
Where we are in the course

Weeks 1–4 (Data collection and summaries)

How to collect data

How to summarise data

– Tabular
– Graphical
– Numerical (location and spread)



Where we are in the course

Weeks 5–7 (Probability)

Introduction to probability

– Interpretations of probability
– Laws of probability

Conditional probability and probability trees

EMV and decision trees



Where we are in the course

Weeks 8–11 (Probability models)

Models for discrete data

– The Binomial distribution
– The Poisson distribution

Models for continuous data

– The Normal distribution
– The Uniform distribution
– The exponential distribution

Don’t forget – Assignment 1 will be available to download this
week!



Lecture 8

DISCRETE
PROBABILITY MODELS



Introduction

In this lecture we begin the final part of the course for Semester 1:
Probability models.

Semester 2 will be devoted to the study of Statistics. The link
between Probability and Statistics arises because in order to see,
for example, how strong the evidence is in some data, we often
need to consider the probabilities concerned with how we came to
observe this data.

In this lecture, we describe some standard probability models
which are often used with data from various sources, such as
market research.

However, before we describe these in detail, we need to establish
some ground rules for “counting”.



Permutations and Combinations

Imagine that your cash point card has just been stolen.

What is the probability of the thief guessing your 4 digit PIN
in one go?

To answer this question, we need to know how many different 4
digit PINs there are.

We are also assuming that the thief chooses in such a way that all
possibilities are equally likely.



With this assumption the probability of a correct guess (in one go)
is

P(Guess correctly) =
number of correct PINs

number of possible 4 digit PINs

=
1

number of possible 4 digit PINs

Obviously there is only one correct PIN.



Suppose your PIN consisted of only 2 digits. How many ways
could they be arranged?

0 1 2 3 4 5 6 7 8 9

0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
1 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9
2 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9
...

...
...

...
...

...
...

...
...

...
9 9,0 9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

So

No. of possible 2 digit PINS = 10 × 10 = 100



The number of possible 4 digit PINs is calculated as follows:

There are 10 choices for the first digit;

another 10 choices for the second digit, and so on;

therefore the number of possible choices is

10 × 10 × 10 × 10 = 10, 000.

So the probability of a correct guess is

P(Guess correctly) =
1

10 × 10 × 10 × 10

=
1

10, 000

= 0.0001.



Permutations

What if the thief knew that your PIN used 4 different digits?

Now the number of possible PINs is smaller.

To find this number we need to work out how many ways there are
to arrange 4 digits out of a list of 10.



More generally, we need to know how many different ways there
are of arranging r objects from a list of n objects.

The best way of thinking about this to consider the choice of each
item as a different experiment.

The first experiment has n possible outcomes

The second experiment only has n − 1 possible outcomes, as
one object has already been selected

The third experiment has n − 2 outcomes

The rth experiment has n − (r − 1) = n − r + 1 possible
outcomes



Therefore the number of possible selections is

n × (n − 1) × (n − 2) × · · · × (n − r + 1)

=
n × (n − 1) × · · · × (n − r + 1) × (n − r) × · · · × 3 × 2 × 1

(n − r) × (n − r − 1) × · · · × 3 × 2 × 1

=
n!

(n − r)!
.

Here

n! = n × (n − 1) × (n − 2) × (n − 3) × · · · × 3 × 2 × 1

and is called n factorial.



The formula

n!

(n − r)!

is a commonly encountered expression in counting calculations
(combinatorics) and has its own notation.

The number of ordered ways of selecting r objects from n is
denoted nPr , where

nPr =
n!

(n − r)!
.

We refer to nPr as the number of permutations of r out of n

objects.

This is often seen as nPr on calculators.



Back to the credit card thief

Thus, if the thief knows that the PIN contains no repeated digits
then the number of possible PINs is

10P4 = 5040 (=10 × 9 × 8 × 7)

so, assuming that each is equally likely to be guessed, the
probability of a correct guess is

P(Guess correctly) =
1

5040
= 0.0001984.

This illustrates how important it is to keep secret all information
about your PIN!!



Combinations

We now have a way of counting permutations.

However, sometimes all that matters is which objects were
selected, not the order in which they were selected.

Suppose we have a collection of n objects and that we wish to
make r selections from this list of objects, where the order does

not matter.

An unordered selection such as this is referred to as a
combination.



Example

A company has 20 retail outlets. The company decides to try a
sales promotion at 4 of these outlets.

How many selections of 4 can be chosen?

