3.2 Substantial prior knowledge

In this section, we will consider the situation where we have substantial prior knowl-
edge. In Examples 3.3 and 3.4 we will make use of some online software developed
by researching Bayesian statisticians at Sheffield University: Professor Tony O’Hagan
and Dr. Jeremy Oakley. We will use this software to implement the trial roulette and
bisection methods of prior elicitation. This software is very simple to use and will be
demonstrated in lectures; you will also be expected to use this in our next computer
practical class.

Example 3.1 (Using suggested prior summaries)

Let us return to Example 2.4 of Chapter 2. Recall that we were given some data on the
“waiting times”, in days, between 21 earthquakes, and we discussed why an exponenetial
distribution Exp(θ) might be appropriate to model the waiting times. Further, we were
told that an expert on earthquakes has prior beliefs about the rate θ, described by a
Ga(10, 4000) distribution; a plot of this prior is shown in Figure 2.8. Where did this
prior distribution come from?

Suppose the expert tells us that earthquakes in the region we are interested in usually
occur less than once per year; in fact, they occur on average once every 400 days. This
gives us a rate of occurrence of about 1/400 = 0.0025 per day (to match the “daily”
units given above). Further, he is fairly certain about this and specifies a very small
variance of 6.25× 10−7.

A Ga(a, b) distribution seems sensible, since we can’t observe a negative daily earth-
quake rate and the Gamma distribution is specified over positive values only. Using the
information provided by the expert, verify our use of a = 10 and b = 4000.

✎...Solution to Example 3.1...
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Example 3.2 (Using suggested prior summaries)

Now let us return to Example 2.2 of Chapter 2. We considered an experiment to de-
termine how good a music expert is at distinguishing between pages from Haydn and
Mozart scores; when presented with a score from each composer, the expert makes the
correct choice with probability θ.

Before conducting the experiment, we were told that the expert is very competent; in
fact, we were told that θ should have a prior distribution peaking at around 0.95 and for
which Pr(θ < 0.8) is very small. To achieve this, we assumed that θ ∼ Be(77, 5), with
density given in Figure 2.4. How did we know a beta distribution would be appropriate?
And how did we figure out the parameters of this distribution, i.e. a = 77 and b = 5?

By now, you should understand why we might work with a beta distribution: in this
example, θ is a probability and so must lie in the interval [0, 1], and a beta distribution
is defined over this range. But how did we know that a = 77 and b = 5 would give the
desired properties for θ?

We are told that the mode of the distribution should be around 0.95; using the formulae
on page 25, we can thus write

a− 1

a+ b− 2
= 0.95 (3.1)

⇒ a− 1 = 0.95(a+ b− 2)

⇒ a− 0.95a = 0.95b− 1.9 + 1

⇒ 0.05a = 0.95b− 0.9

⇒ a = 19b− 18. (3.2)

We are also told that Pr(θ < 0.8) must be small. In fact, suppose we are told that
θ < 0.8 might occur with probability 0.0001. This means that if we integrate the
probability density function for our beta distribution between 0 and 0.8, we would get
0.0001; from Equation (2.1) on page 25, we can write this as

∫ 0.8

0

θa−1(1− θ)b−1

B(a, b)
dθ = 0.0001, i.e.

∫ 0.8

0

θ(19b−18)−1(1− θ)b−1

B(19b− 18, b)
dθ = 0.0001, (3.3)

i.e. we set the cumulative distribution function for a Be(19b − 18, b), evaluated at 0.8,
equal to 0.0001 and solve for b. Although this would be rather tricky to do by hand,
we can do this quite easily in R. Recall that the R command dbeta(x,a,b) evaluates
the density of the Be(a, b) distribution at the point x (see page 25); the command
pbeta(x,a,b) evaluates the corresponding cumulative distribution function at x. First
of all, we re–write (3.3) to set it equal to zero:

∫ 0.8

0

θ(19b−18)−1(1− θ)b−1

B(19b− 18, b)
dθ − 0.0001 = 0. (3.4)

We then write a function in R which computes the left-hand-side of Equation (3.4):
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f=function(b){

+ answer=pbeta(0.8,((19*b)-18),b)-0.0001

+ return(answer)}

The trick now is to use a numerical procedure to find the root of answer in the R function
above, i.e. find the value b which equates answer to zero (as is required in Equation
(3.4). We can do this using the R function uniroot(f, lower=, upper=), which uses
a numerical search algorithm to find the root of the expression provided by the function
f, having been given a lower bound and an upper bound to search within. We know
from the formulae on page 25 that a, b > 1 when using expression (3.1) for the mode,
so we can search for a root over some specified domain > 1: for example, we might use
lower=1 and upper=100, giving:

> uniroot(f,lower=1,upper=100)

$root

[1] 5.06513

$f.root

[1] 6.008134e-09

$iter

[1] 14

$estim.prec

[1] 6.103516e-05

Thus, the solution to Equation (3.3) is b = 5.06513. For simplicity, rounding down to
b = 5 and then substituting into (3.2) gives

a = 19× 5− 18 = 77,

hence the use of θ ∼ Be(77, 5) in Example 2.2 in Chapter 2.

