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BAYESIAN MODELLING OF EXTREME RAINFALL DATA

1.  MOTIVATION 

Over the last 30 years or so, interest in the use of statistical 
methods for modelling environmental extremes has grown 
dramatically, for good reason: climate change has resulted 
in an increase in severity, and frequency, of environmental 
phenomena resulting in huge economic loss, and loss of 
human life.  For example, Hurricane Katrina (see Figure 1) 
hit southern states of the USA in September 2005, killing 
nearly 2000 people, displacing well over one million people, 
and costing the US economy an estimated $110 billion.  
This was the “storm of the century” – that which we could 
expect to see once in a hundred years – and yet just a few 
weeks later, Hurricane Rita, a storm of similar ferocity, 
battered Texas and Louisiana.   

 

 

 

 

 

 

 

FIGURE 1: Satellite image of Hurricane Katrina 

In other parts of the world, the frequency and severity of 
periods of extreme drought have caused widespread 
famine, resulting in massive loss of life in parts of Sub-
Saharan Africa; the frequency and severity of severe cold 
spells in parts of Eastern Russia and China have made it 
difficult to stockpile adequate fuel supplies for the winter 
period; and rapid shifts in climate on a micro-scale have 
resulted in an increase in mass land movements such as 
landslides and avalanches (e.g. landslides in Caracas, 
Venezuela (2010) and avalanches in Switzerland since 
2001). 

Closer to home, the U.K. has had its fair share of storms 
over the last quarter of a century.  The “great storm” of 
October 1987 battered parts of Southern England with 
hurricane-strength wind speeds, causing 22 deaths and 
£7.3 billion worth of damage.  Although weather 
forecasting systems in place at the time did warn of a spell 
of unsettled weather, the U.K. Met Office did not foresee 
the extreme wind speeds and rainfall that this storm 
brought (see the BBC’s Michael Fish weather forecast video 
on the slides for this case study).  This was also dubbed the 
U.K.’s “storm of the century”, and yet just two years later 
similar strength wind speeds were observed during another 

storm across central and southern parts of the U.K., again 
resulting in a number of deaths and huge financial loss.   

More recently, the U.K. has also seen a dramatic rise in 
extreme flooding events.    The pictures shown in Figure 2 
below are from floods in central and south-western 
England in 2007 – 2009; not only do such events pose 
significant risk to life, but the rise in frequency and severity 
of such flooding events in the U.K. has made the price of  
flooding insurance premiums skyrocket.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     FIGURE 2: Various images of flooding in U.K.                   
towns 2007 - 2009 

CASE STUDY 2 



FIGURE 3: Daily rainfall totals, and extracted 

annual maxima, for Oxford 

2.  STATISTICAL MODELLING OF EXTREME RAINFALL DATA 

An increase in the types of environmental events discussed 
in Section 1 has, over the last 30 years, seen an increase in 
the use of statistical models for estimating the strength, 
and associated frequency, of storms, floods, droughts, etc.  
We will now focus on flooding events in the U.K., and so 
our interest lies in the occurrence of extreme rainfall data.  
In particular, in 2003 the U.K. Met Office supplied us with 
daily rainfall totals (in mm) for a network of 204 sites across 
the U.K., collected between 1961 and 1995 (inclusive).  For 
each site, this gives nearly 13,000 rainfall observations.  
However, many of these daily totals are zero values (days 
on which there was no rainfall recorded at all) – data which 
we have no interest in, since it is extreme rainfall totals that 
cause the flooding discussed in Section 1.  Further, we are 
only interested in the extreme rainfall totals – the rest of 
the data, in terms of what causes flooding, is of no interest.   

One way forward here is to extract the largest daily rainfall 
total from each year, resulting in a set of 35 annual maxima 
for each of our 204 sites.  By doing this, every single 
observation in our extracted set is now “extreme”, and we 
can consider using specialist statistical models for “extreme 
values”.  Figure 3 below shows the set of daily rainfall totals 
obtained for one site – Oxford – with the extracted set of 
annual maxima shown underneath.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1  A statistical model for extremes 

The Generalised Extreme Value distribution (GEV) was 
independently derived by R. von Mises (1954) and A.F. 
Jenkinson (1955).  This is a limiting model for extremes of a 
stationary series, with cumulative distribution function 
given by 
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Where , and are the location, scale and shape 
parameters of the distribution.  In practice, the extremes X 
are often obtained as the set of annual maxima, as 
extracted for the Oxford rainfall dataset in Figure 3.  The 
most commonly used method for fitting Equation (1) to our 
set of annual maxima is maximum likelihood; although 
there are no closed-form solutions for the MLEs  ̂,  ̂ and  ̂, 
a Newton-Raphson type procedure can be used in R to 
maximise the likelihood; for the Oxford rainfall extremes 
shown in Figure 3 (bottom), this gives  ̂ = 40.8 (1.58),           
 ̂ = 9.7 (1.19) and  ̂ = 0.1 (0.11), with standard errors given 
in brackets.  Figure 4 shows a histogram of the Oxford 
rainfall extremes with the fitted GEV superimposed.   

