MAS2317/3317: Introduction to Bayesian Statistics

Dr. Lee Fawcett

Case Study 2: Bayesian Modelling of Extreme Rainfall Data

Semester 2, 2014—2015

Motivation

Over the last 30 years or so, interest in the use of statistical methods for modelling **environmental extremes** has grown dramatically, for good reason.

Climate change has resulted in

- an increase in severity, and
- an increase in frequency,

of environmental phenomena resulting in huge economic loss, and loss of human life.

Motivation

For example, **Hurricane Katrina** (see Figure 1) hit southern states of the USA in September 2005,

- killing nearly 2000 people
- displacing well over one million people
- costing the US economy an estimated \$ 110 billion

Billed as the "storm of the century" – just a few weeks later, **Hurricane Rita** battered Texas and Louisiana.

Sea-surge: Hurricane Katrina, 2005

Sea-surge: Hurricane Katrina, 2005

Sea-surge: Hurricane Katrina, 2005

Other environmental extremes

- Extreme Extreme drought in Sub-Saharan Africa → famine, huge loss of life, civil war
- Extreme cold spells in Russia/China → difficult to stockpile enough fuel
- Rapid shifts in climate can lead to landslides → Venezuela, 2010

Closer to home

The Great storm of 1987

- Southern England
- 22 deaths
- £7.3 billion worth of damage
- Seemed to come as a surprise...

```
http://www.youtube.com/watch?v=uqs1YXfdtGE
```

■ Dubbed the UK's **Storm of the century** – two years later, the same type of storm hit the UK

Wind damage from UK storms

Closer to home: recent flooding

Over the past few years, there has been several extreme flooding events in several parts of the UK:

- North–west England, 2008 and 2009
- Central/South-west England 2007–2009
- Seem to be getting more severe and more frequent
- Loss of life, huge economic burden, including massive flood insurance premiums

Rainfall: Flooding in North-West England, 2009

- £100 million worth of damage
- A number of deaths
- Massive transport disruption

Rainfall: Flooding in Central England, 2008

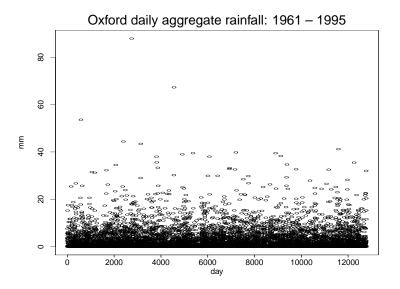
Rainfall: The Great North Sea Flood, 1953

Rainfall: The Great North Sea Flood, 2025?

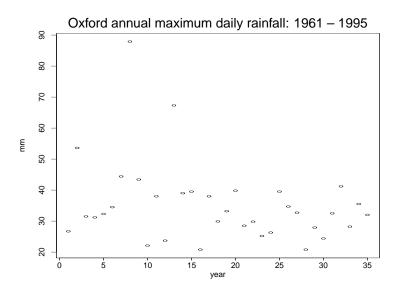
Statistical modelling of extreme rainfall data

- For the rest of this case study, we will focus on extreme rainfall in the UK
- In 2003, we were supplied with rainfall data for 204 sites in the UK
 - daily rainfall accumulations
 - **-** 1961→1995
 - Nearly 13,000 observations for each site!
 - However, not interested in most of them e.g. zero values or indeed anything non–extreme!
- Idea: Extract annual maxima!

Statistical modelling of extreme rainfall data



Statistical modelling of extreme rainfall data



A statistical model for extremes

The **Generalised Extreme Value** distribution (GEV) – independently derived by von Mises (1954) and Jenkinson (1955).

Provides a limiting model for extremes of stationary series.

Has CDF

$$F_X(x|\mu,\sigma,\gamma) = \exp\left\{-\left[1+\gamma\left(rac{x-\mu}{\sigma}
ight)
ight]^{-1/\gamma}
ight\},$$

where μ , σ and γ are **location**, **scale** and **shape** parameters.

- What data do we use for the "extremes", x?
- Can use the extracted annual maxima!

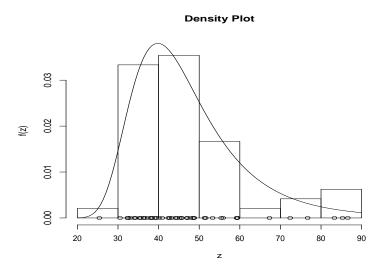
A statistical model for extremes

Estimating the GEV parameters:

- Usual approach: maximise the likelihood w.r.t. each of μ , σ and γ
- No closed–form solutions for $\hat{\mu}$, $\hat{\sigma}$ and $\hat{\gamma}$
- Use R Newton–Raphson type procedure
- This gives

$$\hat{\mu} = 40.8(1.58)$$
 $\hat{\sigma} = 9.7(1.19)$ $\hat{\gamma} = 0.1(0.11)$

A statistical model for extremes



So we have a statistical model for extremes which seems to fit our annual maximum daily rainfall data quite well.

So what?

One practical application of such a model is to aid the **design** of flood defences. For example:

- Suppose we wish to protect a town (Oxford?) against a flooding event we would expect to occur once every hundred years
- We only have **35 years** worth of data
- In effect trying to estimate a flooding event which is more extreme than has ever occurred before

- This requires extrapolation beyond the range of our data
- There is both a theoretical and practical basis for using the GEV here
- We can estimate such quantities by calculating high quantiles from our fitted distribution.

