
Chapter 5

Exercises

Starred questions

Starred (*) questions will be used for assessment purposes. For example, 14.*A2 is
an assessed question forming part of Assignment 2. Solutions to the starred questions
should be placed in the homework submission letterbox in the foyer of the Maths & Stats
General Office (Herschel Building 3rd floor) by no later than the following dates:

• Assignment 1: Q1, Q4, Q9: 4pm, Tuesday 24th February

• Assignment 2: Q10, Q14, Q39, Q40, Q41: 4pm, Tuesday 10th March

• Assignment 3: Q21, Q42, Q43: 4pm, Tuesday 21st April

• Assignment 4: Q30, Q32, Q44: 4pm, Tuesday 5th May

Presentation questions

Questions marked with a P will be used in student presentations. Solutions will be made
available to these questions after the presentations have taken place.

Computing questions

This course will make some use of the statistical computing package R, and there will be
occassional computing labs. You should bring this booklet to all lectures and computing
labs. In the labs, you will be told which questions to work through. Notice that some
of the computing questions are assessed, and should be submitted along with any hand-
written questions as part of an assignment.

Non–assessed questions

We will work through most of the non–assessed questions in the problems classes.

99



100 CHAPTER 5. EXERCISES

Pencil-and-paper exercises

1.*A1 (a) Mark on a 0− 1 probability scale the approximate positions of the following
events. Undertake a simple investigation if necessary. Explain the values you
choose and state, in each case, whether you are using the frequency, classical
or subjective interpretation of probability.

(i) A student taking MAS2317/3317 has a body mass index (BMI) of at least
22.5.

(ii) Newcastle United will finish in a top 6 position in the Premier League
this year.

(iii) A randomly selected number between 10 and 99 (inclusive) is divisible by
7.

(b) For each event in part (a), give a range which you believe contains the ‘true’
value with probability 0.95.

2.P An insurance company classifies car drives as X, Y or Z. Experience indicates
that the probability that a class X driver has at least one accident in any one year
is 0.02, whilst the corresponding probabilities for class Y and class Z drivers are
0.04 and 0.10 respectively. They have also found that, of the drivers who apply to
them for cover, 30% are class X, 60% are class Y and 10% are class Z.

(i) Mr Smith is a new client and, within 12 months, he has an accident. What
is the probability that he is a class Z risk?

(ii) If Mrs Brown goes for n years without an accident, and we assume the number
of accidents in different years to be independent, how large must n be before
the company considers that she is more likely to belong to class X than to
class Y ?

3.P Suppose that 1% of the population have a disease D. A diagnostic test S, designed
to detect the disease, has the following accuracy:

Pr(S positive|D) = 0.95 and

Pr(S positive|Dc) = 0.05.

If 100 people were tested at random, how many would we expect to test positive
and of those that do, about how many would we expect to have the disease?
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4.*A1 On June 1st 2009, Air France flight 447 disappeared en-route to Paris Charles de
Gaulle Airport about four hours after leaving Rio de Janeiro. Locating the air-
craft’s flight data recorder (the black box) was key to understanding the cause of
one of the deadliest accidents in the history of Air France.

After considering various oceanographic characteristics in the Atlantic at the time
the flight disappeared, initial searches for the data recorder focussed on a large area
to the north of the point at which it was believed the aircraft made impact with
the ocean. In fact, it was believed that there was an 80% chance of finding the data
recorder in this area, as opposed to the south of the impact zone. After almost
two years of searching in the area mainly to the north of the point of impact, the
elusive black box had still not been found.

In April 2011 Metron, Inc. were hired to launch a Bayesian review of the search
effort. The following probabilities of black box “identifiers” were estimated, based
on the black box being in the areas defined as “North” and “South”:

Identifier
x1 x2 x3 x4

North 0.3 0.1 0.1 0.5
South 0.05 0.7 0.2 0.05

These “identifiers” were:

x1 : “Fresh” debris found (since December 2010)

x2 : Signal detected from the black boxes

x3 : Both “fresh” debris found and signal from black boxes detected

x4 : Neither “fresh” debris found nor signals detected from the black boxes

(a) Construct rules for differential diagnosis of the most plausible search area for
the flight’s data recorder, on the basis of the posterior assessments for each
type of identifier.

(b) According to your set of rules in part (a), what is the probability of ‘misdi-
agnosis’?

(c) In March 2011 a weak signal from the black box was detected. Quantify the
shift in odds in favour of searching in the area south of the impact zone,
having observed this identifier.
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5. An experiment can result in four possible outcomes x1, x2, x3 and x4. The prob-
ability of each of these outcomes is affected by a parameter θ which can take one
of three values θ1, θ2 and θ3:

p(x|θ) x1 x2 x3 x4
θ1 0.1 0.2 0.3 0.4
θ2 0.3 0.3 0.2 0.2
θ3 0.5 0.1 0.1 0.3

The prior plausibilities attaching to θ1, θ2 and θ3 are 0.1, 0.4 and 0.5. Find the
posterior probability function for θ after observing x1. Repeat the calculations for
x2, x3 and x4.