 

 

 

 

 

 

 

FIGURE 4: Histogram of the Oxford rainfall maxima with 
fitted GEV superimposed 

2.2  Practical use of the GEV 

So we have a statistical model for extremes which seems to 
fit our annual maximum daily rainfall data quite well.  So 
what? One practical application of such a model is to aid 
the design of flood defences.  For example, suppose we 
wish to protect a town – perhaps Oxford – against a 
flooding event we would expect to occur once every 
hundred years.  We only have 35 years worth of data, so – 
in effect – we’re trying to estimate a flooding event which is 
more extreme than has ever occurred before.  This requires 
extrapolation beyond the range of our data, and since there 
is both a theoretical and practical basis for using the GEV, 
we can estimate such quantities by calculating high 
quantiles from our fitted distribution.   

For example, for the Oxford dataset, we would solve the 
following equation for  ̂   : 
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where  ̂    is known as the 100 year return level.  Thus, a 
flood defence system – such as that shown in Bewdley in 

Oxford daily total rainfall: 1961 – 1995 

Oxford annual maximum daily rainfall: 1961 – 1995 
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Figure 5 – would need to be tall enough to withstand a 
daily rainfall total of at least  ̂    mm.  Obviously, the 
calculation of the height of the flood defence would have to 
take into account the accumulation of successive daily 
rainfall totals  ̂    mm, and so the height of the defence 
would be a function of  ̂    and the actual duration of a 
storm event.   

   

 

 

 

 

 

 

 

FIGURE 5: Flood barriers along the River Severn in Bewdley 

Generically, solving equation (2) for  ̂ , the r – year return 
level, gives 
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Table 1 below shows the estimated 50, 100 and 1000-year 
return levels for Oxford, along with estimated standard 
errors; 95% confidence intervals can be found using  

  ̂           ( ̂ )  

So, for example, the 95% confidence interval for the 100 
year return level at Oxford is (66.20, 109.64)mm; the 1000 
year return level has the 95% confidence intervals (58.35, 
222.33)mm.   

r (years) 10 50 200 1000 

 ̂  (mm) 65.54 87.92 98.64 140.34 
St. error 4.53 11.48 16.22 41.83 

TABLE 1: Estimated return levels for Oxford 

 

3.  A BAYESIAN PERSPECTIVE 

3.1  Advantages of a Bayesian approach 

One drawback with the approach outlined in Section 2.1 – 
and demonstrated in Section 2.2 – is that, once we have 
extracted our extremes, we are left with just 35 
observations (from a dataset of nearly 13,000!).  One 
manifestation of working with such a small set of extremes 
is that our uncertainty in estimates of parameters – and 
hence return levels  - is rather large.  For example, we 
expect the true 1000 year return level to lie anywhere 
between about 58mm and 222mm (with 95% confidence).  
What are we to tell the engineers who are designing a new 
flood defence system? “Design your flood defence so that it 
will withstand a daily rainfall maximum of somewhere 

between 58mm and 222mm”? In my experience, engineers 
do not like the idea of uncertainty at all, never mind such 
large uncertainty! 

One feature of a Bayesian analysis is that it allows us to 
incorporate additional information – preferably that 
provided by an expert – into our analysis.  Doing so often 
informs our analysis greatly, combining prior belief about 
patterns in extreme rainfall, or wind speeds (for example) 
with observed data on such processes.  This often leads to 
greater precision in estimates of model parameters and – 
crucially – estimates of return levels; worth its weight in 
gold when we are working with such small datasets! 
However, as we shall see, formulating the beliefs of an 
expert into prior distributions for the parameters in the 
GEV can be difficult.   

 

3.2 Obtaining prior distributions for the GEV parameters 

3.2.1 Bring in the Expert! 

Duncan Reede is an independent consulting hydrologist 
with over 30 years experience.  He graduated with a PhD in 
Applied Science from Newcastle University in 1977.  No 
matter how much experience an expert might have, it 
might be too much to ask them to express their beliefs 
about our model parameters in terms of probability 
distributions.  For example, it might be plausible for us to 
convert Dr. Reede’s beliefs about the average maximum 
daily rainfall accumulation at a site (e.g. Oxford), and from 

this specify a probability distribution for .  However, we 

also need priors for and , the scale and shape 
parameters (respectively).  How can we get our expert to 
coherently specify prior beliefs concerning the “shape” of 
the annual maximum daily rainfall accumulation?  