In the next two examples, we will use theMATCH Uncertainty Elcitation Tool, developed
by Professor Tony O’Hagan and Dr. Jeremy Oakley at Sheffield, to demonstrate two
techniques of prior elicitation: the trial roulette method and the bisection method.
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Example 3.3 (Trial roulette method)

We now return to Example 2.3 in Chapter 2. Recall that Max is a video game pirate, and
he is trying to identify the proportion θ of potential customers who might be interested
in buying Call of Duty: Elite next month. Why did we use θ ∼ Be(2.5, 12)?

For each month over the last two years Max knows the proportion of his customers who
have bought similar games; these proportions are shown below in Table 3.1.

0.32 0.25 0.28 0.15 0.33 0.12 0.14 0.18 0.12 0.05 0.25 0.08
0.07 0.16 0.24 0.38 0.18 0.15 0.22 0.05 0.01 0.19 0.08 0.15

Table 3.1: Proportion of Max’s customers, each month, who have bought computer
games in the same genre as Call of Duty: Elite.

We will use these data to form a prior for θ using the trial roulette method. Here, we
divide the sample space for θ into m bins, and we distribute n chips amongst the bins,
with the proportion of chips allocated to a particular bin representing the probability of
θ lying in that bin. If this is done graphically, we can see the shape of our distribution
forming as we allocate the chips. Once the allocation is done, we can then fit a parametric
distribution to match the shape of the distribution of chips. Actually, we will do this
using the MATCH Uncertainty Elicitation Tool. You can enter MATCH directly by
typing the following URL into any web browser:

http://optics.eee.nottingham.ac.uk/match/uncertainty.php

Doing so gives the screenshot shown in Figure 3.1 overleaf. Notice the default Lower

Limit and Upper Limit are set at 100 and 200, respectively; in this example, θ is a
proportion, and so these need to be changed to 0 and 1 respectively. Doing so, and
then selecting the Roulette option, gives what can be seen in the screenshot in Figure
3.2. The Number of Bins and Height of Grid can be changed, if necessary. We can
now place chips in the bins according to the prior information given in Table 3.1. For
example, the first chip will go in between 0.3 and 0.4 as the first proportion is 0.32.
Completing the grid gives the distribution of chips as shown in Figure 3.3.

Finally, selecting the Fitting and Feedback button gives the screenshot shown in Fig-
ure 3.4. Here, you can see that MATCH automatically chooses the best–fitting distribu-
tion – in this case, a Scaled Beta distribution (in this example just the beta distribution
that you should be familiar with by now); the program also returns a picture of the fitted
density function, showing the parameters of this distribution underneath. Here, MATCH
suggests using a ≈ 2.5 and b ≈ 12 (given as α and β on the screen); hence, the use of
θ ∼ Be(2.5, 12) in Example 2.3 in Chapter 2.

Of course, instead of using past data to complete the roulette grid, we could ask an
expert to place chips in the bins according to her beliefs about likely values of θ; twice
as many chips in one bin compared to another would mean that the expert believes that
θ is twice as likely to take on values in that bin than in the other. Note the Feedback

Percentiles in Figure 3.4; we will discuss their use in the next example.
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Figure 3.1: The homepage of the MATCH Uncertainty Elicitation Tool.

Figure 3.2: The Roulette option in MATCH.
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Figure 3.3: Placing chips in bins using the Roulette option in MATCH.

Figure 3.4: Fitting and Feedback in MATCH.
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Example 3.4 (Bisection method)

The bisection method is another method of prior elcitation. This method requires the
expert to be able to split the range of allowable values for θ into four smaller, equally
likely, chunks.

First of all, the range is bisected into two intervals of equal probability from which we
elicit the expert’s median, m; we then ask the expert to further bisect each of these
intervals to elicit the lower and upper quartiles (l and u, respectively). From these
elicited quartiles, we can then obtain a parametric distribution for θ; for this we will
again make use of MATCH. Finally, a stage of feedback and refinement is considered
before we settle on a distribution for θ; this stage of feedback and refinement can (and
should!) be undertaken in all situations where we attempt to elicit a prior distribution
from information given to use by an expert. We will now demonstrate the bisection
method through an example.

Over the past 15 years there has been considerable scientific interest in the rate of retreat,
θ (feet per year), of glaciers in Greenland (as discussed in the recent Frozen Planet series
shown on the BBC); indeed, this has often been used as an indicator of global warming.
We are interested in elicitng a suitable prior distribution for θ for the Zachariae Isstrøm
glacier in Greenland.

Records from an expert glaciologist show that glaciers in Greenland have been retreating
at a rate of between 0 and 70 feet per year since 1995. We will use these values as the
lower and upper limits for θ, respectively. We now attempt to elicit the median and
quartiles for θ from the glaciologist.

1. Elicit the expert’s median
Statistician: “Can you give us a value m such that, for the Zachariae Isstrøm
glacier, we can expect the rate of retreat in 2012 to have an equal chance of lying
in [0,m]feet and [m, 70]feet?”

Glaciologist: “Hmmm... the Zachariae Isstrøm glacier lies in quite a northerly
region of glacial activity in Greenland, one that has not been severely affected by
glacial retreat. For this glacier this year, there is a good chance that the rate of
retreat will be lower than most in Greenland, perhaps around 24 feet.”

Statistician: “So for this glacier, it is just as likely that the rate of retreat will be
somewhere in [0, 24] and [24, 70]?”

Glaciologist: “Yes, I think that sounds reasonable. The value which bisects the
whole range, in terms of how likely certain values of θ are to occur, should be closer
to the lower bound than the upper.”