For our Oxford rainfall extremes, solve the following for \hat{z}_{100} :

$$\label{eq:exp} exp\left\{-\left[1+0.1\left(\frac{\hat{z}_{100}-40.8}{9.7}\right)\right]^{-1/0.1}\right\}=0.99,$$

where \hat{z}_{100} is known as the **100 year return level**.

- A flood defence would need to be tall enough to withstand a daily rainfall total of at least \hat{z}_{100} mm
- Storm systems might last longer than one day
- Calculation of the height of the flood defence would have to take into account the accumulation of successive daily rainfall totals \hat{z}_{100} mm
- The height of the flood defence would be a function of \hat{z}_{100} and the duration of the storm event

Generically, we have

$$\hat{\mathbf{z}}_r = \hat{\mu} + \frac{\hat{\sigma}}{\hat{\gamma}} \left\{ \left[-\ln\left(1 - \frac{1}{r}\right) \right]^{-\hat{\gamma}} \right\}.$$

- Can obtain standard errors via likelihood theory to account for uncertainty in our estimates
- Can then form confidence intervals

r (years)	10	50	200	1000
\hat{z}_r	65.54	87.92	98.64	140.34
	(4.53)	(11.48)	(16.22)	(41.83)

A Bayesian perspective

Drawback of frequentist approach/beauty of Bayesian approach

- GEV parameter estimates, and resulting estimated return levels, have large standard errors
 - Reduced the sample from about 13,000 observations to just 35
 - 95% CI for \hat{z}_{1000} : (58, 222)mm
 - Engineers don't like this:
 - "Design your flood defence so that it will withstand a daily rainfall total of somewhere between 58 and 222 mm"
- A Bayesian analysis allows us to incorporate expert information
 - By this point in the course you should know that this is the right thing to do!
 - But it can also reduce estimation uncertainty!

Duncan Reede: independent consulting hydrologist

- PhD (Newcastle, 1977) in Applied Science
- Over 30 years experience
- Can he give us **prior distributions** for μ , σ and γ ?
 - Probably not...
 - Very difficult to express your prior opinion about likely values of the "shape" parameter γ...
 - ... perhaps easier for μ ?

Idea: Re–express our GEV in terms of parameters Dr. Reede will feel comfortable with – perhaps **return levels**!

"What sort of daily rainfall accumulation would you expect to see, at Oxford, in a storm that might occur once in ten years?"

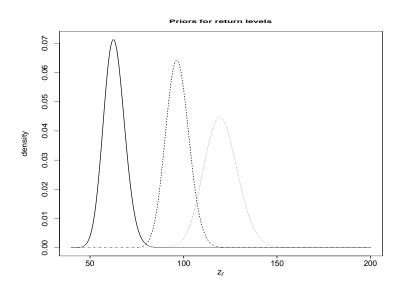
"... 60mm–65mm? Range might be 50mm \longrightarrow 80mm..."

Can use the MATCH tool to hep here:

http://optics.eee.nottingham.ac.uk/match/uncertainty.php

We get:

$$z_{10} \sim Ga(126,2)$$
 and $z_{50} \sim Ga(242,2.5)$ $z_{200} \sim Ga(180,1.5)$



Converting to a prior for (μ, σ, γ)

We use a result from Distribution Theory (**Equation 3.7** from lecture notes) to "convert" the expert's priors into a prior for (μ, σ, γ) .

This gives an improper, non-conjugate prior for the GEV.

Obtaining the posterior distribution

- Non-conjugate prior for the GEV
- Cannot find the posterior analytically
- Use Markov chain Monte Carlo (MCMC see MAS3321: Bayesian Inference)
- This gives a sample from the posteriors for μ , σ and γ
- Apply Equation (3) to obtain posterior distribution for return levels

Results

r (years)	10	50	200	1000
$E(\hat{z}_r \mathbf{x})$	64.21 (2.14)	91.05 (6.31)	110.31 (8.05)	150.73 (14.79)
\hat{z}_r	65.54 (4.53)	87.92 (11.48)	98.64 (16.22)	140.34 (41.83)

r (years)	10	50	200	1000
Bayesian	(60.0,68.4)	(78.7,103.4)	(94.5,126.1)	(121.7,179.7)
Frequentist	(56.7,74.4)	(65.4,110.4)	(66.8, 130.5)	(58.3,222.4)

Conclusions

- Incorporating the beliefs of an expert hydrologist
 - gives us a more informed analysis (somewhere "between the prior and the data")
 - dramatically reduces our uncertainty about estimates of return levels
- Engineers designing flood defences like this!

Conclusions

- Difficult to get an expert to quantify their uncertainty about things like "shape parameters"
 - Got round this by re–parameterising to something the expert would feel more comfortable with, and used MATCH
 - Then we can "convert back" to get our prior for (μ, σ, γ)
 - Then a Bayesian analysis follows
- The Statistician then feeds back their results to the Marine Engineers designing the flood defence system they usually build to a height specified by the upper endpoint of a 95% Bayesian confidence interval for \hat{z}_r !