Learning outcomes: Chapter 1

- 1. You should
 - know the difference between the classical, frequentist and subjective interpretations of probability;
 - be able to give examples of events whose probabilities can be found using the classical, frequentist and subjective interpretations of probability;
 - be able to explain if the probabilities of events can be found using the classical, frequentist or subjective interpretations of probability;
 - be able to explain the drawbacks of the classical, frequentist and subjective interpretations of probability.
- 2. You should be able to
 - state the result for the *conditional probability* of event E given that event F has occurred;
 - define a *partition* of the sample space;
 - state, and prove, the Law of Total Probability;
 - state, and prove, *Bayes' Theorem*;
 - apply Bayes' Theorem to simple examples in probability;
 - use Bayes' Theorem to formulate diagnostic rules given some observed states/symptoms.
- **3.** You should
 - know that the *likelihood function* for a parameter θ is simply the joint probability density function after observing data \boldsymbol{x} ; assuming i.i.d. observations, this gives

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{n} f_X(x_i|\boldsymbol{\theta})$$

- be able to determine the likelihood function for commonly-used statistical models, or indeed *any* given probability density function for data \boldsymbol{x} .
- 4. You should
 - be able to state the *Factorisation Theorem*;
 - be able to show that a given statistic $T(\mathbf{X})$ is sufficient for a parameter θ
 - (i) by showing that $f(\boldsymbol{x}|T(\boldsymbol{X}) = t)$ does not depend on θ ;
 - (ii) by using the Factorisation Theorem.
 - be able to use the Factorisation Theorem to determine a sufficient statistic for θ .