This calculation is very similar to that for permutations except that
the ordering of objects no longer matters.



For example, if we select two objects from three objects A, B and
C , there are 3P2 = 6 ways of doing this:

A, B A, C B, A B, C C , A C , B.

However, if we are not interested in the ordering, just in whether
A, B or C are chosen, then A, B is the same as B, A etc. and so
the number of selections is just 3:

A, B A, C B, C .



In general, the number of combinations of r objects from n

objects is

nCr =
n!

r !(n − r)!
.

Again, this is a very commonly found expression in combinatorics,
so it has its own notation (usually the nCr button on a calculator).

We sometimes read this as “n choose r” or “Choose r objects from
n”.

Now we can see that the number of ways to select 4 retail outlets
out of 20 is

20C4 =
20!

4!16!
= 4845.



The National Lottery

There are 49 numbered balls

Six of these are selected at random

A seventh ball is also selected, but this is only relevant if you
get exactly five numbers correct

The player selects six numbers before the draw is made

Players win a prize if they select at least three of the balls
drawn.

The order in which the balls are drawn in is irrelevant.



Let’s consider the probability of winning the jackpot.

How many ways can 6 balls be chosen out of 49?

One option is {1, 2, 3, 4, 5, 6}; another is {1, 2, 3, 4, 5, 7} ...

... in fact, there are

49C6 = 13, 983, 816

different ways 6 balls can be selected out of a possible 49.



Now out of these 13,983,816 different combinations, how many
combinations match the drawn balls correctly?

Only one! There is only one set of six numbers that wins the
jackpot! So the probability of winning the jackpot is just one in
13,983,816, i.e.

P(match exactly 6 correct numbers) =
1

13, 983, 816
,

or just over a one in fourteen million chance!

The other probabilities used last in last week’s lecture to calculate
the Expected Monetary Value for the lottery can be found using
similar arguments.



Probability distributions

The probability distribution of a discrete random variable X is
the list of all possible values X can take and the probabilities
associated with them.

For example, if the random variable X is the outcome of a roll of a
die then the probability distribution for X is:

x 1 2 3 4 5 6

P(X = x) 1/6 1/6 1/6 1/6 1/6 1/6



In the die–rolling example, we used the classical interpretation of
probability to obtain the probability distribution for X , the
outcome of a roll on the die.

Consider the following frequentist example.

Let X be the number of cars observed in half–hour periods passing
the junction of two roads. In a five hour period, the following
observations on X were made:

2 3 2 5 5 3 4 5 6 7

Obtain the probability distribution of X .



In the die–rolling example, we used the classical interpretation of
probability to obtain the probability distribution for X , the
outcome of a roll on the die.

Consider the following frequentist example.

Let X be the number of cars observed in half–hour periods passing
the junction of two roads. In a five hour period, the following
observations on X were made:

2 3 2 5 5 3 4 5 6 7

Obtain the probability distribution of X .



2 3 2 5 5 3 4 5 6 7

We can calculate the following probabilities:

P(X = 0) =
0

10
= 0

P(X = 1) =
0

10
= 0

P(X = 2) =
2

10
= 0.2

P(X = 3) =
2

10
= 0.2



2 3 2 5 5 3 4 5 6 7

P(X = 4) =
1

10
= 0.1

P(X = 5) =
3

10
= 0.3

P(X = 6) =
1

10
= 0.1

P(X = 7) =
1

10
= 0.1

P(X > 7) =
0

7
= 0



Thus would give:

x P(X = x)

< 2 0
2 0.2
3 0.2
4 0.1
5 0.3
6 0.1
7 0.1

> 7 0

sum 1

Does this make sense?



The Binomial Distribution

In many surveys and experiments data is collected in the form of
counts. For example,

the number of people in a survey who bought a CD

the number of people who said they would vote Labour

the number of defective items in a sample

All these variables have common features:

1 Each person/item has only two possible (exclusive) responses
(Yes/No, Defective/Not defective etc)
– this is referred to as a trial which results in a success or
failure

2 The survey/experiment takes the form of a random sample
– the responses are independent

Further, suppose that the true probability of a success in the
population is p, and we are interested in the random variable X ,
the total number of successes out of n trials.



Example

Suppose we are interested in the number of sixes we get from 4
rolls of a dice.

Each roll of the dice is a trial which gives a “six” (success, or s) or
“not a six” (failure, or f ).

The probability of a success is p = P(six) = 1/6.