In MATCH, we enter the Lower Limit and Upper Limit as 0 and 70, respectively;
after selecting the Quartilemethod of elicitation as the Input Mode, we then move
the Median slider to 24: this can be seen in the screenshot in Figure 3.5. Notice
that the green area of the median bar represents the lower 50% of the distribution
for θ and the blue area represents the upper 50% of the distribution for θ. Notice
also that the lower and upper quartiles are still at their default values – one quarter
and three quarters of the range, respectively.
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Figure 3.5: Entering the lower and upper limits, and the elicited median, in MATCH.

2. Elicit the expert’s lower quartile
Statistician: “So, you think there is an evens chance that the Zachariae Isstrøm
glacier will retreat between [0, 24] feet and [24, 70] feet this year. Can you split the
lower interval [0, 24] into two halves of equal probability also?”

Glaciologist: “Erm, not sure, that’s a bit more difficult...”

Statistician: “OK, you said you expect the glacier to retreat by about 24 feet this
year. How certain are you of this value? Do you think it could be considerably
lower than this?”

Glaciologist: “Well, obviously, I can’t be certain... but I doubt it would be much
lower than this, for this particular glacier...”

Statistician: “Do you think [0, 12] or [12, 24] is more likely?”

Glaciologist: “Definitely, a rate of retreat somewhere between 12 feet and 24 feet
is much more likely than between 0 and 12 feet. There are areas of Greenland
further North where the glaciers have much slower rates of retreat... only the most
northely glaciers have zero retreat.”

Statistician: “OK. So [12, 24] is more likely than [0, 12]. Is there a value between
12 and 24 that you’d be prepared to go down to for the rate of retreat for this
glacier?”

Glaciologist: “ Probably a bit more than half–way. Maybe 19 feet?”
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3. Elicit the expert’s upper quartile
Statistician: “Thank you. In a similar way, for this glacier, could you split the
upper interval [24, 70] into two halves of equal probability?”

Glaciologist: “I’m sure that the rate of retreat for this glacier will be closer to
my specified value [24] than half way between 24 and 70... really, only the fastest
retreating glaciers in more southerly regions have a rate of retreat more than about
40 feet in one year... I think a value of about 30 feet would split this upper interval
quite nicely here.”

Statistician: “Thank you.”

We now update the MATCH screen with the suggested lower and upper quartiles
(19 and 30, respectively), before clicking Fitting and Feedback. Figure 3.6 shows
a screenshot of this.

Figure 3.6: Entering the lower and upper quartiles to obtain a fitted distribution for θ
in MATCH.
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4. Reflection
Statistician: “So, would you consider the following four intervals equally likely?”

[0, 19], [19, 24], [24, 30], [30, 70]

Glaciologist: “This seems reasonable to me, I think...”

5. Fit a parametric distribution to these judgements
Notice that the screenshot from MATCH, shown in Figure 3.6, indicates that a
Ga(9, 0.36) distribution might be appropriate for θ. Notice from Figure 3.6 that
MATCH also gives Feedback percentiles – we will consider these in the feedback
and refinement stage.

6. Feedback and refinement
We now show the glaciologist our distribution for the rate of glacial retreat, i.e.
θ ∼ Ga(9, 0.36).

Statistician: “We have obtained a probability distribution for the rate of retreat
for the Zachariae Isstrøm glacier. A plot of this distribution is shown in Figure
3.6. Do you think this reasonably specifies your beliefs about the retreat of the
Zachariae Isstrøm glacier this year?”

Glaciologist: “I think this looks OK. The plot peaks close to my suggested value of
about 24 feet; to allows for all values between 0 and 70 feet, but gives diminshing
probabilities as we move towards these extremes.”

The Statistician should now consider the tails: we can do this by setting the
Feedback Percentiles in MATCH to 1% and 99% (see Figure 3.7).

Statistician: “What would have to happen for the rate of retreat at this glacier to
be as much as 48 feet this year?”

Glaciologist: “Something pretty spectacular for a glacier at this longitude! Al-
though it’s not impossible, just really, really unlikely.”

Statistician: “Our probability distribution gives this event, or anything more ex-
treme, a probability of 0.01 – i.e. once in a hundred years – does this seem small
enough?”

Glaciologist: “Yes, I suppose this is imaginable.”

Statistician: “At the other end of the scale, we give a rate of retreat of just 10 feet
this year the same small probability. Are you happy with this?”

Glaciologist: “Yes, that looks fine to me.”
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Figure 3.7: Obtaining tail probabilities in MATCH : here, we ask for the 1st percentile
and the 99th percentile.

Example 3.5

Let Y be the retreat, in feet, of the Zachariae Isstrøm glacier. A Pareto distribution
with rate θ is often used to model such geophysical activity, with probability density
function

f(y|κ, θ) = θκθy−(θ+1), θ, κ > 0 and y > κ.

(a) Obtain the likelihood function for θ given the parameter κ and some observed data
y1, y2, . . . , yn (independent).

Solution
✎...Solution to Example 3.5(a)...
The likelihood function is simply the product of the probability density function evalauted
at each observation yi, (i = 1, . . . , n), i.e.

L(θ|κ, y) = θκθy
−(θ+1)
1 × · · · × θκθy−(θ+1)

n

= θnκnθ
n
∏

i=1

y
−(θ+1)
i . (3.5)
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(b) Suppose we observe a retreat of 20 feet at the Zachariae Isstrøm glacier in 2012.
Write down the likelihood function for θ.