One way around this difficulty is to re-express our 
distribution in terms of parameters that the expert might 
feel comfortable with – perhaps return levels!  We asked 
Dr. Reede about the daily rainfall accumulation he might 
expect to see at Oxford once in ten years (i.e. the 10-year 
return level).  He tells us:  

“I have substantial knowledge of rainfall patterns in this 
region of the UK.  For the storm we can expect to see once 

in ten years – quite a severe storm – I think we could 
expect to see a daily rainfall accumulation of about 60-
65mm, although I’m prepared to go down to 50mm and 

up to, perhaps, 80mm” 

Using the Trial Roulette Method in the MATCH Uncertainty 
Elicitation Tool, we then asked Dr. Reede to distribute chips 
in bins between 50mm and 80mm to illustrate his 
uncertainty about z10.  This results in  

 z10 ~ Ga(126, 2).   

Similarly, for two other return levels, we get: 

 z50 ~ Ga(242, 2.5) and 

z200 ~ Ga(180, 1.5).   



These prior distributions are shown in Figure 6.   

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6: Plots of elicited prior distributions for the 10 
(solid), 50 (dashed) and 200 (dotted) return levels 

 

3.2.2 Converting to priors for the GEV parameters 

We can use the result from Distribution Theory, given in 
Equation 3.7 of the lecture notes, to “convert” our prior 
distributions for z10, z50 and z200 into a prior distribution for 

(, , ):  
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where J(, , ) is the Jacobian determinant, as discussed in 
the Thoerem in Section 3.5 of the lecture notes.   

Applying Equation (4) to the priors elicited from Dr. Reede 

in Section 3.2.1 gives a (joint) prior for (, , ) which is 
improper and non-conjugate for the GEV.   

 

3.3 Obtaining the posterior distributions 

Since we have non-conjugate prior for the GEV, we cannot 
proceed to find the posteriors in the same way as we do in 
the lecture notes for MAS2317.  In fact, we used a 
procedure called Markov Chain Monte Carlo (MCMC) in 

order to obtain the posteriors for each of ,  and   (see 
MAS3321: Bayesian Inference). This gives samples from the 

posteriors of ,  and ; we then apply Equation (3) to our 
samples of these parameters to obtain posterior 
distributions for return levels of interest.   

 

3.4 Results showing the effect of using the expert priors 

Combining the opinion of our expert hydrologist – Dr. 
Duncan Reede – with the data on extreme rainfall at Oxford 
(see Section 2) gives the posterior means for the 10, 50, 

200 and 1000 year return levels shown in Table 2.  Also 
shown are the posterior standard deviations.   

r (years) 10 50 200 1000 

 ( ̂ | ) 64.21 91.05 110.31 150.73 
  ( ̂ | ) 2.14 6.31 8.05 14.79 

TABLE 2: Posterior summaries for some return levels at 
Oxford (units in mm) 

Notice that, when you compare the posterior means in 
Table 2 to the frequentist estimates from table 1, the 
means have been shifted to take into account the prior 
beliefs of Dr. Reede as shown in Figure 6.  Also notice the 
dramatic reduction in posterior standard deviation after 
taking into account the expert’s beliefs.  Recall that, after 
extracting our extremes, we were left with just 35 
observations – and so our standard errors were fairly large.  
Augmenting our analysis to include the beliefs of an expert 
hydrologist has allowed us to reduce our uncertain about 
our estimates of return levels – crucial information for 
marine engineers! Table 3 below compares 95% frequentist 
confidence intervals to their Bayesian counterparts – the 
reduced width of the intervals in the Bayesian analysis 
reflects our increased certainty about our estimates.   

r (years) 10 50 200 1000 

Frequentist (56.7,74.4) (65.4,110.4) (66.8,130.5) (58.3,222.4) 
Bayesian (60.0,68.4) (78.7,103.4) (94.5,126.1) (121.7,179.7) 

TABLE 3: 95% Frequentist confidence intervals for some 
return levels at Oxford versus their Bayesian counterparts 

 

4.  CONCLUSIONS 

The main aim of this case study was to highlight the 
advantages of using a Bayesian approach to inference in 
one particular area of statistics – the study of extreme 
values.  We have seen that, by incorporating the beliefs of 
an expert hydrologist, we can greatly increase our precision 
of estimates of return levels – a key parameter used in the 
design of flood defence systems.  However, this is not 
without difficulties.   

It can be extremely difficult to convert an expert’s opinion 
about a particular phenomenon (in this case, extreme 
rainfall) into something meaningful about a shape 
parameter or a scale parameter.  One way around this is to 
re-parameterise the model and ask the expert to provide us 
with information about something he/she feels much more 
comfortable and “natural” with – in this case, flood levels 
the hydrologist would expect to see once in 10, 50 and 200 
years.  We made use of the MATCH software to help with 
this.   

We can transform these prior distributions into prior 
distributions for the model parameters themselves, and 
then proceed to perform a Bayesian inference for extreme 
rainfall.   

The statistician would then usually provide marine 
engineers with their results – this information would be 
used to help design flood defence systems to better protect 
communities against flood events in the future.   
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