6. Extensive manuscripts of two scribes show that they differ on the relative frequen-
cies with which they use two alternative vowel forms e and oe, as in the following
table:

e oe
Scribe A 0.3 0.7
Scribe B 0.5 0.5

A new manuscript fragment, known to be by one of the scribes, uses the vowel
form five times, three times as e and twice as oe. If an independent assessment of
similar fragments favours Scribe A as author with probability 0.7, show that the
evidence from the vowel form is sufficient to turn the odds in favour of Scribe B.

7. If X1, X2, . . . , Xn are independent random variables with probability function

f(x|θ) = θ(1− θ)x−1, x = 1, 2, . . . ,

show that T =
∑n

i=1Xi is sufficient for θ.

8. If X1, X2, . . . , Xn are independent N(5, σ2) random variables, show that

T =
n
∑

i=1

(Xi − 5)2

is sufficient for σ.

9.*A1 Hurricane–strength wind speeds (X miles per hour) for locations in the Gulf of
Mexico are modelled using a distribution with probability density function

f(x|σ) = x

σ2
exp

{

− x2

2σ2

}

, x > 0, σ > 0.

During a hurricane, you collect wind speeds at n randomly chosen locations in the
Gulf of Mexico, giving x1, x2, . . . , xn. Find the likelihood function for σ, and obtain
a sufficient statistic for σ.
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10.*A2 The 18th century physicist Henry Cavendish made 23 experimental determinations
of the earth’s density, and these data (in g/cm3) are given below.

5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29
5.44 5.34 5.79 5.10 5.27 5.39 5.42 5.47
5.63 5.34 5.46 5.30 5.78 5.68 5.85

Suppose that Cavendish asserts that the error standard deviation of these mea-
surements is 0.2 g/cm3; he also assumes that they are normally distributed with
mean equal to the true earth density µ. Using a normal prior distribution for µ
with mean 5.41 g/cm3 and standard deviation 0.4 g/cm3,

(a) obtain the posterior distribution, and compare this to the prior;

(b) find the posterior probability that 5.45 g/cm3 < µ < 5.55 g/cm3.

11. Suppose that a random sample x1, x2, . . . , xn is obtained. Derive the posterior
distributions for the following models:

(a) f(x|θ) = θx−1(1− θ), x = 1, 2, . . . with a U(0, 1) prior distribution for θ.

(b) f(x|θ) = e−θθx

x!
, x = 0, 1, . . . with a Exp(1) prior distribution for θ.

(c) f(x|θ) =
(

7
x

)

θx(1−θ)7−x, x = 0, 1, . . . , 7 with a Beta(3, 2) prior distribution

for θ.

12.P The time until a bicycle tyre gets punctured is exponentially distributed with mean
1/θ weeks. From a cyclist, we are able to elicit the following prior for θ:

π(θ) =
1006

120
θ5e−100θ. (5.1)

(a) Identify fully the distribution in Equation (1).

(b) The cyclist records the times that two tyres last, and his readings (in weeks)
are 33 and 41. Find how his beliefs about θ change in light of these data.

13.P Consider an experiment with a possibly loaded six-sided die. Let θ = Pr(rolling a six).
Before conducting the experiment, we believe that all values of θ are equally likely
and so we use a U(0, 1) random variable as the prior distribution for θ. We then
roll the die 10 times and observe 3 sixes.

(a) Obtain the likelihood function and use it to obtain the posterior distribution,
π(θ|x = 3).

(b) What is E[θ|x = 3]?
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14.*A2 [It might help if you have the handout for case study 1 handy when completing this
question]
Suppose the number of casualties Yi at location i, due to road traffic accidents, is
assumed Poisson with rate θi, i.e.

Yi|θi ∼ Po(θi).

Suppose further that we assume the following gamma prior for θi:

θi ∼ Ga

(

g,
g

µi

)

.

(a) Show that the prior mean and standard deviation for θi are µi and µi/
√
g

respectively.

(b) Suppose that we observe Yi = yi casualties at site i during some observation
period.

(i) Derive the posterior distribution π(θi|yi), i.e. confirm the result given by
Equation (3) in the case study.

(ii) Show that the posterior mean is given by the following Bayes linear rule:

E(θi|yi) = αiµi + (1− αi)yi,

where
αi =

g

g + µi
.

15.P Richard plays “flip to win” with a student. The game is very simple – Richard
tosses a coin and if the outcome is a head, the student gets a fiver. If the coin
lands tails, the student must buy Richard a pint. Five students play this game with
Richard, and only one head is observed. Let X be the number of heads observed;
thus, X ∼ bin(5, θ).

