Lecture 2: Inverse CDF method
In this lecture we look at the **inverse CDF method** for simulating from continuous random variables.
The inverse CDF method

This is a method for simulating univariate continuous random variables

- Let $U \sim U(0, 1)$
- Suppose $F(x)$ is a well-defined CDF which is invertible
- Then the random variable $X = F^{-1}(U)$ has CDF $F(x)$
The inverse CDF method

\[X = F^{-1}(U). \]

So

\[\Pr(X \leq x) = \Pr(F^{-1}(U) \leq x) \]

\[= \Pr(F(F^{-1}(U)) \leq F(x)) \]

\[= \Pr(U \leq F(x)) \]

\[= F(x), \]

since \(0 \leq F(x) \leq 1 \) (see sketch on board).
The inverse CDF method

\[X = F^{-1}(U). \]

So

\[\Pr(X \leq x) = \Pr(F^{-1}(U) \leq x) \]

\[= \Pr(F(F^{-1}(U)) \leq F(x)) \]

\[= \Pr(U \leq F(x)) \]

\[= F(x), \]

since \(0 \leq F(x) \leq 1 \) (see sketch on board).
The inverse CDF method

\[X = F^{-1}(U). \]

So

\[
\Pr(X \leq x) = \Pr(F^{-1}(U) \leq x)
\]

\[
= \Pr(F(F^{-1}(U)) \leq F(x))
\]

\[
= \Pr(U \leq F(x))
\]

\[
= F(x),
\]

since \(0 \leq F(x) \leq 1\) (see sketch on board).
The inverse CDF method

\[X = F^{-1}(U). \]

So

\[\Pr(X \leq x) = \Pr(F^{-1}(U) \leq x) \]

\[= \Pr(F(F^{-1}(U)) \leq F(x)) \]

\[= \Pr(U \leq F(x)) \]

\[= F(x), \]

since \(0 \leq F(x) \leq 1 \) (see sketch on board).
The inverse CDF method

\[X = F^{-1}(U). \]

So

\[
\Pr(X \leq x) = \Pr(F^{-1}(U) \leq x)
\]

\[
= \Pr(F(F^{-1}(U)) \leq F(x))
\]

\[
= \Pr(U \leq F(x))
\]

\[
= F(x),
\]

since \(0 \leq F(x) \leq 1\) (see sketch on board).
The inverse CDF method

Example

Suppose we obtain two observations from a $U(0, 1)$ distribution: 0.1 and 0.85. Use these values to obtain two observations from $X \sim \text{Exp}(2)$.
If $X \sim \text{Exp}(2)$ then $F_X(x) = 1 - e^{-2x}$.

If $y = 1 - e^{-2x}$, then

\[e^{-2x} = 1 - y \]

\[-2x = \log(1 - y) \]

\[x = -\frac{1}{2} \log(1 - y). \]

Plug in $y = 0.1$ and $y = 0.85$; gives realized values of 0.0527 and 0.949.
If $X \sim \text{Exp}(2)$ then $F_X(x) = 1 - e^{-2x}$.

If $y = 1 - e^{-2x}$, then

$$e^{-2x} = 1 - y$$

$$-2x = \log(1 - y)$$

$$x = -\frac{1}{2} \log(1 - y).$$

Plug in $y = 0.1$ and $y = 0.85$; gives realized values of 0.0527 and 0.949.
If $X \sim \text{Exp}(2)$ then $F_X(x) = 1 - e^{-2x}$.

If $y = 1 - e^{-2x}$, then

$$e^{-2x} = 1 - y$$

$$-2x = \log(1 - y)$$

$$x = \frac{1}{2} \log(1 - y).$$

Plug in $y = 0.1$ and $y = 0.85$; gives realized values of 0.0527 and 0.949.
Example

- Patients arriving at a doctor’s surgery have appointment times 15 minutes apart.
- The random variable L measures how late a patient is for his/her appointment, with negative values denoting early arrivals.

