
Chapter 4

Bayesian inference

The posterior distribution π(θ|x) summarises all our information about θ to date. How-
ever, sometimes it is helpful to reduce this distribution to a few key summary measures.

4.1 Estimation

Point estimates

There are many useful summaries for a typical value of a random variable with a par-
ticular distribution; for example, the mean, mode and median. The mode is used more
often as a summary than is the case in frequentist statistics.

Interval estimates

A more useful summary of the posterior distribution is one which also reflects its varia-
tion. For example, a 100(1−α)% Bayesian confidence interval for θ is any region Cα that
satisfies Pr(θ ∈ Cα|x) = 1 − α. If θ is a continuous quantity with posterior probability
density function π(θ|x) then

∫

Cα

π(θ|x) dθ = 1− α.

The usual correction is made for discrete θ, that is, we take the largest region Cα such
that Pr(θ ∈ Cα|x) ≤ 1− α. Bayesian confidence intervals are sometimes called credible
regions or plausible regions. Clearly these intervals are not unique, since there will be
many intervals with the correct probability coverage for a given posterior distribution.

A 100(1− α)% highest density interval (HDI) for θ is the region Cα = {θ : π(θ|x) ≥ γ}
where γ is chosen so that Pr(θ ∈ Cα|x) = 1− α. This region is sometimes called a most
plausible Bayesian confidence interval. If the posterior distribution has many modes
then it is possible that the HDI will be the union of several disjoint regions; for example,
the HDI could take the form Cα = (a, b) ∪ (c, d) ∪ (e, f), where a < b < c < d < e < f .
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Interpretation of confidence intervals

Suppose CB is a 95% Bayesian confidence interval for θ and CF is a 95% frequentist
confidence interval for θ. These intervals do not have the same interpretation:

• the probability that CB contains θ is 0.95;

• the probability that CF contains θ is either 0 or 1 — since θ does not have a
(non-degenerate) probability distribution;

• the interval CF covers the true value θ on 95% of occasions — in repeated appli-
cations of the formula.

Example 4.1

Suppose that the posterior distribution for θ is a Beta(1, 24) distribution, with proba-
bility density function

π(θ|x) = 24 (1− θ)23, 0 < θ < 1.

A plot of this distribution is given in Figure 4.1. Determine the 100(1− α)% HDI for θ.
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Figure 4.1: Plot of the Beta(1, 24) posterior density function
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✎...Solution to Example 4.1...

Solution

The HDI must include those values of θ with highest
posterior density and so must take the form Cα = (0, b).
The end-point b must satisfy

∫ b

0

24 (1− θ)23 dθ = 1− α.

Now
∫ b

0

24 (1− θ)23 dθ =
[

−(1− θ)24
]b

0
= 1− (1− b)24.

Hence

1−(1−b)24 = 1−α =⇒ 1−b = α1/24 =⇒ b = 1−α1/24

Therefore, a 100(1− α)% HDI for θ is (0, 1− α1/24).
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Example 4.2

Suppose we have a random sample x = (x1, x2, . . . , xn)
T from a N(µ, 1/τ) distribution

(where τ is known). We have seen that, assuming vague prior knowledge, the posterior
distribution is µ|x ∼ N(x̄, 1/(nτ)). Determine the 100(1− α)% HDI for µ.

✎...Solution to Example 4.2...

Solution

This distribution has a symmetric bell shape and so the
HDI takes the form Cα = (a, b) with end-points

a = x̄− zα/2√
nτ

and b = x̄ +
zα/2√
nτ
,

where zα is the upper α-quantile of the N(0, 1) distri-
bution. Therefore, the 95% HDI for µ is

(

x̄− 1.96√
nτ
, x̄ +

1.96√
nτ

)

.

Note that this interval is numerically identical to the 95% frequentist confidence interval
for the (population) mean of a normal random sample with known variance. However,
the interpretation is very different.
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Example 4.3

Suppose that the posterior distribution for θ is a Beta(2, 23) distribution, with proba-
bility density function

π(θ|x) = 552 θ(1− θ)22, 0 < θ < 1.