Solution
✎...Solution to Example 3.5(b)...
We simply substitute n = 1 and y1 = 20 into Equation (3.5), giving

L(θ|κ, y1 = 20) = θκθ20−(θ+1).

(c) Using the elicted prior for the rate of retreat we obtained from the expert glaciol-
ogist in Example 3.4, and assuming κ is known to be 12, obtain the posterior
distribution π(θ|y1 = 20).

Solution
✎...Solution to Example 3.5(c)...
Using Bayes’ Theorem, and following the examples in Chapter 2, we know that

π(θ|y1 = 20) ∝ π(θ)× L(θ|y1 = 20).

Recall from Example 3.4 that our elicited prior for θ is Ga(9, 0.36), which has density

π(θ) =
0.369θ8e−0.36θ

Γ(9)
.

Combining this with the likelihood above (and using κ = 12) gives

π(θ|y1 = 20) =
0.369θ8e−0.36θ

Γ(9)
× θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−(θ+1)

∝ θ9e−0.36θ12θ20−θ. (3.6)
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Solution

✎...Solution to Example 3.5(c) continued...
Now consider the term 12θ20−θ. Taking logs, we get

θln12− θln20 = (ln12− ln20)θ;

exponentiating to ‘re–balance’, you should see that

12θ20−θ = e(ln12−ln20)θ.

Substituting back into (3.6) gives

π(θ|y1 = 20) ∝ θ9e−0.36θe(ln12−ln20)θ i.e.

∝ θ9e−0.36θ+(ln12−ln20)θ

∝ θ9e−/0.87θ.

Referring to our definition of the gamma distribution on page 25 of these notes, you should
recognise this as a Ga(10, 0.87) distribution. Figure 3.8 compares the prior and posterior
densities.
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Figure 3.8: Prior (dashed) and posterior (solid) densities for the rate of glacial retreat
at the Zachariae Isstrøm glacier.
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Definition 3.1

We have substantial prior information for θ when the prior distribution dominates the
posterior distribution, that is π(θ|x) ∼ π(θ). An example of substantial prior knowledge
was given in Example 2.2 where a music expert was trying to distinguish between pages
from Mozart and Haydn scores. Figure 3.9 shows the prior and posterior distributions
for θ, the probability that the expert makes the correct choice. Notice the similarity
between the prior and posterior distributions. Observing the data has not altered our
beliefs about θ very much.
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Figure 3.9: Prior (dashed) and posterior (solid) densities for θ

When we have substantial prior information there can be some difficulties:

1. the intractability of the mathematics in deriving the posterior distribution —
though with modern computing facilities this is less of a problem,

2. the practical formulation of the prior distribution — coherently specifying prior
beliefs in the form of a probability distribution is far from straightforward although,
as we have seen, this can be attempted using computer software.
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3.3 Parameter constraints

Our prior information may include parameter constraints. For example an expert may
tell us that it is physically impossible for a parameter to take values in a particular range.
Often this translates mathematically to a condition such as θ ≥ 1. One way to define
priors which satisfy such constraints is by using truncated distributions.

Definition 3.2

Consider a univariate continuous distribution with density π(θ). Then this distribution
truncated to the interval [a, b] has density:

πT (θ) =

{

π(θ)/k for θ ∈ [a, b]

0 otherwise

where k =
∫ b

a
π(θ)dθ.

Notes:

1. For one-side constraints – e.g. θ ≥ 1 – we can take a = −∞ or b = ∞.

2. Strict inequalities such as θ > 1 can be treated in exactly the same way as non-strict
inequalities such as θ ≥ 1 (this is because θ is a continuous random variable).

3. For Bayesian analysis we usually don’t need to actually calculate k, as we can
simply use:

πT (θ) ∝
{

π(θ) for θ ∈ [a, b]

0 otherwise

Example 3.6

Suppose θ ∼ N(b, d2). Find the density of the truncated distribution for θ > 0.

Solution✎...Solution to Example 3.6...
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✎...Solution to Example 3.6 continued...

Figure 3.10 shows a plot of the densities of (a) a N(1, 1) distribution and (b) a N(1, 1)
distribution truncated to θ > 0. Notice that for θ > 0 the truncated normal’s density
has the same shape as that of the original distribution. However the truncated density
takes proportionately larger values, since both curves must have an area underneath of
one. Also, we can see that the mean of the truncated distribution will be larger than
the mean of the original distribution and the standard deviation will be smaller.

This is an important general point. Truncating a distribution changes the mean and
variance. Calculating the new values can be difficult.
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Figure 3.10: Plot of a normal and truncated normal distribution
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Bayesian statistics with truncated priors

Suppose we can do a Bayesian analysis for an ordinary prior. Then it’s easy to do the
analysis for a truncated version of this prior by the following theorem.

Theorem: Truncated posteriors

Suppose that for a prior π(θ) the resulting posterior is π(θ|x). Let πT (θ) be the result
of truncating the prior to [a, b]. Then the corresponding posterior is π(θ|x) truncated to
[a, b].

Proof

Let π′(θ|x) be the posterior for the truncated prior. Then:

π′(θ|x) ∝ πT (θ)f(x|θ)

∝
{

π(θ)f(x|θ) for θ ∈ [a, b]

0 otherwise

∝
{

π(θ|x) for θ ∈ [a, b]

0 otherwise.