The PDF of L is

$$f_L(\ell) = \begin{cases}
0.0025(\ell + 20), & -20 \leq \ell \leq 0, \\
0.05e^{-\ell/10}, & \ell > 0.
\end{cases}$$
Questions

a. Sketch $f_L(\ell)$.

b. Show that the CDF of L is

$$F_L(\ell) = \begin{cases}
0, & \ell < -20, \\
0.00125(\ell + 20)^2, & -20 \leq \ell \leq 0, \\
1 - \frac{e^{-\ell/10}}{2}, & \ell > 0.
\end{cases}$$

c. Suppose that 0.205 and 0.713 are two realized values of $U \sim U(0, 1)$. Show that the corresponding realized values of L are -7.19 and 5.55 under the inverse CDF simulation method.
First, the PDF:
Now to find the CDF: \(L \) lies between \(-20\) and \(+\infty\), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s)ds
\]

\[
= \int_{-20}^{\ell} 0.0025(s + 20)ds
\]

\[
= \left[\frac{0.0025}{2}(s + 20)^2 \right]_{-20}^{\ell}
\]

\[
= 0.00125(\ell + 20)^2 \quad \text{for} \ -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Now to find the CDF: \(L \) lies between \(-20\) and \(+\infty\), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s) ds
\]

\[
= \int_{-20}^{\ell} 0.0025(s + 20) ds
\]

\[
= \left[\frac{0.0025}{2} (s + 20)^2 \right]_{-20}^{\ell}
\]

\[
= 0.00125(\ell + 20)^2 \quad \text{for} \quad -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Now to find the CDF: L lies between -20 and $+\infty$, so $F_L(\ell) = 0$ when $\ell < -20$.

For $-20 \leq \ell \leq 0$:

$$F_L(\ell) = \int_{-20}^{\ell} f_L(s) ds$$

$$= \int_{-20}^{\ell} 0.0025(s + 20) ds$$

$$= \left[\frac{0.0025}{2} (s + 20)^2 \right]_{-20}^{\ell}$$

$$= 0.00125(\ell + 20)^2 \quad \text{for } -20 \leq \ell \leq 0.$$

Also, $F_L(0) = 0.5$.
Solution

Now to find the CDF: \(L \) lies between \(-20\) and \(+\infty\), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s) \, ds
\]

\[
= \int_{-20}^{\ell} 0.0025(s + 20) \, ds
\]

\[
= \left[\frac{0.0025}{2} (s + 20)^2 \right]_{-20}^{\ell}
\]

\[
= 0.00125(\ell + 20)^2 \quad \text{for} \ -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Solution

Now to find the CDF: \(L \) lies between \(-20 \) and \(+\infty \), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s)\,ds
= \int_{-20}^{\ell} 0.0025(s + 20)\,ds
= \left[\frac{0.0025}{2}(s + 20)^2 \right]_{-20}^{\ell}
= 0.00125(\ell + 20)^2 \quad \text{for } -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Now to find the CDF: \(L \) lies between \(-20\) and \(+\infty\), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s) \, ds
\]

\[
= \int_{-20}^{\ell} 0.0025(s + 20) \, ds
\]

\[
= \left[\frac{0.0025}{2} (s + 20)^2 \right]_{-20}^{\ell}
\]

\[
= 0.00125(\ell + 20)^2 \quad \text{for} \; -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Solution

Now to find the CDF: \(L \) lies between \(-20\) and \(+\infty\), so \(F_L(\ell) = 0 \) when \(\ell < -20 \).

For \(-20 \leq \ell \leq 0\):

\[
F_L(\ell) = \int_{-20}^{\ell} f_L(s)ds
= \int_{-20}^{\ell} 0.0025(s + 20)ds
= \left[\frac{0.0025}{2}(s + 20)^2 \right]_{-20}^{\ell}
= 0.00125(\ell + 20)^2 \quad \text{for } -20 \leq \ell \leq 0.
\]

