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MAS2602 Arrangements

Statistics classes run in teaching weeks 5–9

Lecturer is Dr. Lee Fawcett (lee.fawcett@ncl.ac.uk)

Schedule: 4 lectures, 4 practicals, 1 revision class, 1 class test

Office hours: Tuesdays 3-4; room 2.07 Herschel
(also MAS3902: Tuesdays 2-3 and Thursdays 3-4)



Schedule

Week 5 Mon 28 Oct 11–12 Lecture (Herschel LT1)
Fri 1 Nov 10–12 Practical (Herschel PC)

Week 6 Mon 4 Nov 11–12 Lecture (Herschel LT1)
Wed 6 Nov 11–1 Practical (Herschel PC)

Week 7 Mon 11 Nov 11–12 Lecture (Herschel LT1)
Thu 14 Nov 11–1 Practical (Herschel PC)

Week 8 Mon 18 Nov 11–12 Lecture (Herschel LT1)
Thu 21 Nov 11–1 Practical (Herschel PC)
Thu 21 Nov 3pm Assignment due
Fri 22 Nov 1–2 Revision (Herschel LT2)

Week 9 Tue 26 Nov 9–10 Test (Herschel PC)



Assessment

Assignment (a.k.a. “mini-project”)

Due Thursday 21 November, 3pm

Worth 10% of the module marks

Class test

Tuesday 26 November, 9am – one hour long

Worth 30% of module marks

Open-book test

You will write one or two short R programs during the test



Help and Support

Help available:

Office hours

Demonstrators in practical sessions

Books – see recommendations in booklet

Email Lee, or just pop in!

Blackboard and dedicated webpage



Late work policy

In this module, deadline extensions can be requested for the final
project (by means of submitting a PEC form), and work submitted
within 7 days of the deadline without good reason will be marked

for reduced credit. This module also contains tests worth more
than 10% for which rescheduling can be requested (by means of

submitting a PEC form). There are mini-projects (worth 10%
each) for which it is not possible to extend deadlines and for which
no late work can be accepted. For details of the policy (including
procedures in the event of illness etc.) please look at the School

web site:

http://www.ncl.ac.uk/maths/students/teaching/homework/

For problems with deadlines, speak to your personal tutor and
prepare a PEC form



Lecture 1: Introduction and Simulation of
Random Variables



Introduction

In this part of the module we will do statistics with R:

R is the foremost tool in modern computational statistics

Using R teaches general concepts in programming

It can be used to illustrate mathematical ideas in probability
and statistics

Today’s lecture: simulating random variables

1 Simulating random variables seen in MAS1604

2 Using this to simulate more complicated probability models

Friday’s practical:

1 Revision of R from MAS1802

2 Putting today’s material into practice
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The binomial distribution

If X ∼ Bin(n, p) then X has PMF (probability mass function)
given by

pX (k) =

(
n

k

)
pk(1− p)n−k , for k = 0, 1, . . . , n.

There is no closed formula for the CDF (cumulative distribution
function).

R commands:

dbinom – calculate PMF

pbinom – calculate CDF

rbinom – generate random sample
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R commands for the binomial distribution

1 dbinom (5 , 10 , 0 . 7 ) # Pr(X = 5) ,X ∼ Bin(10, 0.7)
2 pbinom (4 , 10 , 0 . 7 ) # Pr(X ≤ 4) ,X ∼ Bin(10, 0.7)
3 rbinom (50 , 10 , 0 . 7 ) # Sample a Bin(10, 0.7) distribution 50 times



Creating a bar plot

1 x = rbinom (50 , 10 , 0 . 7 )
2 p l o t ( t a b l e ( x ) , x l im = c (0 ,10 ) , xax t = ’ n ’ , x l a b = ’ x ’ ,

y l a b = ’ f r e qu enc y ’ )
3 a x i s (1 , a t = seq (0 , 10) )
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The geometric distribution

If Y ∼ Geom(p) then Y has PMF and CDF given by

pY (k) = (1− p)k−1p,

FY (k) = 1− (1− p)k , for k = 1, 2, . . . .