(a) Find the likelihood function f(x = 1|θ).
(b) The students are suspicious of Richard’s coin. In fact, Daniel, an insider,

tells them that he believes the coin is biased and thus specifies a Beta(6,46)
distribution as the prior for θ. Why might this be a sensible prior distribution
in light of these suspicions?

(c) Obtain the posterior distribution for θ, π(θ|x = 1).

16. The number of defects in a 1200 foot roll of magnetic recording tape has a Po(θ)
distribution. The prior distribution for θ is Ga(3, 1). When 5 rolls of this tape are
selected at random and inspected, the number of defects found on the rolls are 2,
2, 6, 0 and 3. Determine the posterior distribution of θ.
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17. The data in the table below are measurements of the logarithm of ornithine car-
bonyltransferase (a liver enzyme) in patients suffering from acute viral hepatitis.

2.66 2.38 2.37 2.50 1.96 2.85 2.68 1.76 2.36
2.56 2.09 2.85 2.37 2.40 2.79 1.82 3.00 2.50
2.36 2.48 2.60 2.42 2.51 2.51 2.80 2.50 2.57

Assume that the enzyme measurement varies according to a N(µ, 0.272) distribu-
tion, and that an expert says his beliefs about the mean level µ are described by
a N(2.7, 0.32) distribution. After combining both sources of information, what is
the probability that this mean level is less than 2.5? Sketch the prior and posterior
distributions for µ on the same graph. Describe the main changes in beliefs after
incorporating the data.

18. A random sample of size n is to be taken from a N(θ, 22) distribution. The prior
for θ is N(b, 1/d).

(a) If d = 1, what is the smallest number of observations that must be included in
the sample if the standard deviation of the posterior distribution of θ is to be
reduced to 0.1?

(b) If n = 100, show that no matter how large the value of d, the standard deviation
of the posterior distribution is less than 1/5.

19. In viewing a section through the pancreas, doctors see what are called “islands”.
The numbers of islands seen in 900 patients are summarised below.

Number of islands 0 1 2 3 4 5 6 ≥ 7
Frequency 327 340 160 53 16 3 1 0

Assuming that the numbers of islands are Poisson distributed with mean θ, obtain
the posterior mean and standard deviation for θ from several gamma Ga(g, h) prior
distributions (with g and h in the range 1 to 50). Why is the posterior distribution
quite insensitive to variations in the prior distribution?

20. Read through case study 2, and then answer the following questions.

(a) Produce a list of benefits of working within the Bayesian framework over a
standard frequentist analysis.

(b) What difficulties arose as a result of working within the Bayesian framework?

(c) How did we attempt to overcome these difficulties?

(d) The resulting posterior distribution for θ was improper. What does this mean?

(e) Name the simulation technique that can be used to obtain approximate draws
from the posterior distribution when our prior is non–conjugate.
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21.*A3 The United States Geological Survey (USGS) continuously tracks tropical depres-
sions over the Atlantic Ocean – such systems can develop into hurricanes, and
these storms can make landfall in eastern/southeastern states of the USA. You are
a statistician working for the USGS, and in question 9 you have already used the
MATCH Uncertainty Elicitation Tool, and R, to elicit a prior distribution for the
rate of occurrence, θ, of three tropical depressions during the Atlantic hurricane
season.

Let X be the number of tropical depressions during the Atlantic hurricane sea-
son; we assume a Poisson distribution for X, i.e. X ∼ P (θ). In 2010, 2011 and
2012, the USGS observe 15, 6 and 10 tropical depressions, respectively. Combine
the prior opinion elicited from the meteorologist with the data to obtain the poste-
rior distribution for θ, and write a short report for the meteorologist summarising
how beliefs about the rate of occurrence of tropical depressions have changed in
light of the data.

22. Suppose we have a random sample from a Poisson distribution, that isXi|θ ∼ P (θ),
i = 1, . . . , n (independent). Determine the posterior distribution assuming a vague
prior for θ. What would be the resulting posterior if we had used a vague prior in
question 21?

23.P A “degassing burst” is a seismic event that can occur just before a major earth-
quake. Let θ be the chance that a major earthquake will occur after a degassing
burst has taken place. From discussions with an seismologist, we are able to elicit
the following:

Pr(θ < 0.6) = 10−3.

The seismologist also tells us that she thinks the most likely value for θ will be
about 0.9. Use this information to justify using a Beta(22.6, 3.4) prior for θ, clearly
explaining your method. [Hint: You may use R to help you.]