We have n = 4 independent trials (rolls of the dice).

Let X be the number of sixes obtained. We can now obtain the
full probability distribution of X .



Example

For example, suppose we want to work out the probability of
obtaining four sixes (four “successes” – i.e. ssss – or P(X = 4)).

Since the rolls of the die can be considered independent, we get:

P(ssss) = P(s) × P(s) × P(s) × P(s)

=
1

6
× 1

6
× 1

6
× 1

6

=

(

1

6

)4



Example

That one’s easy... what about the probability that we get three
sixes – i.e. P(X = 3)?

This one’s a bit more tricky, because that means we need three s’s
and one f – i.e. three sixes and one “not six” – but the “not six”
could appear on the first roll, or the second roll, or the third, or the
fourth!

For example, for P(X = 3), we could have:

P(f sss) =
5

6
× 1

6
× 1

6
× 1

6

=

(

1

6

)3

× 5

6
.



Example

Or we could have:

P(sf ss) =
1

6
× 5

6
× 1

6
× 1

6

=

(

1

6

)3

× 5

6

or maybe:

P(ssf s) =
1

6
× 1

6
× 5

6
× 1

6

=

(

1

6

)3

× 5

6



Example

or even:

P(sssf ) =
1

6
× 1

6
× 1

6
× 5

6

=

(

1

6

)3

× 5

6
.

Can you see that we therefore get:

P(X = 3) = 4 ×
(

1

6

)3

× 5

6
.



Example

Thinking about it, there are actually sixteen possible outcomes for
the four rolls of the die:

Outcome Probability

1 ssss

“

1

6

”

4

2 f sss

“

1

6

”

3

×
5

6

3 sf ss

“

1

6

”

3

×
5

6

4 ssf s

“

1

6

”

3

×
5

6

5 sssf

“

1

6

”

3

×
5

6

6 ssff

“

1

6

”

2

×

“

5

6

”

2

7 ff ss

“

1

6

”

2

×

“

5

6

”

2

8 sf sf

“

1

6

”

2

×

“

5

6

”

2

9 f sf s

“

1

6

”

2

×

“

5

6

”

2

10 sff s

“

1

6

”

2

×

“

5

6

”

2

11 f ssf

“

1

6

”

2

×

“

5

6

”

2

12 sfff
1

6
×

“

5

6

”

3

13 f sff
1

6
×

“

5

6

”

3

14 ff sf
1

6
×

“

5

6

”

3

15 fff s
1

6
×

“

5

6

”

3

16 ffff

“

5

6

”

4



Example

So we get:

P(X = 4) =

(

1

6

)4

= 0.0008

P(X = 3) = 4 ×
(

1

6

)3

× 5

6
= 0.0153

P(X = 2) = 6 ×
(

1

6

)2

×
(

5

6

)2

= 0.1158

P(X = 1) = 4 × 1

6
×

(

5

6

)3

= 0.3858 and

P(X = 0) =

(

5

6

)4

= 0.4823



Example

So the full probability distribution for X is:

x 0 1 2 3 4

P(X = x) 0.4823 0.3858 0.1158 0.0153 0.0008

Now that was a bit long–winded... and that was just for four rolls
of the die!

We would like a more concise way of working these probabilities out
without having to list all the possible outcomes as we did above.

Luckily, there’s a formula that does just that!



Example

If we have count data where each (independent) trial results in one
of two possible outcomes (“success” or “failure”), then

P(X = r) = nCr pr (1 − p)n−r , r = 0, 1, . . . , n,

where p is the probability of “success” and n is the number of
trials.

These probabilities describe how likely we are to get r out of n

successes from independent trials, each with success probability p.

This distribution is known as the binomial distribution with
index n and probability p.

We write this as X ∼ Bin(n, p). Here, n and p are known as the
parameters of the Binomial distribution.



Example

In the die example, we know n = 4 and p = P(six) = 1/6.

Each roll of the dice is a trial which gives a “six” (success) or “not
a six” (failure).

If X is the number of sixes obtained then

X ∼ Bin(n, p) i.e.

X ∼ Bin(4, 1/6),

and so...



