Lecture 4: Bivariate Distributions

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

In this lecture we consider two related topics:

- **1** General simulation from a *bivariate distribution*
- 2 Simulation from the *bivariate Normal distribution*

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

Assignment:

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3

 Time for last-minute help in this week's practical session (Thurs @ 11)

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

- Deadline: This coming Thursday, 3pm
- Hard-copy submission, with attached NESS cover sheet, to the General Office
- R code: only need to include where it's obvious that you'll get marks for it
- Graphs: include when asked, and always provide comments
- Question 1: see practical sheet 1; Question 2: see chapter 2 and practical sheet 2; Question 3: see chapter 3 and practical sheet 3
- Time for last-minute help in this week's practical session (Thurs @ 11)

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

Test:

- Next Tuesday, 9am Herschel PC cluster
- Strike action: Test should still go ahead
- Mock test now available in Blackboard
- Revision session this coming Friday, 1pm LT2

Suppose we have a pair of continuous random variables (X, Y) with joint PDF $f_{X,Y}(x, y)$.

Recall that

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y \mid X = x)$$

where $f_X(x)$ is the marginal PDF of X and $f_{Y|X}(y | X = x)$ is the conditional PDF of Y given X = x.

One way to simulate realizations of the pair (X, Y) is:

- Simulate a realization x of X from the marginal distribution of X.
- 2 Simulate a realization y of Y from the conditional distribution of Y given X = x.

Example

Suppose $X \sim U(0.1, 0.5)$ and

$$f_{Y|X}(Y \mid X = x) = egin{cases} xe^{-xy}, & ext{when } y \geq 0, \ 0 & ext{otherwise.} \end{cases}$$

Write an R function to generate a $2 \times n$ matrix of samples from this distribution, and produce a scatter plot.

```
1 example4.1 = function(n) {
2     output = matrix(0, 2, n)
3     x = runif(n, 0.1, 0.5)
4     y = rexp(n, rate = x)
5     output[1, ] = x
6     output[2, ] = y
7     output
8 }
```

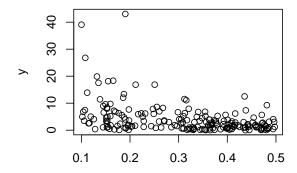
Make some notes about the R function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 4.1 – plot

To obtain a scatterplot:

1 test = example4.1(200)
2 plot(output[1,], output[2,], xlab = 'X', ylab = 'Y')



◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 = ∽ へ ⊙

The trivariate case

Example

Suppose that $X \sim U(-1,1)$ and $Y \sim Exp(\lambda)$ independently of X and that

$$f_{Z|X,Y}(Z \mid X = x, Y = y) = \frac{1}{\sqrt{2\pi}y}e^{-\frac{1}{2}(\frac{z-x}{y})^2}.$$

Write an R function to sample realizations (X, Y, Z) in the case $\lambda = 5$ and produce a scatterplot of (X, Z). Note that, given that X = x, Y = y then Z has a normal distribution:

$$Z \mid X = x, Y = y \sim N(x, y^2).$$

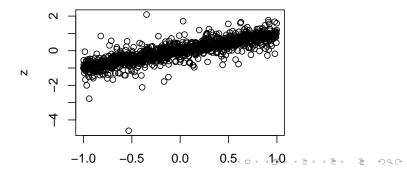
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
example4.2 = function(n) {
     output = matrix(0, 3, n)
2
      x = runif(n, -1, 1)
3
      y = rexp(n, rate = 5)
4
      z = rnorm(n, mean = x, sd = y)
5
      output[1, ] = x
6
7
      output[2, ] = y
8
      output[3, ] = z
      output
9
10
```

Make some notes about the R function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 4.2 – scatterplot



You met the bivariate Normal distribution in MAS1604.

The bivariate Normal distribution is a generalization of the Normal distribution to pairs of random variables, or equivalently, to a distribution on vectors in \mathbb{R}^2 .

The multivariate Normal distribution is the analagous distribution to vectors in \mathbb{R}^n .

The bivariate Normal distribution

Suppose μ_x , μ_y , $\sigma_x \ge 0$, $\sigma_y \ge 0$ and $-1 \le \rho \le 1$ are constants. Define the 2 × 2 matrix Σ by

$$\Sigma = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}.$$

Then define a joint probability density function by

$$f_{X,Y}(x,y) = rac{1}{2\pi\sqrt{\det\Sigma}}\exp\left(-rac{1}{2}Q(x,y)
ight)$$

where

$$Q(x, y) = (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})$$

and

$$\underline{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \underline{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}.$$

If random variables (X, Y) have joint probability density given by $f_{X,Y}$ above, then we say that (X, Y) have a bivariate normal distribution and write

$$(X, Y)^T \sim N_2(\underline{\mu}, \Sigma).$$

It can be proved that the function $f_{X,Y}(x,y)$ integrates to 1 and therefore defines a valid joint pdf.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

The notes contain expansions of Q(x, y) and det Σ .

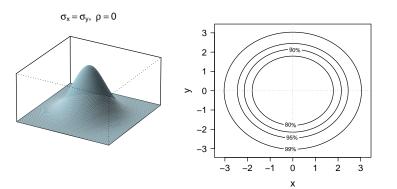
Remarks

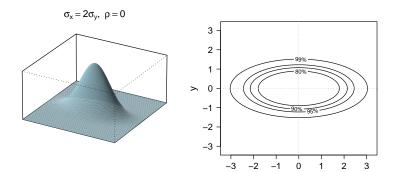
- **1** The vector $\underline{\mu} = (\mu_x, \mu_y)^T$ is called the mean vector and the matrix Σ is called the covariance matrix (or sometimes variance-covariance matrix).
- 2 Functions of the form F(x) = x^TΣ⁻¹x are called quadratic forms. Quadratic forms are functions ℝⁿ → ℝ which satisfy certain properties. They crop up in several areas of mathematics and statistics.
- The matrix Σ and its inverse Σ⁻¹ are positive definite. A matrix A is positive definite if

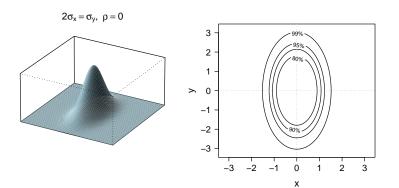
$$\underline{x}^T A \underline{x} \ge 0$$

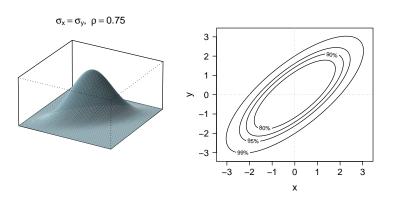
for all non-zero vectors \underline{x} .

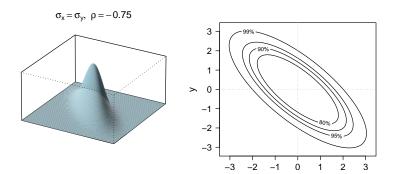
4 It follows that when $\mu_x = \mu_y = 0$, Q(x, y) is a positive definite quadratic form.

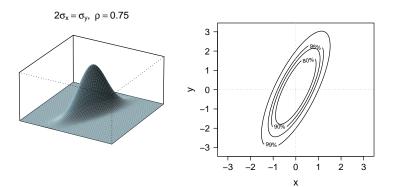












Comments

- $Q(x, y) \ge 0$ with equality only when $\underline{x} = \underline{\mu}$. It follows that the density function has its mode at $\underline{x} = \mu$.
- Changing the values of μ_x, μ_y does not change the shape of the plots, but corresponds to a translation of the *xy*-plane i.e. changing μ_x, μ_y just shifts the contours / surface to a new mode position.
- 3 The contours of equal density are circular when $\sigma_x = \sigma_y$ and $\rho = 0$ and elliptical when $\sigma_x \neq \sigma_y$ or $\rho \neq 0$.
- 4 σ_x and σ_y control the extent to which the distribution is dispersed.
- The parameter ρ is the correlation of X, Y
 i.e. Cor (X, Y) = ρ. Thus for non-zero ρ, the contours are at an angle to the axes.

Marginals and conditionals

Suppose $(X, Y)^T \sim N_2(\underline{\mu}, \Sigma)$. Then:-

1 The marginal distributions are normal:

$$egin{aligned} X &\sim \mathcal{N}(\mu_x, \sigma_x^2) \quad ext{and} \ Y &\sim \mathcal{N}(\mu_y, \sigma_y^2). \end{aligned}$$

2 The conditional distributions are normal:

$$\begin{split} X|Y &= y ~\sim~ \mathcal{N}(\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y), \sigma_x^2(1 - \rho^2)) \quad \text{and} \\ Y|X &= x ~\sim~ \mathcal{N}(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2)). \end{split}$$

3 When $\rho = 0$, X and Y are independent.

4 Linear combinations of X and Y are also normally distributed:

$$aX + bY \sim N(a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2 + 2ab\rho\sigma_x\sigma_y)$$

where a, b are constants.

Example 4.3

Suppose $(X, Y)^T \sim N_2(\underline{\mu}, \Sigma)$ where $\mu_x = 2$, $\mu_y = 3$, $\sigma_x = 1$, $\sigma_y = 1$ and $\rho = 0.5$.

Simulate a sample of size 500 from this distribution and draw a scatter plot.

Use simulation to find $Pr(X^2 + Y^2 < 9)$.

Solution

The marginal distribution of X is $X \sim N(2, 1^2)$. Using the formula for the conditional

$$Y|X = x \sim N(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2))$$

~ $N(3 + 0.5(x - 2), 0.75).$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Example 4.3

Suppose $(X, Y)^T \sim N_2(\underline{\mu}, \Sigma)$ where $\mu_x = 2$, $\mu_y = 3$, $\sigma_x = 1$, $\sigma_y = 1$ and $\rho = 0.5$.

Simulate a sample of size 500 from this distribution and draw a scatter plot.

Use simulation to find $Pr(X^2 + Y^2 < 9)$.

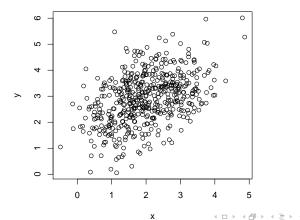
Solution

The marginal distribution of X is $X \sim N(2, 1^2)$. Using the formula for the conditional

$$Y|X = x \sim N(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2)) \\ \sim N(3 + 0.5(x - 2), 0.75).$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Simulation results



▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → � � �

To find $\Pr(X^2 + Y^2 < 9)$ approximately, count the number of points in the region:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
 \begin{array}{l} npts = 10000 \\ x = rnorm(npts, mean=2, sd = 1) \\ y = rnorm(npts, mean=3+0.5*(x-2), sd=sqrt(0.75)) \\ f = x^2+y^2 \\ 5 \\ sum(f<9)/npts \end{array}
```