A plot of this distribution is given in Figure 4.2. Determine the 100(1− α)% HDI for θ.
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Figure 4.2: Plot of the Beta(2, 23) posterior density function

✎...Solution to Example 4.3...
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Computation of HDIs for unimodal distributions

Suppose that we require the HDI (a, b) for a unimodal distribution with density f(·) and
distribution function F (·). We have seen that if one of the end-points is known (because
of the shape of the distribution) or the distribution is symmetric then the solution is in
terms of the distribution’s percentage points. When this is not the case, the problem
requires a numerical scheme to find a and b satisfying

F (b)− F (a) = 1− α and f(a) = f(b).

The solution can be found by noticing that it also minimizes the function

g(a, b) =
{

F (b)− F (a)− (1− α)
}2

+ k
{

f(b)− f(a)
}2
,

where k > 0 is a tuning parameter that tries to ensure that both terms are zeroed.
Therefore, we can used the R optimizer function optim to determine a and b.

Example 4.3 (continued)

Suppose we need the 95% HDI for θ when θ|x ∼ Beta(2, 23). One slight complication
with using the above method to determine the HDI (a, b) is that both a and b are
restricted to the unit interval. However, the R function optim has options for dealing
with such cases. It also needs initial guesses at the values of a and b. Here we base
these on the values of the 95% equi-tailed Bayesian confidence interval. We also take
k = 0.0001 to balance the conditions to be zeroed.

The R code to determine a and b is

g=function(x)

{

a=x[1]

b=x[2]

(pbeta(b,2,23)-pbeta(a,2,23)-0.95)^2+0.0001*(dbeta(b,2,23)-dbeta(a,2,23))^2

}

initiala=qbeta(0.025,2,23)

initialb=qbeta(0.975,2,23)

res=optim(c(initiala,initialb),g,method="L-BFGS-B",lower=0,upper=1)

a=res$par[1]

b=res$par[2]

and gives a = 0.002211733 and b = 0.1840109, with F (b) − F (a) = 0.9500041 and
f(b)− f(a) = −0.004484121. Thus the 95% HDI is (0.002211733, 0.1840109).
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4.2 Prediction

Much of statistical inference (both Frequentist and Bayesian) is aimed towards making
statements about a parameter θ. Often the inferences are used as a yardstick for sim-
ilar future experiments. For example, we may want to predict the outcome when the
experiment is performed again.

Clearly there will be uncertainty about the future outcome of an experiment. Suppose
this future outcome Y is described by a probability (density) function f(y|θ). There are
several ways we could make inferences about what values of Y are likely. For example,
if we have an estimate θ̂ of θ we might base our inferences on f(y|θ = θ̂). Obviously this
is not the best we can do, as such inferences ignore the fact that it is very unlikely that
θ = θ̂.

Implicit in the Bayesian framework is the concept of the predictive distribution. This
distribution describes how likely are different outcomes of a future experiment. The
predictive probability (density) function is calculated as

f(y|x) =
∫

Θ

f(y|θ) π(θ|x) dθ

when θ is a continuous quantity. From this equation, we can see that the predictive
distribution is formed by weighting the possible values of θ in the future experiment
f(y|θ) by how likely we believe they are to occur π(θ|x).
If the true value of θ were known, say θ0, then any prediction can do no better than one
based on f(y|θ = θ0). However, as (generally) θ is unknown, the predictive distribution
is used as the next best alternative.

We can use the predictive distribution to provide a useful range of plausible values for
the outcome of a future experiment. This prediction interval is similar to a HDI interval.
A 100(1− α)% prediction interval for Y is the region Cα = {y : f(y|x) ≥ γ} where γ is
chosen so that Pr(Y ∈ Cα|x) = 1− α.

Example 4.4

Suppose that X is the number of expensive goods sold in a shop over 24 days. If θ is the
expected number of sales per day then it may be plausible that X|θ ∼ Po(24 θ). Also,
suppose our prior distribution for θ is as given in Table 4.1.