Example

P(X = 0) = 4C0

(

1

6

)0 (

1 − 1

6

)4

= 1 × 1 × 0.4823

= 0.4823

P(X = 1) = 4C1

(

1

6

)1 (

1 − 1

6

)3

= 4 × 0.1667 × 0.5787

= 0.3858



Example

P(X = 2) = 4C2

(

1

6

)2 (

1 − 1

6

)2

= 6 × 0.0278 × 0.6944

= 0.1158

P(X = 3) = 4C3

(

1

6

)3 (

1 − 1

6

)1

= 4 × 0.0046 × 0.8333

= 0.0153



Example

And finally,

P(X = 4) = 4C4

(

1

6

)4 (

1 − 1

6

)0

= 1 × 0.0008 × 1

= 0.0008

This probability distribution shows that most of the time we would
get either 0 or 1 successes and, for example, 4 successes would be
quite rare.



Example

Let’s see how close these “theoretical” probabilities are to some
“observed” values obtained by actually rolling a dice four times
and counting the number of sixes we get. Actually, we’ll not roll a

dice, but will use Minitab instead!

No. of sixes Binomial probability Observed probability

0 0.4823 Lee
1 0.3858 Lee
2 0.1158 Lee
3 0.0153 Lee
4 0.0008 Lee

Sum Lee



Another example

A salesperson has a 50% chance of making a sale on a customer
visit and she arranges 6 visits in a day.

What are the probabilities of her making 0,1,2,3,4,5 and 6 sales?

Let X denote the number of sales. Assuming the visits result in
sales independently, X ∼ Bin(6, 0.5) and

No. of sales Probability Cumulative Probability
r P(X = r) P(X ≤ r)

0 0.015625 0.015625
1 0.093750 0.109375
2 0.234375 0.343750
3 0.312500 0.656250
4 0.234375 0.890625
5 0.093750 0.984375
6 0.015625 1.000000

sum 1.000000



The formula for binomial probabilities enables us to calculate
values for P(X = r). From these, it is straightforward to calculate
cumulative probabilities such as the probability of making no more
than 2 sales:

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= 0.015625 + 0.09375 + 0.234375 = 0.34375.

These cumulative probabilities are also useful in calculating
probabilities such as that of making more than 1 sale:

P(X > 1) = 1 − P(X ≤ 1) = 1 − 0.109375 = 0.890625.



If X is a random variable with a binomial Bin(n, p) distribution
then its mean and variance are

E (X ) = n × p, Var(X ) = n × p × (1 − p).

For example, if X ∼ Bin(6, 0.5) then

E (X ) = n × p = 6 × 0.5 = 3

and

Var(X ) = n × p × (1 − p) = 3 × 0.5 × 0.5 = 1.5

Also
SD(X ) =

√

Var(X ) =
√

1.5 = 1.225.



The Poisson Distribution

The Poisson distribution is another very important discrete
probability distribution.

1 It is often used to model count data

2 Unlike the binomial distribution, there is no known fixed
upper limit of counts

3 The rate of occurrence, λ, is the parameter here

If these conditions are reasonable, then we say

X ∼ Po(λ)



If X is a random variable with a Poisson distribution with
parameter λ, then the probability it takes different values is

P(X = r) =
λr e−λ

r !
, r = 0, 1, 2, . . . .

The parameter λ has a very simple interpretation as the rate at
which events occur. The distribution has mean and variance

E (X ) = λ, Var(X ) = λ.



Example

Consider

X : number of calls made in a 1 minute interval to an ISP

If the ISP knows that on average 5 calls will be made in this 1
minute interval, then

X ∼ Po(5)

Then for example,

P(X = 4) =
54e−5

4!
= 0.1755.



We can use the formula for Poisson probabilities to calculate the
probability of all possible outcomes:

Probability Cumulative Probability
r P(X = r) P(X ≤ r)

0 0.0067 0.0067
1 0.0337 0.0404
2 0.0843 0.1247
3 0.1403 0.2650
4 0.1755 0.4405
5 0.1755 0.6160
6 0.1462 0.7622
7 0.1044 0.8666
8 0.0653 0.9319
...

...
...

sum 1.000000

Therefore the probability of receiving between 2 and 8 calls is

P(2 ≤ X ≤ 8) = P(X ≤ 8)−P(X ≤ 1) = 0.9319−0.0404 = 0.8915



Using such a model we can also account for “extreme” situations.

For example, suppose that, for this ISP, we observed the following
number of calls per minute over a five minute period:

6, 3, 5, 4, 6.

Using simple frequentist reasoning, we would have

P(7 calls made) =
0

5
= 0,

i.e. we will never observe seven calls in any one minute period!

However, using the Poisson model, we have

P(X = 7) = 0.1044,

which is obviously more realistic.