This result makes it easy to do Bayesian analysis under parameter constraints.

Example 3.7

Consider again the case of Xi|θ ∼ N(θ, h2), i = 1, 2, . . . , n (independent) and θ ∼
N(b, d2), with h known. Suppose we knew in advance that the experiment could only
result in positive values for θ. Find the posterior distribution for θ.

Solution✎...Solution to Example 3.7...
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✎...Solution to Example 3.7 continued...

Figure 3.11 plots the N(1, 1) posterior densities using the original and truncated pri-
ors. This plot highlights an important consequence of using truncated distributions for
modelling prior beliefs, namely, that if particular parameter values are ruled out prior to
seeing the data then they are also ruled out after seeing the data. Normally, this is not a
problem but, as the following example shows, when the truncation in a prior distribution
does not include parameter values for which the likelihood function is large, misleading
conclusions can be made.
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Figure 3.11: Plot of a posterior distribution determined using a non-truncated and a
truncated prior distribution
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Example 3.8

Consider the case of a large random sample (n = 1500) with sample mean x̄ = 157/15 ≃
10.47 from a normal distribution with known variance (h2 = 100) and a normal N(3, 1)
prior distribution for the mean parameter θ. The prior probability that θ exceeds 9
is almost zero: Pr(θ > 9) ≃ 10−9. So what is the effect of using a prior distribution
which rules out the extremely unlikely values of θ greater than 9? Put another way, is
there much difference between the posterior distributions calculated using the prior with
Pr(θ > 9) ≃ 10−9 or a truncated version of the prior with Pr(θ > 9) = 0?

If no truncation is applied to the prior distribution then Bayes Theorem produces the
posterior distribution θ|x ∼ N(10, 0.252). The discussion preceding this example tells
us that imposing the truncation θ < 9 on the prior distribution produces a posterior
distribution which is a N(10, 0.252) distribution, truncated to θ < 9. Figure 3.12 shows
the resulting posterior densities. Clearly, truncating the prior distribution to θ < 9
has resulted in a posterior distribution truncated to θ < 9, even though the likelihood
function is very peaked at θ ≃ 10.47. So our prior has ruled out the most likely values
according to the data! Using a prior distribution which gives very small – but non-zero
– probability to values of θ > 9, avoids this problem.
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Figure 3.12: Plot of a posterior distribution determined using a non-truncated and a
truncated prior distribution

This example motivates the pragmatic rule: never rule out values for parameters which
are very implausible but not impossible. Instead these parameter values should be given
very small probability density. The data will then be allowed to inform the posterior
distribution about values of θ with very low prior probability (density) but with very
high likelihood.
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“If a decision-maker thinks something cannot be true and interprets this to mean it has
zero probability, he will never be influenced by any data, which is surely absurd. So leave
a little probability for the moon being made of green cheese; it can be as small as 1 in a
million, but have it there since otherwise an army of astronauts returning with samples
of the said cheese will leave you unmoved” – Dennis Lindley

3.4 Vague Prior Knowledge/Prior Ignorance

If we have very little or no prior information about the model parameters θ, we must
still choose a prior distribution in order to operate Bayes Theorem. Obviously, it would
be sensible to choose a prior distribution which is not concentrated about any particular
value, that is, one with a very large variance. In particular, most of the information
about θ will be passed through to the posterior distribution via the data, and so we have
π(θ|x) ∼ f(x|θ).
An example of vague prior knowledge was given in Example 2.1 where a possibly biased
coin was assessed. Figure 3.13 shows the prior and posterior distributions for θ =
Pr(Head). Notice that the prior and posterior distributions look very different. In fact,
in this example, the posterior distribution is simply a scaled version of the likelihood
function – likelihood functions are not usually proper probability (density) functions
and so scaling is required to ensure that it integrates to one. Most of our beliefs about
θ have come from observing the data.
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Figure 3.13: Prior (dashed) and posterior (solid) densities for θ
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Vague Prior Knowledge

We represent vague prior knowledge by using a prior distribution which is conjugate to
the model for x and which has “infinite” variance.

Example 3.9

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ known). De-
termine the posterior distribution assuming a vague prior for µ.

✎...Solution to Example 3.9...
The conjugate prior distribution is a normal distribution. We have already seen that if
the prior is µ ∼ N(b, 1/d) then the posterior distribution is µ|x ∼ N(B, 1/D) where

B =
db+ nτx̄

d+ nτ
and D = d+ nτ.

If we now make our prior knowledge vague about µ by letting the prior variance tend to
infinity (d→ 0), we obtain

B → x̄ and D → nτ.

Therefore, assuming vague prior knowledge for µ results in a N(x̄, 1/(nτ)) posterior dis-
tribution. Notice that the posterior mean is the sample mean (the likelihood mode) and
that the posterior variance 1/D → 0 as n→ ∞.
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Example 3.10

Suppose we have a random sample from an exponential distribution, that is, Xi|θ ∼
Exp(θ), i = 1, 2, . . . , n (independent). Determine the posterior distribution assuming a
vague prior for θ.

Solution
✎...Solution to Example 3.10...
The conjugate prior distribution is a Gamma distribution. Recall that a Ga(g, h) dis-
tribution has mean m = g/h and variance v = g/h2. Rearranging these formulae we
obtain

g =
m2

v
and h =

m

v
.