24.P Let θ be the chance that a major earthquake will occur after a “degassing burst” has
taken place (see previous question). Six of the last ten degassing bursts at locations
along the edge of the Eurasian plate were followed by major earthquakes. Update
the beliefs of the seismologist from the previous question with this information to
form the posterior for θ, and compare prior and posterior means.
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25.P The number of admissions, per day, to a busy Accident & Emergency (A&E)
department is assumed Poisson with rate θ.

This A&E department can cope with, at most, θ = 200. The A&E consultant at
this hospital tells us that he often sees between 80 and 100 patients admitted to
A&E in any one day, although this can vary. Let Pr(80 < θ < 100) = a. We then
elicit the following information from the consultant:

Pr(40 < θ < 60) ≈ 0.5a;

Pr(60 < θ < 80) ≈ 0.8a (= b);

Pr(100 < θ < 120) ≈ b;

Pr(120 < θ < 140) ≈ 0.2a (= c);

Pr(140 < θ < 160) ≈ c; and

Pr(160 < θ < 180) ≈ 0.5c.

In his time at this hospital, the consultant has never witnessed more than 180
casualties in any one day; only on very few occasions have there been less than 60
casualties.

(a) Use the trial roulette method to obtain a suitable prior for θ, clearly demon-
strating each step.

(b) Is your prior in (a) conjugate? Explain.

(c) Produce a feedback summary for the A&E consultant which gives:

– the prior mode for θ;

– the prior standard deviation for θ;

– the 1% and 99% prior percentiles.

26.P The number of casualties observed at a known traffic accident blackspot, in a single
year, is assumed Poisson with rate λ. Using the bisection method, we are able to
elicit the following quantities from a road safety expert:

Q1(λ) = 2, Q2(λ) = 4 and Q3(λ) = 8,

where Q1, Q2 and Q3 are the first, second and third quartiles (respectively). The
expert also tells us that the mean casualty rate at this site is extremely unlikely to
exceed 20 per year.

(a) Use MATCH to elicit an appropriate prior distribution for θ, demonstrating
this clearly.

(b) Given that we observed 6 casualties at this location in 2011, obtain the pos-
terior distribution for λ.
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27.P The proportion θ of defective items in a large shipment is unknown. However,
experience suggests that a Beta(2, 200) prior is appropriate.

(a) Suppose that 100 items are selected at random from the shipment and that
three are found to be defective. What is the posterior distribution of θ?

(b) Suppose that another statistician, having observed the three defectives, said
that his posterior distribution for θ was a beta distribution with mean 4/102
and variance 0.0003658. What prior distribution had that statistician used?

28. Suppose that the random variable Y follows a Ga(a, b) distribution. Determine
the probability density function for the random variable X = 1/

√
Y .

29. Using a random sample from a Bin(k, θ) (with k known), determine the posterior
distribution for θ assuming

(i) vague prior knowledge;

(ii) the Jeffreys prior distribution;

(iii) a very large sample.

30.*A4 Using a random sample from a Ga(k, θ) distribution (with k known), determine
the posterior distribution for θ assuming

(i) vague prior knowledge;

(ii) the Jeffreys prior distribution;

(iii) a very large sample.

31. Use techniques from MAS2302 to obtain 95% frequentist confidence intervals for
θC and θI in question 9.

32.*A4 Compare the frequentist and Bayesian confidence intervals for θC and θI as obtained
in questions 31 and 44 (respectively). Comment on any numerical differences, as
well as differences in interpretation.

33. Sketch a probability density function for which the highest density interval (HDI)
takes the form

(i) (a, b)

(ii) (a, b) ∪ (c, d)

(iii) (a, b) ∪ (c, d) ∪ (e, f).

where a < b < c < d < e < f .
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34. The weights of items from a certain production processes are independently and
identically distributed, each with a N(θ, 4) distribution. The production manager
believes that θ varies from batch to batch according to a N(110, 0.4) distribution.
A sample of 5 items is randomly selected from a batch, giving data: 108, 109,
107.4, 109.6, 112. Determine the posterior distribution for θ.

(i) Determine the predictive distribution for the weight of one further item from
the batch.

(ii) Calculate the (predictive) probability that the weight of this item exceeds 110.

(iii) Determine the predictive distribution for the sample mean of the weights of
m further items from the batch. What happens as m→ ∞?

Hint: if the posterior distribution is θ|x ∼ N(B, 1/D) then the predictive distri-
bution for a future item y, where Y |θ ∼ N(θ, 1/k), is

f(y|x) = f(y|θ)π(θ|x)
π(θ|x, y) =

{

kD

2π(D + k)

}1/2

exp

{

− kD

2(D + k)
(y − B)2

}

,

that is, Y |x ∼ N

(

B,
D + k

kD

)

.