Note that Y takes values in 1, 2, 3, . . .:

R uses a slightly different definition

We use the definition that Y is the number of Bernoulli trials
with up to and including first success

R counts number of trials up to, but not including the first
success, so in R geometric random variables take values
0, 1, 2, . . ..



R commands for the geometric distribution

Adjust the arguments to account for different definition:

1 dgeom (4 , 0 . 2 ) # Pr(Y = 5) ,Y ∼ Geom(0.2)
2 pgeom (2 , 0 . 2 ) # Pr(Y ≤ 3) ,Y ∼ Geom(0.2)
3 1 + rgeom (100 , 0 . 2 ) # Sample a Geom(0.2) distribution 100 times

Here’s a function to replace dgeom with our definition of the
geometric distribution:

1 mydgeom = f u n c t i o n ( x , p ) {
2 dgeom( x−1, p ) }



The Poisson distribution

If Z ∼ Po(λ) then Z has PMF given by

pZ (k) =
λk

k!
e−λ, for k = 0, 1, 2, . . . .

There is no closed formula for the CDF (cumulative distribution
function).

R commands:

dpois – calculate PMF

ppois – calculate CDF

rpois – generate random sample



R commands for the Poisson distribution

1 dpo i s (5 , 3 . 5 ) # Pr(Z = 5) ,Z ∼ Po(3.5)
2 ppo i s (2 , 3 . 5 ) # Pr(Z ≤ 2) ,Z ∼ Po(3.5)
3 r p o i s (100 , 3 . 5 ) # Sample a Po(3.5) distribution 100 times



Summary

Distribution Binomial Poisson Geometric A
PMF dbinom(...) dpois(...) dgeom(...)

CDF pbinom(...) ppois(...) pgeom(...)

sample rbinom(...) rpois(...) rgeom(...)



Continuous random variables

R has functions for the uniform, exponential and normal
distributions:

Distribution Uniform Exponential Normal

PDF dunif(...) dexp(...) dnorm(...)

CDF punif(...) pexp(...) pnorm(...)

quantile qunif(...) qexp(...) qnorm(...)

sample runif(...) rexp(...) rnorm(...)



Continuous random variables – R examples

1 dun i f (3 , 2 , 5) # fX (3),X ∼ U(2, 5)
2 pexp ( 1 . 5 , 5) # FY (1.5),Y ∼ Exp(5)
3 rnorm (10 , 0 , 2) # Sample a N(0, 22) distribution 10 times

For the standard uniform (U(0, 1)) and standard normal (N(0, 1))
distributions you don’t need to provide the parameters a = 0,
b = 1 and µ = 0, σ = 1 respectively. For example:

1 r u n i f (20) # Samples a U(0, 1) distribution 20 times
2 pnorm (1 . 9 6 ) # Pr(Z < 1.96) ,Z ∼ N(0, 1)
3 [ 1 ] 0 .9750021



Quantiles

The quantile functions qunif, qexp, qnorm solve equations like

FX (α) = p

for α given a probability p. For example:

1 qnorm (0 .9750021)
2 [ 1 ] 1 .96



Quantiles

Example

Suppose annual maximum wave heights observed off the coast at a
flood-prone town are assumed Normally distributed, with mean 2
metres and standard deviation 0.5 metres.

(a) Write down the R command to find the probability that the
largest wave height next year will exceed 3.25 metres.

(b) Write down the R command to estimate the height of a new
sea wall such that we might expect the town to be flooded, on
average, once per century. Why might our modelling
assumption be invalid?



Example 1.1: Solution (a)
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Example 1.1: Solution (a)

Could work out the old-fashioned way:

Pr(X > 3.25) = Pr

(
Z >

3.25− 2

0.5

)
= Pr(Z > 2.5)

= 1− Pr(Z ≤ 2.5) = 1− 0.994 = 0.006.