Clearly g → 0 and h → 0 as v → ∞ (for fixed m). We have seen how taking a Ga(g, h)
prior distribution results in a Ga(g + n, h+ nx̄) posterior distribution. Therefore, taking
a vague prior distribution will give a Ga(n, nx̄) posterior distribution. Note that the
posterior mean is 1/x̄ (the likelihood mode) and that the posterior variance 1/(nx̄2) → 0
and n→ ∞.

Prior Ignorance

We could represent ignorance by the concept “all values of θ are equally likely”. If θ
were discrete withm possible values then we could assign each value the same probability
1/m. However, if θ is continuous, we need some limiting argument (from the discrete
case). Suppose that θ can take values between a and b, where −∞ < a < b < ∞.
Letting all (permitted) values of θ be equally likely results in taking a uniform U(a, b)
distribution as our prior distribution for θ. However, if the parameter space is not finite
then we cannot do this: there is no such thing as a U(−∞,∞) distribution. Convention
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suggests that we should use the “improper” uniform prior distribution

π(θ) = constant.

This distribution is improper because
∫∞

−∞
π(θ) dθ is not a convergent integral, let alone

equal to one. We have a similar problem if θ takes positive values — we cannot use a
U(0,∞) prior distribution. Now if θ ∈ (0,∞) then φ = log θ ∈ (−∞,∞), and so we
could use an “improper” uniform prior for φ: π(φ) = constant. In turn, this induces a
distribution on θ. Recall the result from Distribution Theory:

Suppose that X is a random variable with probability density function fX(x). If g is
a bijective (1–1) function then the random variable Y = g(X) has probability density
function

fY (y) = fX
(

g−1(y)
)

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

. (3.7)

Applying this result to θ = eφ gives

πθ(θ) = πφ(log θ)

∣

∣

∣

∣

d

dθ
log θ

∣

∣

∣

∣

, θ > 0

= constant×
∣

∣

∣

∣

1

θ

∣

∣

∣

∣

, θ > 0

∝ 1

θ
, θ > 0.

This too is an improper distribution.

There is a drawback of using uniform or improper priors to represent prior ignorance:
if we are “ignorant” about θ then we are also “ignorant” about any function of θ, for
example, about φ1 = θ3, φ2 = eθ, φ3 = 1/θ, . . . . Is it possible to choose a distribution
where we are ignorant about all these functions of θ? If not, on which function of θ should
we place the uniform/improper prior distribution? After a little thought, it should be
clear that there is no distribution which can represent ignorance for all functions of θ.
The above example shows that assigning a uniform/ignorance prior to θ means that we
do not have a uniform/ignorance prior for eθ.

A solution to problems of this type was suggested by Sir Harold Jeffreys. His suggestion
was specified in terms of Fisher’s Information:

I(θ) = EX|θ

[

− ∂2

∂θ2
log f(X|θ)

]

. (3.8)

He recommended that we represent prior ignorance by the prior distribution

π(θ) ∝
√

I(θ). (3.9)

Such a prior distribution is known as a Jeffreys prior distribution.
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Example 3.11

Suppose we have a random sample from a distribution with probability density function

f(x|θ) = 2x e−x
2/θ

θ
, x > 0, θ > 0.

Determine the Jeffreys prior for this model.

Solution

✎...Solution to Example 3.11...
The likelihood function is

L(θ|x) = fX(x|θ) =
n
∏

i=1

2xi e
−x2

i
/θ

θ

=
2n

θn

(

n
∏

i=1

xi

)

exp

{

−1

θ

n
∑

i=1

x2i

}

,
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Solution
✎...Solution to Example 3.11 continued...
and therefore

logL(θ|x) = n log 2− n log θ +
n
∑

i=1

log xi −
1

θ

n
∑

i=1

x2i

⇒ ∂

∂θ
logL(θ|x) = −n

θ
+

1

θ2

n
∑

i=1

x2i

⇒ ∂2

∂θ2
logL(θ|x) = n

θ2
− 2

θ3

n
∑

i=1

x2i

⇒ I(θ) = EX|θ

[

− ∂2

∂θ2
logL(θ|X)

]

= − n

θ2
+

2

θ3
EX|θ

[

n
∑

i=1

X2
i

]

= − n

θ2
+

2n

θ3
EX|θ

[

X2
]

since the Xi are identically distributed. Now

EX|θ

[

X2
]

=

∫ ∞

0

x2 ×
(

2x e−x
2/θ

θ

)

dx

= θ

∫ ∞

0

y e−y dy using the substitution y = x2/θ

= θ × 1

= θ.

Therefore

I(θ) = − n

θ2
+

(

2n

θ3
× θ

)

=
n

θ2
.

Hence, the Jeffreys prior for this model is

π(θ) ∝ I(θ)1/2

∝
√
n

θ
, θ > 0

∝ 1

θ
, θ > 0.

Notice that this distribution is improper since
∫∞

0
dθ/θ is a divergent integral, and so we

cannot find a constant which ensures that the density function integrates to one.
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Example 3.12

Suppose we have a random sample from an exponential distribution, that is, Xi|θ ∼
Exp(θ), i = 1, 2, . . . , n (independent). Determine the Jeffreys prior for this model.