35. The distribution of flaws along the length of an artificial fibre follows a Poisson
process, and the number of flaws in a length ℓ is Po(ℓθ). Very little is known
about θ. The number of flaws in five fibres of lengths 10, 15, 25, 30 and 40
metres were found to be 3, 2, 7, 6, 10 respectively. We are interested in finding
the predictive distribution for the number of flaws in another piece of length 60
metres.

Consider first the general case.

(i) Suppose the number of flaws are independent with Xi ∼ Po(ℓiθ). Determine
the posterior distribution for θ.

(ii) Determine the predictive distribution for the number of flaws Y in another
piece of length ℓ.

(iii) Use the information in the data to determine the number of flaws in another
piece of length 60 metres.

Hint for (ii): what is the probability function for T = W+r whenW ∼ NegBin(r, p)?
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Computing exercises

Open R by clicking on Start → All Programs → Statistical Software →
RStudio. You will need to access data for some of these questions from the course
website, so have this open:

http://www.mas.ncl.ac.uk/∼nlf8/teaching/mas2317/

Some questions will also make use of the MATCH Uncertainty Elicitation Tool,
available at:

http://optics.eee.nottingham.ac.uk/match/uncertainty.php

36. Recall Example 2.1 in the lecture notes. We have an experiment with a possibly
biased coin, and θ = Pr(Head). The number of heads observed, X, from 5 flips of
the coin, is therefore a binomial random variable, i.e.

X|θ ∼ Bin(5, θ).

Assuming that θ ∼ U(0, 1), we found that θ|x = 1 ∼ Be(2, 5). Let’s now re–
produce the plots in Figure 2.3, comparing prior with posterior.

In R, type the following:

> x=seq(0,1,0.01)

You can now look at x by typing

> x

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44

0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74

0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

Thus, x is just a sequence of values between 0 and 1, in steps of 0.01. This covers
the range of possible for θ.

Now, for the U(0, 1) prior for θ, we apply the R function dunif to x:

> prior=dunif(x,0,1)

This evaluates the U(0, 1) pdf at each of our x values.

For the Be(2, 5) posterior for θ, we apply the R function dbeta to x:
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> posterior=dbeta(x,2,5)

This evaluates the Be(2, 5) pdf at each of our x values.

We will now plot the prior and posterior in R on the same graph, as in Figure
2.3 of the lecture notes. In R, type

> plot(x,prior,type=’l’,xlab=’theta’,main=’Example 2.3’,lty=2)

This should plot your U(0, 1) prior for θ. The arguments xlab= and main= specify
labels for your x–axis and the plot as a whole, respectively. Using type=’l’ uses
a line to join the points in the plot, and setting lty=2 uses a dashed line effect.

Now to superimpose the posterior. Type

> lines(x,posterior)

Notice that when you do this, your beta posterior is superimposed (the lines

command superimposes, instead of making a brand new plot); however, the range
on the y–axis is not large enough to see this properly. We can fix this by using the
command ylim=c(lower,upper) to specify a more suitable range. For example,
inserting ylim=c(0,max(posterior)) along with type=’l’, xlab=’theta’ etc.
within the plotting command plot(...) starts the plot again, but now the y–axis
will go from 0 to the largest value in our posterior distribution. Now

> lines(x,posterior)

should produce the desired effect. Check this against Figure 2.3 in the lecture
notes.

37. Recall Example 2.3 in the lecture notes. Max, the video game pirate, is interested
in the proportion θ of customers who will buy Call of Duty from him. X is the
number of people who say they would buy this game; if he asks 5 people, then we
have

X|θ ∼ Bin(5, θ).

He assumes a beta prior for θ: θ ∼ Be(2.5, 12), which results in θ|x = 4 ∼
Be(6.5, 13). Following carefully what you did in question 36, produce a plot in R

which compares the prior and posterior distributions for θ. Compare your plot to
that in Figure 2.7 of the lecture notes.

38. Recall the earthquakes example in the lecture notes: Example 2.4. Here, we assume
the times between earthquakes X are exponentially distributed, i.e.

X|θ ∼ Exp(θ).

An expert tells us that θ ∼ Ga(10, 4000). We then combine our observations with
the expert’s prior beliefs to obtain θ|x ∼ Ga(30, 13633). Recall that our strong
expert opinion suggest that only very small values of θ are likely (as earthquakes
are relatively rare); thus, set up your x values in R by typing
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> x=seq(0,0.01,0.001)

Of course, the gamma distribution is defined over the entire positive real line, but
we only look at very small values of θ here. Now use the R command dgamma in
exactly the same way you used dunif and dbeta in questions 36 and 37 to produce
a plot comparing your prior and posterior distributions for the rate of earthquakes
θ. You might have to change the range of the y–axis in your plot to accommodate
the posterior. Compare you plot to that in Figure 2.9 of the lecture notes.