Also, \(F_L(0) = 0.5 \).
Solution

Now

\[F_L(\ell) = \int_{-20}^{0} f_L(s) \, ds + \int_{0}^{\ell} f_L(s) \, ds \quad \text{for } \ell > 0 \]

\[= 0.5 + \int_{0}^{\ell} 0.05e^{-s/10} \, ds \]

\[= 0.5 + \left[0.05 \times -10e^{-s/10} \right]_{0}^{\ell} \]

\[= 0.5 + 0.5 - 0.5e^{-\ell/10} \]

\[= 1 - \frac{e^{-\ell/10}}{2}, \quad \text{as required.} \]
Solution

Now

\[F_L(\ell) = \int_{-20}^{0} f_L(s)ds + \int_{0}^{\ell} f_L(s)ds \quad \text{for } \ell > 0 \]

\[= 0.5 + \int_{0}^{\ell} 0.05e^{-s/10}ds \]

\[= 0.5 + \left[0.05 \times -10e^{-s/10} \right]_{0}^{\ell} \]

\[= 0.5 + 0.5 - 0.5e^{-\ell/10} \]

\[= 1 - \frac{e^{-\ell/10}}{2}, \quad \text{as required.} \]
Solution

Now

\[F_L(\ell) = \int_{-20}^{0} f_L(s) \, ds + \int_{0}^{\ell} f_L(s) \, ds \quad \text{for } \ell > 0 \]

\[= 0.5 + \int_{0}^{\ell} 0.05 e^{-s/10} \, ds \]

\[= 0.5 + \left[0.05 \times -10 e^{-s/10} \right]_0^\ell \]

\[= 0.5 + 0.5 - 0.5 e^{-\ell/10} \]

\[= 1 - \frac{e^{-\ell/10}}{2}, \quad \text{as required.} \]
Now

\[F_L(\ell) = \int_{-20}^{0} f_L(s)ds + \int_{0}^{\ell} f_L(s)ds \quad \text{for } \ell > 0 \]

\[= 0.5 + \int_{0}^{\ell} 0.05e^{-s/10}ds \]

\[= 0.5 + \left[0.05 \times -10e^{-s/10} \right]_0^{\ell} \]

\[= 0.5 + 0.5 - 0.5e^{-\ell/10} \]

\[= 1 - \frac{e^{-\ell/10}}{2}, \quad \text{as required.} \]
Now

\[F_L(\ell) = \int_{-20}^{0} f_L(s) \, ds + \int_{0}^{\ell} f_L(s) \, ds \quad \text{for } \ell > 0 \]

\[= 0.5 + \int_{0}^{\ell} 0.05e^{-s/10} \, ds \]

\[= 0.5 + \left[0.05 \times -10e^{-s/10} \right]_{0}^{\ell} \]

\[= 0.5 + 0.5 - 0.5e^{-\ell/10} \]

\[= 1 - \frac{e^{-\ell/10}}{2}, \quad \text{as required.} \]
Solution

Now for some realized values:

\[u = 0.205 < 0.5, \text{ so realized value } \ell \text{ lies between } -20 \text{ and } 0. \text{ Thus } \]

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205: \)

\[y = 0.00125(\ell + 20)^2, \text{ so } \]

\[\ell = \pm \sqrt{\frac{y}{0.00125}} - 20, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2. \]
Now for some realized values:

\[u = 0.205 < 0.5, \]
\[\text{so realized value } \ell \text{ lies between } -20 \text{ and } 0. \]
Thus

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205 \):

\[y = 0.00125(\ell + 20)^2, \]
so

\[\ell = \pm \sqrt{\frac{y}{0.00125}} - 20, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2. \]
Solution

Now for some realized values:

\[u = 0.205 < 0.5, \text{ so realized value } \ell \text{ lies between } -20 \text{ and } 0. \text{ Thus } \]

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205: \)

\[y = 0.00125(\ell + 20)^2, \text{ so } \]

\[\ell = \pm \sqrt{\frac{y}{0.00125}} - 20, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2. \]
Solution

Now for some realized values:

\(u = 0.205 < 0.5 \), so realized value \(\ell \) lies between \(-20\) and \(0\). Thus

\[
F_L(\ell) = 0.00125(\ell + 20)^2.
\]

Find the inverse, and evaluate at \(u = 0.205 \):

\[
y = 0.00125(\ell + 20)^2, \quad \text{so}
\]

\[
\ell = \pm \sqrt{\frac{y}{0.00125}} - 20,
\]

giving

\[
\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2.
\]
Now for some realized values:

\[u = 0.205 < 0.5, \text{ so realized value } \ell \text{ lies between } -20 \text{ and } 0. \text{ Thus} \]