Solution
✎...Solution to Example 3.12...
Recall that L(θ|x) = fX(x|θ) = θne−nx̄θ, and therefore

logL(θ|x) = n log θ − nx̄θ

⇒ ∂

∂θ
logL(θ|x) = n

θ
− nx̄

⇒ ∂2

∂θ2
logL(θ|x) = − n

θ2

⇒ I(θ) = EX|θ

[

− ∂2

∂θ2
logL(θ|X)

]

=
n

θ2
.

Hence, the Jeffreys prior for this model is

π(θ) ∝ I(θ)1/2

∝
√
n

θ
, θ > 0

∝ 1

θ
, θ > 0.

Notice that this distribution is improper since
∫∞

0
dθ/θ is a divergent integral, and so we

cannot find a constant which ensures that the density function integrates to one.

Notice also that this density is, in fact, a limiting form of a Ga(g, h) density (ignoring
the integration constant) since

hg θg−1e−hθ

Γ(g)
∝ θg−1e−hθ → 1

θ
, as g → 0, h→ 0.

Therefore, we obtain the same posterior distribution whether we adopt the Jeffreys prior
or vague prior knowledge.
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Example 3.13

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ known). De-
termine the Jeffreys prior for this model.

Solution
✎...Solution to Example 3.13...
Recall that

L(µ|x) = fX(x|µ) =
( τ

2π

)n/2

exp

{

−τ
2

n
∑

i=1

(xi − µ)2

}

,

and therefore

logL(µ|x) = n

2
log(τ)− n

2
log(2π)− τ

2

n
∑

i=1

(xi − µ)2

⇒ ∂

∂µ
logL(µ|x) = −τ

2
×

n
∑

i=1

−2(xi − µ)

= τ
n
∑

i=1

(xi − µ)

= nτ(x̄− µ)

⇒ ∂2

∂µ2
logL(µ|x) = −nτ

⇒ I(µ) = EX|µ

[

− ∂2

∂µ2
logL(µ|X)

]

= nτ.

Hence, the Jeffreys prior for this model is

π(µ) ∝ I(µ)1/2

∝ √
nτ, −∞ < µ <∞

= constant, −∞ < µ <∞.
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Notice that this distribution is improper since
∫∞

−∞
dµ is a divergent integral, and so we

cannot find a constant which ensures that the density function integrates to one.

Also it is a limiting form of a N(b, 1/d) density (ignoring the integration constant) since

(

d

2π

)1/2

exp

{

−d
2
(µ− b)2

}

∝ exp

{

−d
2
(µ− b)2

}

→ 1, as d→ 0.

Therefore, we obtain the same posterior distribution whether we adopt the Jeffreys prior
or vague prior knowledge.

3.5 Asymptotic posterior distribution

There are many limiting results in Statistics. The one you will probably remember
is the Central Limit Theorem. This concerns the distribution of X̄n, the mean of n
independent and identically distributed random variables (each with known mean µ and
known variance σ2), as the sample size n → ∞. It is easy to show that E(X̄n) = µ and
V ar(X̄n) = σ2/n, and so

E

[√
n(X̄n − µ)

σ

]

= 0 and V ar

[√
n(X̄n − µ)

σ

]

= 1.

These two equations are true for all values of n. The important part of the Central Limit
Theorem is the description of the distribution of

√
n(X̄n − µ)/σ as n→ ∞:

√
n(X̄n − µ)

σ

D−→ N(0, 1) as n→ ∞.

The following theorem gives a similar result for the posterior distribution.

Theorem (Asymptotic posterior)

Suppose we have a statistical model f(x|θ) for data x = (x1, x2, . . . , xn)
T , together with

a prior distribution π(θ) for θ. Then

√

J(θ̂) (θ − θ̂)|x D−→ N(0, 1) as n→ ∞,

where θ̂ is the likelihood mode and J(θ) is the observed information

J(θ) = − ∂2

∂θ2
log f(x|θ).
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Proof

Using Bayes Theorem, the posterior distribution for θ is

π(θ|x) ∝ π(θ) f(x|θ).

Let ψ =
√
n(θ − θ̂) and

ℓn(θ) =
1

n
log f(x|θ)

be the average log-likelihood per observation, in which case, f(x|θ) = enℓn(θ). Using
(3.7), the posterior distribution of ψ is

πψ(ψ|x) = πθ

(

θ̂ +
ψ√
n

∣

∣

∣

∣

x

)

× 1√
n

∝ πθ

(

θ̂ +
ψ√
n

)

exp

{

nℓn

(

θ̂ +
ψ√
n

)}

.

Now taking Taylor series expansions about ψ = 0 gives

πθ

(

θ̂ +
ψ√
n

)

= πθ(θ̂) + π′
θ(θ̂)

ψ√
n
+O

(

ψ2

n

)

= πθ(θ̂)

{

1 +O

(

ψ√
n

)}

nℓn

(

θ̂ +
ψ√
n

)

= n

{

ℓn(θ̂) + ℓ′n(θ̂)
ψ√
n
+

1

2
ℓ′′n(θ̂)

ψ2

n
+O

(

ψ3

n3/2

)}

= nℓn(θ̂) +
1

2
ℓ′′n(θ̂)ψ

2 +O

(

ψ3

√
n

)

since ℓ′n(θ̂) = 0 by definition of the maximum likelihood estimate. Therefore, retaining
only terms in ψ, we have

πψ(ψ|x) ∝ πθ(θ̂)