39.*A2 In R, type

> par(mfrow=c(2,2))

You are required to produce four plots in this question; the above command splits
the plotting window into four components (2 by 2), one for each of the plots you
will produce. You should include this single panel showing all four plots in your
solutions to this question. Using the same approach as in question 36,

(a) produce a plot of the Be(10, 37) density for values on the x–axis between 0
and 1;

(b) produce a plot of the Be(20, 77) density for values on the x–axis between 0
and 1;

(c) produce a plot of the Ga(15, 0.625) density for values on the x–axis between
0 and 100;

(d) produce a plot of the Ga(9, 0.36) density for values on the x–axis between 0
and 100.

You should now have a single panel of four plots, one each for parts (a), (b), (c)
and (d). Now read the following scenarios.

Scenario 1

A football fan tells us it is quite unlikely that her team will get relegated this year.
Let θ = Pr(her team will be relegated). We are able to elicit from her that there is
less than a 1 in 100,000 chance that θ > 0.5.

Scenario 2

We are interested in the rate of retreat θ (feet per year) of the Zachriae Isstrøm
glacier in Greenland, as this could be an indicator of climate change (see the recent
BBC Frozen Planet series). An expert glaciologist tells us that this year, he expects
this glacier to retreat by about 24 feet, although there is some uncertainty here. In
fact, he thinks that there is 1/100 chance that the glacier might retreat by less than
10 feet.

(e) Match θ in each of the scenarios above with the most suitable distribu-
tion from parts (a)—(d). You can use the R commands pbeta(q,a,b) and
pgamma(q,a,b) to find Pr(θ < q), for θ ∼ Be(a, b) and θ ∼ Ga(a, b), respec-
tively.
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Questions 40 and 41 relate to case study 1: speed cameras and regression to
the mean. Recall that there were 17 road traffic accident blackspot sites identified in
South Tyneside (see Section 5 of the case study). The file blackspots.txt on the course
website has data relating to the average observed speed of vehicles, and the number of
casualties in the periods before and after the introduction of speed cameras, at each of
these sites.

Recall also that Northumbria Police collected information on the average observed ve-
hicle speed and the observed number of casualties (throughout the same time as the
before period for the blackspot sites) from a further 67 “reference” sites; these data can
be found on the course website in the file reference.txt.

40.*A2 This question relates to data collected at the reference sites.

(a) Download the reference data from the MAS2317 course webpage by executing
the following code in R:

> ref = read.table("http://www.mas.ncl.ac.uk/∼nlf8/teaching/

+ mas2317/case/reference.txt")

Do not enter the + sign. I have done this because the code would not fit on a
single line in this handout. You should enter the code in a single line!

(b) Look at the data by typing

> ref

The first column contains the average observed speed of vehicles at each of the
67 reference sites, and the second column contains the number of casualties
at each of these sites, during an observation period. Typing

> AvSp = ref[,1]

> Cas = ref[,2]

will store the data in column 1 of ref in the object AvSp, and the data in
column 2 of ref in the object Cas.

(c) Use the plot command in R to produce a scatterplot of the number of casu-
alties (Y ) against the average observed speed (X). You should make sure you
have appropriately labelled axes and a title on your plot; if in doubt, typing

> ?plot

will bring up a help screen for the command plot. Comment on the relation-
ship you see, but at this stage do not include this plot in your solutions.

(d) Perform a simple linear regression of casualties on the average observed speed
by typing

> lm(Cas~AvSp)

In your solutions, write down the resulting regression equation, and make sure
this confirms what you see in Equation (2) of the case study.
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(e) You should now superimpose the regression line from part (d) onto your plot
in part (c) and include this updated plot in your solutions. This can be done
by typing:

> lines(AvSp,fitted(lm(Cas~AvSp)))

41.*A2 This question will use your solutions to question 40 and the equations given in the
case study handout, as well as data collected at the blackspot sites.

(a) Some results based on analyses of blackspot sites 1 and 10 were given in the
case study (see Section 5.5). Now, each of you have been randomly allocated
to one of the other 15 blackspot sites; go to the “Case Studies” section of the
course website to find out which site you have been allocated to, and make a
note of this.

(b) Download the blackspot dataset in exactly the same way you downloaded the
reference dataset in question 40(a), and store this in the object blackspot in
R (as you stored the reference data in ref).

(c) Look at the data. As with the reference data, the first column relates to
the average observed vehicle speed at each site. The second column relates
to the number of casualties at each blackspot site in the period before the
installation of speed cameras, and the third column gives the corresponding
number in the period after the cameras had been installed. As before, each
row is for one of the sites. Look at the row for the blackspot site you have
been allocated to; in your solutions, write down your blackspot site number
(i =), the average observed vehicle speed for your site (xi =), the number of
observed casualties at this site in the before period (yi =) and the number of
casualties in the after period (yi,after =).