θ π(θ)
“great” 1/2 0.2
“good” 1/4 0.5
“poor” 1/8 0.3

Table 4.1: Prior distribution for θ

Clearly, we believe that the most likely value of θ is 1/4, indicating that we would expect
around 6 expensive goods to be sold in any 24 day period. Suppose now that we observe
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that x = 10 expensive goods were sold in the last 24 days. This will impact our beliefs
about θ. We can calculate the posterior distribution for θ as follows. The likelihood
term is

Pr(X = 10|θ) = (24θ)10e−24θ

10!
=











0.1048 if θ = 1/2

0.0413 if θ = 1/4

0.0008 if θ = 1/8

and so, using Bayes Theorem

π(θ = 1/2|x = 10) =
Pr(X = 10|θ = 1/2)π(θ = 1/2)

[Pr(X = 10|θ = 1/2)π(θ = 1/2) + Pr(X = 10|θ = 1/4)π(θ = 1/4)

+ Pr(X = 10|θ = 1/8)π(θ = 1/8)]

=
0.1048× 0.2

0.1048× 0.2 + 0.0413× 0.5 + 0.0008× 0.3

= 0.501

π(θ = 1/4|x = 10) = · · · = 0.493

π(θ = 1/8|x = 10) = · · · = 0.006.

Thus, the posterior distribution for θ is as shown in Table 4.2, with most likely value of
θ now being 1/2, and standard deviation SD(θ|x = 10) = 0.126.

θ π(θ|x = 10)
“great” 1/2 0.501
“good” 1/4 0.493
“poor” 1/8 0.006

Table 4.2: Posterior distribution for θ

Suppose now we want to predict the number of sales Y in the next 24 days. If there have
been no changes in the sales process (no special advertising campaigns etc) then we can
take Y |θ ∼ Po(24 θ). Determine the predictive probability function for Y .

✎...Solution to Example 4.4...
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✎...Solution to Example 4.4 continued...
As θ is discrete, the predictive probability function for Y is

f(y|x = 10)

=
∑

θ= 1

2
, 1
4
, 1
8

f(y|θ) π(θ|x = 10)

=

(

0.501× 12ye−12

y!

)

+

(

0.493× 6ye−6

y!

)

+

(

0.006× 3ye−3

y!

)

=
0.501× 12ye−12 + 0.493× 6ye−6 + 0.006× 3ye−3

y!

For example

Pr(Y = 10|x = 10) =
0.501× 1210e−12 + 0.493× 610e−6 + 0.006× 310e−3

10!
= 0.073.

This probability can be compared with a more naive predictive probability calculated
assuming that θ = θ̂, the likelihood mode. Here θ̂ = 1/2 and so Y |θ = θ̂ ∼ Po(24θ̂) ≡
Po(12), whence

Pr(Y = 10|θ = θ̂) =
1210e−12

10!
= 0.1048.

In the same manner, we can calculate the entire predictive distribution and naive pre-
dictive distribution; see Table 4.3.
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correct naive

y f(y|x = 10) f(y|θ = θ̂)
0 0.002 0.000
1 0.008 0.000
2 0.024 0.000
3 0.046 0.002
4 0.070 0.005
5 0.086 0.013
6 0.092 0.025
7 0.090 0.044
8 0.084 0.066
9 0.078 0.087
10 0.073 0.105
11 0.068 0.114
12 0.063 0.114
13 0.055 0.106
14 0.046 0.090
15 0.037 0.072
16 0.027 0.054
17 0.019 0.038
18 0.013 0.026
19 0.008 0.016
20 0.005 0.010
...

...
...

Table 4.3: Predictive and “naive” predictive probability functions

Notice that the correct predictive probability distribution has more probability out in
the tails of its distribution, that is, the probabilities of 0, 1, 2, . . . are larger than
their “naive” equivalents. This is a common occurrence. It is due to ignoring the
uncertainty about the parameter estimate. Essentially, the naive predictive distribution
is a predictive distribution which, instead of using the correct posterior distribution, uses
the degenerate posterior distribution

π∗(θ|x = 10) =

{

1 if θ = 1/2

0 otherwise,

a distribution with standard deviation SDπ∗(θ|x = 10) = 0. The correct posterior
standard deviation of θ is SDπ(θ|x = 10) = 0.126. Therefore, the predictive distribution
using the naive posterior π∗ is, loosely speaking, too confident that it “knows” the value
of θ and so produces a predictive distribution with too small a standard deviation:

SD(Y |x = 10) =

{

4.26 using the correct π(θ|x = 10)

3.46 using the naive π∗(θ|x = 10).

