
Lecture 6: samples and populations



Today’s lecture

Look at fundamental concepts of samples and populations

Intended to reinforce similar material in MAS2901

Adopt a different perspective to MAS2901: use simulation
rather than analytic calculation



Example

Type of problem looked at in MAS2901:

Mercury waste dumped in a river

Affects prawns which live in the river

Max permitted level is one part per million on average

A sample of prawns is collected and mercury content
measured in these

Attempt to infer the population mean mercury content from
the sample

Use a hypothesis test to decide whether population mean is greater
than max allowed level – see MAS2901 for details
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Populations

Suppose we measure some random quantity X

X can adopt a range of possible values: some values are more
likely than others

This is the distribution of X

Usually we do not know this distibution exactly

The unknown distribution is called the population distribution

In the example:

the population consists of the prawns in the estuary;

the random quantity X is the mercury concentration in a
randomly selected prawn; and

the population distribution is the distribution of X .



Learning about populations

We are usually interested in key properties of the population
distribution such as:

the expectation of X – usually called the population mean;

the variance of X – usually called the population variance; or

the 95th percentile of X (for example).

Often we make some simplifying assumptions about the population
distribution. For example, we might assume:

(a) X is normally distributed with unknown mean and variance;

(b) X is exponentially distributed with rate parameter λ, where λ
is uknown but lies on the interval (0, 1);

(c) X is normally distributed with unknown mean and variance
σ2 = 5.

A set of assumptions like this is referred to as a model.



Fully-specified population distributions

In some situations – usually rather artificial ones – we know the
population distribution exactly.

For example:

let X be the score obtained from rolling a fair die; or

let X be the number on a card drawn at random from a full
deck. (Assume Jack, Queen, King numbered 11,12,13
respectively.)



Samples

We do not know everything about the population distribution

We learn about the population distribution by drawing a
sample

A sample of size n corresponds to taking n independent
measurements from the distribution

Each measurement is a random variable with the same
distribution as X : the sample measurements denoted
X1,X2, . . . ,Xn

The actual measurements obtained are denoted x1, x2, . . . , xn

The distinction between the population distribution and how we
learn about the population from limited samples is probably the
most important concept in statistics
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Estimators

Suppose we wish to learn about some aspect of the population
distribution e.g. population mean or population variance

We construct an estimator for the quantity of interest

For example, for population mean, a good estimator is the
sample mean

X̄ =
1

n

n∑
i=1

Xi .

Formally, an estimator is defined to be some function of the
sample:

S = g(X1,X2, . . . ,Xn)

for some function g

When we observe some measurements X1 = x1, . . . ,Xn = xn
then we can compute an estimate s = g(x1, x2, . . . , xn).
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Simulation study of estimators

Since any estimator S is a random variable it makes sense to talk
about its distribution – we can use simulation to do this

Example 6.2: Suppose the population distribution is normal, and
we wish to estimate the population mean. Suppose the sample size
is n = 4 and our estimator is X̄ = (X1 + X2 + X3 + X4)/4.

What is the distribution of X̄ when the population distribution is
N(170, 202)?



Example 6.2 – R code

simulate.sample.mean = function(n) {

xbar = vector(mode="numeric",length=n)

for (i in 1:n) {

x = rnorm(4,170,20) # Generate a sample of size 4

xbar[i] = 0.25*sum(x)

}

xbar

}

xbar=simulate.sample.mean(500)

hist(xbar,xlab="sample mean",ylab="frequency")



Example 6.2 – plot

Histogram of xbar
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Example 6.3

Suppose the population distribution is normal, and we wish to
estimate the 90th percentile using a sample of size 10.

A sensible estimator is to define S to be the second largest value in
the sample (i.e. the 9th value when the samples are ordered from
smallest to largest).

What is the distribution of S when the population distribution is
N(0, 1)?



Example 6.3 – R code

simulate.percentile = function(n) {

s = vector(mode="numeric",length=n)

for (i in 1:n) {

x = rnorm(10,0,1) # Generate a sample of size 10

x = sort(x)

s[i] = x[9] # Get 9th value on sorted list

}

s

}

s=simulate.percentile(500)

hist(s,xlab="s",ylab="frequency",main="")



Example 6.3 – plot
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What does the distribution of X̄ look like?

Consider the following two examples for the density of the
population distribution.

For each example, decide which histogram on the slides (A, B, C
or D) is most likely to represent the distribution of the sample
mean X̄ when the sample size is 10. . .



Example 6.4
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Options A–D

option A

sample mean
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Example 6.5
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Options A–D

Option A

sample mean

fr
eq

ue
nc

y

0 2 4 6 8 10

0
20

40
60

80

Option B

sample mean

fr
eq

ue
nc

y

0 2 4 6 8 10

0
20

40
60

80

Option C

sample mean

fr
eq

ue
nc

y

0 2 4 6 8 10

0
20

40
60

80

Option D

sample mean

fr
eq

ue
nc

y

0 2 4 6 8 10

0
50

10
0

15
0



Answers

Example 6.4: option B

Example 6.5: option D



Conclusions

The sample mean is distributed around the population mean.

The distribution of sample mean values ‘forgets’ the
underlying shape of the population distrubition.

As n increases we expect the distribution of X̄ to become
more clustered around the true value.



The central limit theorem

Suppose X1,X2, . . . ,Xn are independent and identically distributed
random variables with common mean µ and variance σ2 which are
both finite.

Define

Z =
X̄ − µ
σ/
√
n
.

Then as n→∞ the distribution of Z tends to N(0, 1).



CLT via simulation

Population distribution: normal mixture with two components
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The population mean is µ = 5 and variance is σ2 = 4.3.



R code for sampling X̄

simulate.bimod = function(k,n) {

# Generate k samples of size n

s = vector(mode="numeric",length=k)

for (i in 1:k) {

u = rnorm(n,3,0.6)

v = rnorm(n,7,0.6)

r = runif(n)

x = c(u[r>0.5],v[r<=0.5])

s[i] = mean(x)

}

s

}



Histograms from simulations of X̄
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Mean and variance for simulated X̄

Sample size n µ σ2/n Simulated mean of X̄ Variance of X̄

2 5.0 2.15 4.94 2.27
5 5.0 0.86 4.98 0.862

10 5.0 0.43 4.96 0.443