(d) Estimate the mean casualty frequency µi at your blackspot site by substituting
your average observed vehicle speed xi into the regression equation obtained
in question 40(d) from the reference data. Make sure you write this in your
solutions.

(e) In the case study, you are told that a road safety expert has suggested that
g = 2.5 in the following distribution for the casualty rate θi at blackspot site
i:

θi ∼ Ga

(

g,
g

µi

)

(see question 14 and Equation (1) in the case study). Use your answer to part
(d) to write down the distribution for θi for your blackspot site.

(f) Assuming that Yi is the number of casualties at blackspot i, and that

Yi|θi ∼ Po(θi),

use your answer to question 14(b)(i), or Equation (3) in the case study, to
write down the posterior distribution for θi|yi for your blackspot site.



115

(g) Using similar commands in R to those used in questions 36–38, produce a plot
of the prior and posterior distribution of θi for your blackspot site, similar to
that shown for site 1 in Figure 4 of the case study. Make sure these two plots
are given on the same graph (use the lines command in R for the second
graph). Also, show the position of your observed casualty frequency by using
the command

> abline(v=*)

where you would replace * with your observed casualty frequency yi.

(h) With reference to Equation (4) the case study, or question 14(b)(ii), calculate
the posterior mean E(θi|yi) for your blackspot site. Does this give more
weight to the prior mean µi or the observed casualty frequency yi?

(i) After accounting for the phenomenon of Regression To the Mean (RTM),
compute the percentage reduction in casualty frequency attributed to the
speed camera at your blackspot site.

42.*A3 The United States Geological Survey (USGS) continuously tracks tropical depres-
sions over the Atlantic Ocean – such systems can develop into storm systems or
hurricanes, and these storms can make landfall in eastern/southeastern states of
the USA. You are a statistician working for the USGS, and you are interested in
the rate of occurrence, θ, of these tropical depressions during the Atlantic hurricane
season (June–November).

After a consultation with a meteorologist on the team, you find out that, in any
year, she would probably expect to see between 16 and 20 tropical depressions over
the Atlantic ocean. Let Pr(16 < θ < 20) = a.

You then ask her to specify how likely she thinks some other ranges for θ are,
relative to the range she specified as most likely (given above). The results of your
consultation are shown below.

Pr(12 < θ < 16) = 0.8a

Pr(20 < θ < 24) = 0.8a

Pr(8 < θ < 12) = 0.5a

Pr(24 < θ < 28) = 0.2a

Pr(28 < θ < 32) = 0.2a

Pr(32 < θ < 36) = 0.1a

The meteorologist tells you that she has never seen more than 40 tropical depres-
sions in any one year; she also tells you that during a “quiet” hurricane season
there might no tropical depressions observed at all. However, she assigns values of
θ outside the range specified above negligible probabilities.

(a) In MATCH, enter the Lower Limit and Upper Limit as specified by the me-
teorologist. Then select the Roulette Input Mode to perform a trial roulette
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elicitation. A grid should appear; the x–axis should be split into equal–width
bins in which you can place your chips.

(b) Place 10 chips in the 16→20 bin; this will represent the meteorologist’s proba-
bility a. Now use the information you elicited from the meteorologist to place
the remaining chips.

(c) Now click Fitting & Feedback on the toolbar at the top of the screen. In
your solutions, copy and complete the following, specifying the parameters of
your fitted distribution to two decimal places.

Feedback: first fit

θ ∼ Lee Fawcett is no good, cho him up

π(θ) = Lee Fawcett is no good, cho him up, θ > 0

E(θ) =

SD(θ) =

(d) Use the Fitting & Feedback box in MATCH to find the 1st and 99th per-
centiles of your prior distribution, and write these values down as probability
statements in your solutions.

(e) Phrase a question that you could ask the meteorologist using your answers to
part(d), as part of the feedback stage necessary in any elicitation process.

(f) In response to your question in part (e), the meteorologist would like you to
refine the fitted prior for θ; in particular, she believes the 99th percentile is
too high, and that

Pr(θ > 32) ≤ 0.01.

In response to the meteorologist, remove a single chip from bins 24 → 28 and
28 → 32. Also remove two chips from bin 20 → 24. You should see that
the meteorologist’s request has now been met. Now provide her with a new
summary sheet, by copying and completing the following in your solutions
(see overleaf):
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Feedback after refinement: 2nd fit

θ ∼ Lee Fawcett is no good, cho him up

π(θ) = Lee Fawcett is no good, cho him up, θ > 0

E(θ) =

SD(θ) =

Pr(θ < Lee Faw ) = 0.01

Pr(θ > Lee Faw ) = 0.01.