These standard deviations can be calculated from Table 4.3.



4.2. PREDICTION 91

We can also use the above table of predictive probabilities to determine a prediction
interval for Y . Using the correct predictive distribution, and recalling the highest den-
sity feature of prediction intervals, we obtain Pr(2 ≤ Y ≤ 17|x = 10) = 0.959. The
corresponding naive calculation is Pr(6 ≤ Y ≤ 19|θ = θ̂) = 0.958. Hence the correct
(approximate) 96% prediction interval for Y is {2, 3, . . . , 17}. The naive version, and
hence narrower interval, is {6, 7, . . . , 19}.

Definition 4.1

The random variable Y follows a Beta-binomial BetaBin(n, a, b) distribution (n positive
integer, a > 0, b > 0) if it has probability function

f(y|n, a, b) =
(

n

y

)

B(y + a, b+ n− y)

B(a, b)
, y = 0, 1, . . . , n,

where B(a, b) is the beta function defined in (2.2). It can be shown that

E(Y ) =
na

a+ b
and V ar(Y ) =

nab(a+ b+ n)

(a+ b)2(a+ b+ 1)
.

Example 4.5

Suppose that X is the number of defective items in a sample of size 5. If the items are
defective independently of one another and they each have the same probability θ of
being defective then X|θ ∼ Bin(5, θ). Suppose we believe that defective items are quite
unlikely and so take a Beta(1, 19) prior distribution with mean and standard deviation

E(θ) = 0.05 and SD(θ) = 0.048.

Suppose we take a sample of size 5 and observe x = 1 defective item. In this case, the
likelihood mode is θ̂ = 1/5 = 0.2, higher than the prior mean. We have seen previously
that, in such cases, the posterior distribution is a Beta distribution whose first and
second parameters are those of the prior distribution incremented by the number of
success and the number of failures respectively. Thus, the posterior distribution is a
Beta(2, 23) distribution, with mean and standard deviation

E(θ|x = 1) = 0.08 and SD(θ|x = 1) = 0.053.

The posterior mean is larger than the prior mean and the standard deviation has also
increased (slightly).

If we observe another sample of 5 items, what is the predictive probability distribution
of the number found to be defective?
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✎...Solution to Example 4.5...

Solution

Suppose the number of defective items in this future
sample is Y , with Y |θ ∼ Bin(5, θ). The predictive
probability function of Y is, for y = 0, 1, 2, . . . , 5

f (y|x = 1) =

∫

Θ

f (y|θ) π(θ|x = 1) dθ

=

∫ 1

0

(

5

y

)

θy(1− θ)5−y × θ(1− θ)22

B(2, 23)
dθ

=

(

5

y

)

1

B(2, 23)

∫ 1

0

θy+1(1− θ)27−y dθ

=

(

5

y

)

B(y + 2, 28− y)

B(2, 23)
,

that is, Y |x = 1 ∼ BetaBin(5, 2, 23).

We can compare this predictive distribution with a naive predictive distribution based
on an estimate of θ, for example, the likelihood mode or the posterior mode. Here we
shall base our naive predictive distribution on the posterior mode θ̂ = 1/23, that is, use
the distribution Y |θ = θ̂ ∼ Bin(5, 1/23). Thus, the naive predictive probability function
is, for y = 0, 1, . . . , 5,

f(y|θ = θ̂) =

(

5

y

)

θ̂y(1− θ̂)5−y =

(

5

y

)

225−y

235
.

Numerical values for the predictive and naive predictive probability functions are given
in Table 4.4. Again, the naive predictive distribution is a predictive distribution which,
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correct naive

y f(y|x = 1) f(y|θ = θ̂)
0 0.680 0.801
1 0.252 0.182
2 0.058 0.017
3 0.009 0.001
4 0.001 0.000
5 0.000 0.000

Table 4.4: Predictive and naive predictive probability functions

instead of using the correct posterior distribution, uses a degenerate posterior distribu-
tion π∗(θ|x = 1) which essentially allows only one value: Prπ∗(θ = 1/23|x = 1) = 1
and standard deviation SDπ∗(θ|x = 1) = 0. Note that the correct posterior standard
deviation of θ is SDπ(θ|x = 1) = 0.053. Using a degenerate posterior distribution results
in the naive predictive distribution having too small a standard deviation:

SD(Y |x = 1) =

{

0.652 using the correct π(θ|x = 1)

0.456 using the naive π∗(θ|x = 1),

these values being calculated from BetaBin(5, 2, 23) and binomial Bin(5, 1/23) distri-
butions.

