Lecture 6: samples and populations
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Today's lecture

m Look at fundamental concepts of samples and populations
m Intended to reinforce similar material in MAS2901

m Adopt a different perspective to MAS2901: use simulation
rather than analytic calculation



Example

Type of problem looked at in MAS2901:

Mercury waste dumped in a river

[
m Affects prawns which live in the river

m Max permitted level is one part per million on average

m A sample of prawns is collected and mercury content
measured in these

Attempt to infer the population mean mercury content from

the sample



Example

Type of problem looked at in MAS2901:

Mercury waste dumped in a river

[
m Affects prawns which live in the river

m Max permitted level is one part per million on average
[

A sample of prawns is collected and mercury content
measured in these

Attempt to infer the population mean mercury content from
the sample

Use a hypothesis test to decide whether population mean is greater
than max allowed level — see MAS2901 for details



Populations

Suppose we measure some random quantity X

m X can adopt a range of possible values: some values are more
likely than others

m This is the distribution of X
m Usually we do not know this distibution exactly

m The unknown distribution is called the population distribution
In the example:

m the population consists of the prawns in the estuary;

m the random quantity X is the mercury concentration in a
randomly selected prawn; and

m the population distribution is the distribution of X.



Learning about populations

We are usually interested in key properties of the population
distribution such as:

m the expectation of X — usually called the population mean;
m the variance of X — usually called the population variance; or
m the 95th percentile of X (for example).

Often we make some simplifying assumptions about the population
distribution. For example, we might assume:

(a) X is normally distributed with unknown mean and variance;

(b) X is exponentially distributed with rate parameter A, where A
is uknown but lies on the interval (0,1);

(c) X is normally distributed with unknown mean and variance
2
o =5.

A set of assumptions like this is referred to as a model.



Fully-specified population distributions

In some situations — usually rather artificial ones — we know the
population distribution exactly.

For example:

m let X be the score obtained from rolling a fair die; or

m let X be the number on a card drawn at random from a full
deck. (Assume Jack, Queen, King numbered 11,12,13
respectively.)



Samples

m We do not know everything about the population distribution

We learn about the population distribution by drawing a
sample

A sample of size n corresponds to taking n independent
measurements from the distribution

m Each measurement is a random variable with the same
distribution as X: the sample measurements denoted
X1, X0, ..., X,

m The actual measurements obtained are denoted xi, x>, ..., X,



Samples

m We do not know everything about the population distribution

We learn about the population distribution by drawing a
sample

A sample of size n corresponds to taking n independent
measurements from the distribution

m Each measurement is a random variable with the same
distribution as X: the sample measurements denoted
X1, X0, ..., X,

m The actual measurements obtained are denoted xi, x>, ..., X,

The distinction between the population distribution and how we
learn about the population from limited samples is probably the
most important concept in statistics



Estimators

m Suppose we wish to learn about some aspect of the population
distribution e.g. population mean or population variance

m We construct an estimator for the quantity of interest
m For example, for population mean, a good estimator is the

sample mean
- 1
X == E X;.
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Estimators

m Suppose we wish to learn about some aspect of the population
distribution e.g. population mean or population variance

We construct an estimator for the quantity of interest

m For example, for population mean, a good estimator is the

sample mean
- 1

m Formally, an estimator is defined to be some function of the
sample:

S = g(Xl,Xz, e ,X,,)
for some function g

m When we observe some measurements X; = xq1,..., X, = X,
then we can compute an estimate s = g(x1, X2, ..., Xn).



Simulation study of estimators

Since any estimator S is a random variable it makes sense to talk
about its distribution — we can use simulation to do this

Example 6.2: Suppose the population distribution is normal, and
we wish to estimate the population mean. Suppose the sample size
is n =4 and our estimator is X = (X1 + Xz + X3 + Xa)/4.

What is the distribution of X when the population distribution is
N(170,202)?



Example 6.2 — R code

simulate.sample.mean = function(n) {
xbar = vector(mode="numeric",length=n)
for (i in 1:n) {
x = rnorm(4,170,20) # Generate a sample of size 4
xbar[i] = 0.25*sum(x)
}

xbar

xbar=simulate.sample.mean(500)
hist(xbar,xlab="sample mean",ylab="frequency")



Example 6.2 — plot

Histogram of xbar
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Example 6.3

Suppose the population distribution is normal, and we wish to
estimate the 90th percentile using a sample of size 10.

A sensible estimator is to define S to be the second largest value in
the sample (i.e. the 9th value when the samples are ordered from
smallest to largest).

What is the distribution of S when the population distribution is
N(0,1)?



Example 6.3 — R code

simulate.percentile = function(n) {

s = vector(mode="numeric",length=n)

for (i in 1:n) {

x = rnorm(10,0,1) # Generate a sample of size 10

x = sort(x)
s[i] = x[9] # Get 9th value on sorted list

s=simulate.percentile(500)
hist(s,xlab="s",ylab="frequency" ,main="")
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What does the distribution of X look like?

Consider the following two examples for the density of the
population distribution.

For each example, decide which histogram on the slides (A, B, C
or D) is most likely to represent the distribution of the sample
mean X when the sample size is 10...
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Options A-D
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Options A-D
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Example 6.4: option B

Example 6.5: option D
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Conclusions

m The sample mean is distributed around the population mean.
m The distribution of sample mean values ‘forgets’ the
underlying shape of the population distrubition.

m As n increases we expect the distribution of X to become
more clustered around the true value.



The central limit theorem

., X, are independent and identically distributed

Suppose X1, X2,

random variables with common mean y and variance o which are

both finite.
Define _
X—p

Z = .

o/\/n

Then as n — oo the distribution of Z tends to N(0,1).




CLT wvia simulation

Population distribution: normal mixture with two components
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The population mean is = 5 and variance is .02 = 4.3.



R code for sampling X

simulate.bimod = function(k,n) {
# Generate k samples of size n
s = vector (mode="numeric",length=k)
for (i in 1:k) {
u = rnorm(n,3,0.6)
v = rnorm(n,7,0.6)
r = runif(n)
x = c(ul[r>0.5],v[r<=0.5])
s[i] = mean(x)



Histograms from simulations of X
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Mean and variance for simulated X

Sample size n | u  ¢?/n | Simulated mean of X  Variance of X
2 50 215 4.94 2.27
5 5.0 0.86 4.98 0.862
10 50 0.43 4.96 0.443