{

1 +O

(

ψ√
n

)}

exp

{

nℓn(θ̂) +
1

2
ℓ′′n(θ̂)ψ

2 +O

(

ψ3

√
n

)}

∝ exp{nℓn(θ̂)} exp
{

1

2
ℓ′′n(θ̂)ψ

2

}

exp

{

O

(

ψ3

√
n

)}{

1 +O

(

ψ√
n

)}

∝ exp

{

1

2
ℓ′′n(θ̂)ψ

2

}{

1 +O

(

ψ3

√
n

)}{

1 +O

(

ψ√
n

)}

∝ exp

{

1

2
ℓ′′n(θ̂)ψ

2

}{

1 +O

(

ψ√
n

)}

∝ exp

{

− ψ2

2[−ℓ′′n(θ̂)]−1

}

{

1 +O

(

ψ√
n

)}

.
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Hence

πψ(ψ|x) → k exp

{

− ψ2

2[−ℓ′′n(θ̂)]−1

}

as n→ ∞.

Thus, the limiting form of the posterior density for ψ is that of a N
(

0, [−ℓ′′n(θ̂)]−1
)

distribution. Hence

√
n(θ − θ̂)|x D−→ N

(

0, [−ℓ′′n(θ̂)]−1
)

as n→ ∞,

or, equivalently, since nℓn(θ) = log f(x|θ)
√

J(θ̂)
(

θ − θ̂
)

∣

∣

∣
x

D−→ N(0, 1) as n→ ∞,

as required.

Comments

1. This asymptotic result can give us a useful approximation to the posterior distri-
bution for θ when n is large:

θ|x ∼ N
(

θ̂, J(θ)−1
)

approximately.

2. The observed information is similar to Fisher’s information (3.8). In fact, Fisher’s
information is the expected value of the observed information, where the expecta-
tion is taken over the distribution of X|θ, that is, I(θ) = EX|θ[J(θ)].

3. This limiting result is similar to one for the maximum likelihood estimator in
Frequentist Statistics:

√

I(θ) (θ̂ − θ)|x D−→ N(0, 1). as n→ ∞, (3.10)

Note that (3.10) is a statement about the distribution of θ̂ for fixed (unknown) θ,
whereas the Theorem is a statement about the distribution of θ for fixed (known) θ̂.
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Example 3.14

Suppose we have a random sample from a distribution with probability density function

f(x|θ) = 2x e−x
2/θ

θ
, x > 0, θ > 0.

Determine the asymptotic posterior distribution for θ. Note that from Example 3.11 we
have

∂

∂θ
log f(x|θ) = −n

θ
+

1

θ2

n
∑

i=1

x2i ,

J(θ) = − ∂2

∂θ2
log f(x|θ) = − n

θ2
+

2

θ3

n
∑

i=1

x2i =
n

θ3

(

−θ + 2

n

n
∑

i=1

x2i

)

.

Solution
✎...Solution to Example 3.14...

Write x2 =
1

n

n
∑

i=1

x2i then we have

∂

∂θ
log f(x|θ) = 0 =⇒ θ̂ = x2,

=⇒ J(θ̂) =
n

(

x2
)2

=⇒ J(θ̂)−1 =
1

n

(

x2
)2

.

Therefore, for large n, the (approximate) posterior distribution for θ is

θ|x ∼ N

(

x2,
1

n

(

x2
)2
)

.
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Example 3.15

Suppose we have a random sample from an exponential distribution, that is, Xi|θ ∼
Exp(θ), i = 1, 2, . . . , n (independent). Determine the asymptotic posterior distribution
for θ. Note that from Example 3.12 we have

∂

∂θ
log f(x|θ) = n

θ
− nx̄,

J(θ) = − ∂2

∂θ2
log f(x|θ) = n

θ2
.

Solution

✎...Solution to Example 3.15...
We have

∂

∂θ
log f(x|θ) = 0 =⇒ θ̂ =

1

x̄

=⇒ J(θ̂) = nx̄2

=⇒ J(θ̂)−1 =
1

nx̄2
.

Therefore, for large n, the (approximate) posterior distribution for θ is

θ|x ∼ N

(

1

x̄
,

1

nx̄2

)

.

Recall that, assuming a vague prior distribution, the posterior distribution is a Ga(n, nx̄)
distribution, with mean 1/x̄ and variance 1/(nx̄2). The Central Limit Theorem tells
us that, for large n, the gamma distribution tends to a normal distribution, matched,
of course, for mean and variance. Therefore, we have shown that, for large n, the
asymptotic posterior distribution is the same as the posterior distribution under vague
prior knowledge. Not a surprising result!
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Example 3.16

Suppose we have a random sample from a N(µ, 1/τ) distribution (with τ known). De-
termine the asymptotic posterior distribution for µ. Note that from Example 3.13 we
have

∂

∂µ
log f(x|µ) = nτ(x̄− µ),

J(µ) = − ∂2

∂µ2
log f(x|µ) = nτ.

Solution
✎...Solution to Example 3.16...
We have

∂

∂µ
log f(x|µ) = 0 =⇒ µ̂ = x̄

=⇒ J(µ̂) = nτ

=⇒ J(µ̂)−1 =
1

nτ
.

Therefore, for large n, the (approximate) posterior distribution for µ is

µ|x ∼ N

(

x̄,
1

nτ

)

.

Again, we have shown that the asymptotic posterior distribution is the same as the
posterior distribution under vague prior knowledge.