Answer $\simeq 0.2776$

The multivariate normal distribution

The multivariate normal distribution is defined on vectors in \mathbb{R}^n . Suppose that \underline{X} is a random vector with *n* entries, i.e. $\underline{X} = (X_1, \dots, X_n)^T$.

Then

$$\underline{X} \sim N_n(\underline{\mu}, \Sigma)$$

if X_1, \ldots, X_n have joint PDF given by

$$f_{\underline{X}}(\underline{x}) = rac{1}{2\pi\sqrt{\det\Sigma}}\exp\left(-rac{1}{2}Q(\underline{x})
ight)$$

where

$$Q(\underline{x}) = (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu}).$$

This definition makes sense for any column vector $\underline{\mu} \in \mathbb{R}^n$ and any positive definite $n \times n$ matrix Σ .

Remarks

- **1** The vector $\underline{\mu}$ is the mean of the distribution and Σ is called the covariance matrix.
- 2 All the marginal distributions of \underline{X} are normal. (We do not specify their parameters here, however).
- Similarly, all the conditional distributions of <u>X</u> are normal. (Again, we do not specify the parameters of these distributions here).

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Suppose

$$\left(\begin{array}{c} X\\ Y\end{array}\right) \sim N_2\left[\left(\begin{array}{c} 4\\ 1\end{array}\right), \left(\begin{array}{c} 8& 2\\ 2& 5\end{array}\right)\right].$$

The random variable Z is defined by Z = X + 3Y. What is the distribution of Z?

We have Z = X + 3Y. Using result 4 on page 25, we have

$$E[Z] = 1 \times \mu_x + 3 \times \mu_y = 1 \times 4 + 3 \times 1 = 7.$$

Now from the variance-covariance matrix, we have $\rho \sigma_x \sigma_y = 2$. Thus

$$Var(Z) = 1^{2} \times \sigma_{x}^{2} + 3^{2} \times \sigma_{y}^{2} + 2 \times 1 \times 3 \times (\rho \sigma_{x} \sigma_{y})$$

= 1 \times 8 + 9 \times 5 + 2 \times 1 \times 3 \times 2
= 65.

We have Z = X + 3Y. Using result 4 on page 25, we have

$$E[Z] = 1 \times \mu_x + 3 \times \mu_y = 1 \times 4 + 3 \times 1 = 7.$$

Now from the variance-covariance matrix, we have $\rho\sigma_x\sigma_y=2$. Thus

$$Var(Z) = 1^{2} \times \sigma_{x}^{2} + 3^{2} \times \sigma_{y}^{2} + 2 \times 1 \times 3 \times (\rho \sigma_{x} \sigma_{y})$$

= 1 \times 8 + 9 \times 5 + 2 \times 1 \times 3 \times 2
= 65.

We have Z = X + 3Y. Using result 4 on page 25, we have

$$E[Z] = 1 \times \mu_x + 3 \times \mu_y = 1 \times 4 + 3 \times 1 = 7.$$

Now from the variance-covariance matrix, we have $\rho\sigma_x\sigma_y=2$. Thus

$$Var(Z) = 1^{2} \times \sigma_{x}^{2} + 3^{2} \times \sigma_{y}^{2} + 2 \times 1 \times 3 \times (\rho \sigma_{x} \sigma_{y})$$

= 1 \times 8 + 9 \times 5 + 2 \times 1 \times 3 \times 2
= 65.

We have Z = X + 3Y. Using result 4 on page 25, we have

$$E[Z] = 1 \times \mu_x + 3 \times \mu_y = 1 \times 4 + 3 \times 1 = 7.$$

Now from the variance-covariance matrix, we have $\rho\sigma_x\sigma_y=2$. Thus

$$Var(Z) = 1^{2} \times \sigma_{x}^{2} + 3^{2} \times \sigma_{y}^{2} + 2 \times 1 \times 3 \times (\rho \sigma_{x} \sigma_{y})$$

= 1 \times 8 + 9 \times 5 + 2 \times 1 \times 3 \times 2
= 65.