(g) Now use R:

(i) To produce a plot of π(θ) obtained from your second fit in MATCH, and
include this in your solutions. [Hint: you may find it useful to refer to
questions 36–38]

(ii) To confirm the feedback percentiles you obtained from your second fit in
MATCH, and include any relevant R code in your solutions.

43.*A3 In this question we return to the scenario in question 21. Suppose the USGS are
also interested in the probability, λ, that a tropical depression over the Atlantic
develops into a major hurricane. After another consultation with the meteorologist,
we are able to elicit that the mode of any distribution for λ should be around 0.7
and that Pr(λ < 0.3) = 0.001.

(a) From the following list, choose the most appropriate distribution for λ: U(a, b),
N(a, b), Be(a, b), Ga(a, b).

(b) For the model you selected in (a), write down an expression for the mode,
and use the information elicited from the meteorologist to find an expression
for a in terms of b.

(c) Now write a function in R like that at the top of page 54 in the lecture
notes, which evaluates the cumulative distribution function for your chosen
distribution, minus 0.001, at b.

(d) Now use the R command uniroot, as we do on page 54 of the lecture notes,
to find b.

(e) Now find a, and write down your elicited prior for λ.
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44.*A4 Gravestones provide a useful means of observing and measuring the degradation
of different types of rock over time. One method of measuring the extent of degra-
dation is Lettering Alteration, as outlined in Rahn (1971) and Meierdin (1981).

In a recent study, researchers were interested in the degradation of granite. To
investigate, a random sample of granite gravestones was taken from a cemetery in
Savannah, a city along the southeast coast of the USA; the method of lettering
alteration was used to assess the degradation of these gravestones. These data can
be found in the file granite-coastal on the course website.

A random sample of granite gravestones was also taken from a cemetery in Macon,
Georgia, a town located 170 miles inland from Savannah. These data can be found
in the file granite-inland on the course website.

(a) Download the granite-coastal.txt dataset into R by typing:

>coastal=read.table(‘http://www.mas.ncl.ac.uk/~nlf8/teaching/

+ mas2317/problems/granite-coastal.txt’)

Make sure you do something similar for the granite-inland.txt dataset.
You can the look at the data by typing coastal and inland at the R command
prompt. Notice that each dataset contains two columns: for each gravestone,
we have the age of the gravestone (the difference between the current year
and the year the person died), and the depth of degradation as determined
by the lettering alteration method. For each dataset, you should obtain the
rate of degradation per year, by dividing the depth of degradation by the age
of the gravestone. For example, for the coastal site:

> rate.coastal=coastal[,2]/coastal[,1]

Use R to find the mean and standard deviation annual rate of granite degra-
dation for each dataset, and show these values in your solutions.

(b) Researchers are interested in rock which degrades at a rate of more than
0.12mm per year. From your data in R, estimate θC and θI, the proportion of
gravestones with an annual degradation rate of at least 0.12mm at the coastal
and inland locations, respectively. Also find the likelihood functions for θC
and θI.

(c) A geologist is asked about the proportion of granite gravestones she would
expect to see with a rate of degradation of at least 0.12mm per year. The ge-
ologist explains that gravestones in coastal locations are prone to more severe
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degradation due to the salt content in the air; the table below summarises the
expert’s beliefs about θC and θI. An entry of ε indicates that the geologist
thinks this range for θ is extremely unlikely.

θ Coastal Inland
0 → 0.1 ε a
0.1 → 0.2 ε b = 0.4a
0.2 → 0.3 ε b
0.3 → 0.4 ε ε
0.4 → 0.5 ε ε
0.5 → 0.6 d = 0.1c ε
0.6 → 0.7 2d ε
0.7 → 0.8 4d ε
0.8 → 0.9 c ε
0.9 → 1 8d ε

(i) Given this information from the expert, which method of prior elicitation
might be suitable to obtain prior distributions for θC and θI?

(ii) Use this method to obtain π(θC) and π(θI) (rounding the parameters of
these priors to the nearest integer).

(iii) Briefly explain how these prior distributions reflect the expert’s beliefs
about the differences between θC and θI.

(d) Now combine the geologist’s beliefs with the data to obtain the posterior
distributions for θC and θI.

(e) Use R to obtain plots of the prior and posterior for θC and θI, superimpos-
ing the prior and posterior on the same graphs in each case. Compare and
contrast:

(i) Prior beliefs with posterior beliefs, for both θC and θI;

(ii) Posterior beliefs about the rate of granite degradation at the coast and
inland.

(f) Obtain the 95% highest density interval for θI. [Hint: You may use the results
from Example 4.1 in the lecture notes to help you here.]

(g) Why is the 95% highest density interval for θC more awkward to find? Use
the R function optim to obtain this interval, and include your R code in your
solutions.

(h) In light of the data, would you say there is a significant difference in the rate
of granite degradation between coastal and inland locations? Explain your
answer.
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