Using the numerical table of predictive probabilities, we can see that {0, 1} is a 93.2%
prediction set/interval. This is to be contrasted with the more “optimistic” calculation
using the naive predictive distribution which shows that {0, 1} is a 98.3% prediction
set/interval.

Predictive distribution

In the previous example, a non-trivial integral had to be evaluated. However, when
the past data x and future data y are independent (given θ) and we use a conjugate
prior distribution, another (easier) method can be used to determine the predictive
distribution.

Using Bayes’ Theorem, the posterior density for θ given x and y is

π(θ|x, y) = π(θ)f(x, y|θ)
f(x, y)

=
π(θ)f(x|θ)f(y|θ)
f(x)f(y|x) since X and Y are independent given θ

=
π(θ|x) f(y|θ)

f(y|x) .
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Rearranging, we obtain

f(y|x) = f(y|θ)π(θ|x)
π(θ|x, y) .

The right-hand-side of this equation looks as if it depends on θ, but, in fact, any terms
in θ will be cancelled between the numerator and denominator.

Reworking the previous example using this formula, we have

θ ∼ Beta(1, 19), X|θ ∼ Bin(5, θ), Y |θ ∼ Bin(5, θ)

from which we obtain

θ|x = 1 ∼ Beta(2, 23), θ|x = 1, y ∼ Beta(y + 2, 28− y).

Therefore, for y = 0, 1, 2, . . . , 5

f(y|x = 1) =
f(y|θ)π(θ|x = 1)

π(θ|x = 1, y)

=

(

5
y

)

θy(1− θ)5−y × θ(1− θ)22

B(2, 23)

θy+1(1− θ)27−y

B(y + 2, 28− y)

=

(

5
y

)

B(y + 2, 28− y)

B(2, 23)
.

Definition 4.2

The random variable Y follows a Inverse-Beta InBe(a, b, c) distribution (a > 0, b > 0,
c > 0) if it has probability density function

f(y|a, b, c) = cbya−1

B(a, b)(y + c)a+b
y > 0,

where B(a, b) is the beta function defined in (2.2). It can be shown that

E(Y ) =
ac

b− 1
and V ar(Y ) =

ac2(a+ b− 1)

(b− 1)2(b− 2)
.

The distribution gets its name because Y/(Y + c) ∼ Beta(a, b). Also note that if Y ∼
InBe(a, b, 1) then cY ∼ InBe(a, b, c).
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Example 4.6

Suppose we have a random sample x = (x1, x2, . . . , xn)
T from a Ga(k, θ) distribution,

where k is known, and our prior beliefs are described by a Ga(g, h) distribution. The
likelihood function is

f(x|θ) =
n
∏

i=1

θkxk−1
i e−θxi

Γ(k)
∝ θnke−nx̄θ.

Therefore, using Bayes Theorem, the posterior density is

π(θ|x) ∝ π(θ) f(x|θ)
∝ θg−1e−hθ × θnke−nx̄θ, θ > 0

∝ θg+nk−1e−(h+nx̄)θ, θ > 0.

Hence, the posterior distribution is a Ga(G = g + nk,H = h+ nx̄) distribution. Notice
that this implies that the gamma distribution is the conjugate prior distribution for the
model “random sample from a Ga(k, θ) distribution, with k known”. Determine the
predictive distribution for a future outcome Y .

✎...Solution to Example 4.6...
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✎...Solution to Example 4.6 continued...
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Consider the case where the data follow an exponential distribution, that is, where k = 1.
Determine the predictive density function and the 100(1−α)% prediction interval for Y .

✎...Solution to Example 4.6 continued...
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Lee Fawcett

The End