Or could just use R:

1 1−pnorm (3 . 2 5 , 2 , 0 . 5 )
2 [ 1 ] 0 .006209665
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Example 1.1: Solution (b)
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Example 1.1: Solution (b)

Similarly:

1 qnorm (0 . 9 9 , 2 , 0 . 5 )
2 [ 1 ] 3 .163174



A more advanced model

Number of arrivals per day at an IT help-desk is modelled
using a Poisson distribution

Mean of the Poisson distribution might vary from day-to-day

Suppose the number of arrivals X ∼ Po(Λ)

Λ is itself a random variable, with Λ ∼ Exp(c) for a constant
c = 0.05

What can we say about the distribution of X?

1 What are the expectation and variance of X?

2 What is Pr(X > 30)?



Arrival model – R code

1 a r r i v a l s = f u n c t i o n (n , c = 0 . 05 ) {
2 x = v e c t o r (mode = ’ numer ic ’ , l e n g t h = n )
3 f o r ( i i n 1 : n ) {
4 lambda = rexp (1 , r a t e = c )
5 x [ i ] = r p o i s (1 , lambda )
6 }
7 r e t u r n ( x )
8 }



Arrival model – R code

Bar plot:

1 x = a r r i v a l s (500)
2 p l o t ( t a b l e ( x ) , x l im = c (0 , 50) , xax t = ’ n ’ , x l a b = ’ x ’

, y l a b = ’ f r e qu en c y ’ )
3 a x i s (1 , a t = seq (0 , 50 , 5) )
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Using simulated samples

The sample mean is an approximation to the distribution mean

The same applies for the sample variance

To calculate Pr(X > 30) we count the proportion of times
this occurs in the sample

We expect the approximation to improve as we increase the sample
size



Using simulated samples

1 mean ( x )
2 [ 1 ] 19 .618
3 va r ( x )
4 [ 1 ] 382 .1764
5 sum( x>30)/500
6 [ 1 ] 0 .202



Mixtures of normal distributions

Suppose

µ1, µ2, σ1 > 0, σ2 > 0 are fixed constants,

w1,w2 are positive constants with w1 + w2 = 1.

Consider the following function:

f (x) = w1f1(x) + w2f2(x)

where f1 and f2 are the density functions for Z1 ∼ N(µ1, σ
2
1) and

Z2 ∼ N(µ2, σ
2
2) respectively.

Check that f (x) represents a valid probability density function.



Mixtures of normal distributions

First note that f (x) ≥ 0 everywhere. Also∫ ∞
−∞

f (x)dx = w1

∫ ∞
−∞

f1(x)dx + w2

∫ ∞
−∞

f2(x)dx

= w1 + w2 = 1.
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Mixtures of normal distributions

If a random variable X has PDF corresponding to f (x) we say it is
a mixture of normal distributions N(µ1, σ

2
1) and N(µ2, σ

2
2) with

weights w1,w2.

Note that X is not the sum of two normal random variables i.e.

X 6= w1Z1 + w2Z2 where Zi ∼ N(µi , σ
2
i ), i = 1, 2.



Example

For example: suppose µ1 = 3, σ1 = 1 and µ2 = 6, σ2 = 2 with
w1 = w2 = 1/2.
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Sampling from a mixture distribution

1 Sample a random variable J ∈ {1, 2} such that
Pr(J = 1) = w1 and Pr(J = 2) = w2.

2 The random variable J tells you which component of the
mixture to sample X from.

3 If J = 1 then sample X from N(µ1, σ
2
1), but if J = 2 then

sample X from N(µ2, σ
2
2).



Sampling from a mixture distribution

1 normal . m i x tu r e = f u n c t i o n (n , mu1 , s i g1 , w1 , mu2 , s i g2 ,
w2) {

2 p = c (w1 , w2)
3 x = v e c t o r (mode = ’ numer ic ’ , l e n g t h = n )
4 f o r ( i i n 1 : n ) {
5 j = sample ( c (1 , 2) , 1 , prob = p )
6 i f ( j==1) {
7 x [ i ] = rnorm (1 , mu1 , s i g 1 )
8 }
9 e l s e {

10 x [ i ] = rnorm (1 , mu2 , s i g 2 )
11 }
12 }
13 r e t u r n ( x )
14 }