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205: \)

\[y = 0.00125(\ell + 20)^2, \text{ so} \]

\[\ell = \pm \sqrt{\frac{y}{0.00125} - 20}, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125} - 20} = -7.2. \]
Now for some realized values:

\[u = 0.205 < 0.5, \text{ so realized value } \ell \text{ lies between } -20 \text{ and } 0. \text{ Thus}\]

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205 \):

\[y = 0.00125(\ell + 20)^2, \text{ so } \]

\[\ell = \pm \sqrt{\frac{y}{0.00125}} - 20, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2. \]
Solution

Now for some realized values:

\[u = 0.205 < 0.5, \] so realized value \(\ell \) lies between \(-20\) and \(0\). Thus

\[F_L(\ell) = 0.00125(\ell + 20)^2. \]

Find the inverse, and evaluate at \(u = 0.205 \):

\[y = 0.00125(\ell + 20)^2, \] so

\[\ell = \pm \sqrt{\frac{y}{0.00125}} - 20, \]

giving

\[\ell = \sqrt{\frac{0.205}{0.00125}} - 20 = -7.2. \]
Similarly, \(u = 0.713 > 0.5 \) so realized value \(> 0 \). Thus

\[
F_L(\ell) = 1 - \frac{e^{-\ell/10}}{2}.
\]

Find the inverse, and evaluate at \(u = 0.713 \):

\[
y = 1 - \frac{e^{-\ell/10}}{2} \quad \text{so} \quad \ell = -10 \log(2 - 2y),
\]

giving

\[
\ell = -10 \log(2 - 2 \times 0.713) = 5.55.
\]
Similarly, \(u = 0.713 > 0.5 \) so realized value > 0. Thus

\[
F_L(\ell) = 1 - \frac{e^{-\ell/10}}{2}.
\]

Find the inverse, and evaluate at \(u = 0.713 \):

\[
y = 1 - \frac{e^{-\ell/10}}{2} \quad \text{so} \quad \ell = -10 \log(2 - 2y),
\]

\[
\ell = -10 \log(2 - 2 \times 0.713) = 5.55.
\]
Similarly, \(u = 0.713 > 0.5 \) so realized value \(> 0 \). Thus

\[
F_L(\ell) = 1 - \frac{e^{-\ell/10}}{2}.
\]

Find the inverse, and evaluate at \(u = 0.713 \):

\[
y = 1 - \frac{e^{-\ell/10}}{2} \quad \text{so} \quad \ell = -10 \log(2 - 2y),
\]
giving

\[
\ell = -10 \log(2 - 2 \times 0.713) = 5.55.
\]
Similarly, \(u = 0.713 > 0.5 \) so realized value \(> 0 \). Thus

\[
F_L(\ell) = 1 - \frac{e^{-\ell/10}}{2}.
\]

Find the inverse, and evaluate at \(u = 0.713 \):

\[
y = 1 - \frac{e^{-\ell/10}}{2} \quad \text{so}
\]

\[
\ell = -10 \log(2 - 2y),
\]

\[
\ell = -10 \log(2 - 2 \times 0.713) = 5.55.
\]
Similarly, \(u = 0.713 > 0.5 \) so realized value \(> 0 \). Thus

\[
F_L(\ell) = 1 - \frac{e^{-\ell/10}}{2}.
\]

Find the inverse, and evaluate at \(u = 0.713 \):

\[
y = 1 - \frac{e^{-\ell/10}}{2} \quad \text{so} \quad \ell = -10 \log(2 - 2y),
\]

giving

\[
\ell = -10 \log(2 - 2 \times 0.713) = 5.55.
\]
1. Write down R code that simulates 100 observations from the $U(0, 1)$ distribution and stores the output in the vector U.

2. Suppose X has CDF

$$F_X(x) = 1 - \frac{1}{x}, \quad x \geq 1.$$

Find $F_X^{-1}(x)$.

3. Write an R function called `inv.cdf` to return the inverse of $F_X(x)$.

4. Write down a single line of R code to generate 100 realizations of the random variable X.

5. Write down a single line of R code to produce a histogram of your realizations of X, coloured yellow and with a suitable title.