Extra Workshop on Probability/Probability Distributions

Wednesday 3rd December

2pm – 4pm

Herschel Building, Lecture Theatre 3

Semester 1 nearly over!

This week

- Extra workshop on Wednesday
- CBA3 in practice mode
- Should now be working through assignment 1

Next week

- Assignment 1 due in Wednesday
- CBA3 due in Friday (exam mode)
- Lecture and tutorial as normal revision worksheet given out in lecture

Monday 5th January 2009

- Last lecture of Semester 1
- A revision booklet will be given out
- Revision tutorials

Semester 2 starts Monday 26th January 2009

Lecture 10

MORE CONTINUOUS PROBABILITY MODELS

Introduction

Over the past few weeks we have talked about some "standard" probability distributions which can be used to model data. So far, we have looked at:

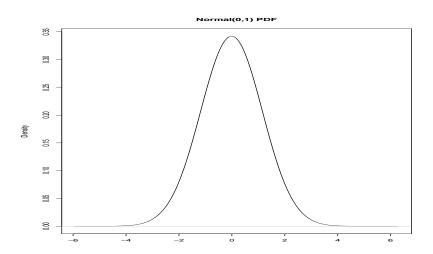
1. Discrete distributions

- The Binomial distribution
- The Poisson distribution

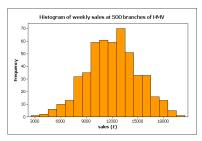
2. Continuous distributions

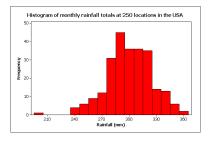
The Normal distribution

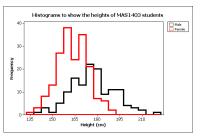
Recall the **probability density function** of the Normal distribution, which is often referred to as a "**bell-shaped curve**":

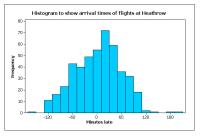


Recall also from last week that many naturally occurring measurements seem to follow this distribution:









But what if we cannot assume "Normality" for our data?

Example of "non–Normality"

- You manage a group of Environmental Health Officers and need to decide at what time they should inspect a local hotel
- You decide that any time during the working day (9.00 to 18.00) is okay
- You want to decide the time "randomly"

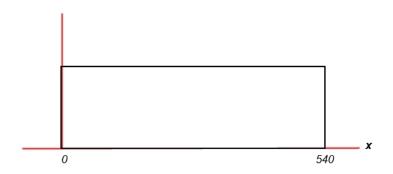
Here, "randomly" is a short-hand for

"a random time, where all times in the working day are equally likely to be chosen"

The Uniform distribution

Let X be the time to their arrival at the hotel, measured in terms of minutes from the start of the day.

Then X is a **Uniform** random variable between 0 and 540 (page 119):



As with the Normal distribution, the total area (base \times height) under the pdf must equal one.

Therefore, as the base is 540, the height must be 1/540.

Hence the **probability density function** (pdf) for the continuous random variable X is

$$f(x) = \begin{cases} \frac{1}{540} & \text{for } 0 \le x \le 540\\ 0 & \text{otherwise.} \end{cases}$$

In general, we say that a random variable X which is equally likely to take any value between a and b has a **uniform distribution** on the interval a to b, i.e.

$$X \sim U(a,b).$$

The random variable has **probability density function** (pdf)

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

and probabilities can be calculated using the formula

$$P(X \le x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x - a}{b - a} & \text{for } a \le x \le b \\ 1 & \text{for } x > b. \end{cases}$$

Therefore, for example, the **probability that the inspectors visit the hotel in the morning** (within 180 minutes after 9am) is

$$P(X \le 180) = \frac{180 - 0}{540 - 0} = \frac{1}{3}.$$

The probability of a visit during the lunch hour (12.30 to 13.30) is

$$P(210 \le X \le 270) = P(X \le 270) - P(X < 210)$$

$$= \frac{270 - 0}{540 - 0} - \frac{210 - 0}{540 - 0}$$

$$= \frac{270 - 210}{540}$$

$$= \frac{60}{540}$$

$$= \frac{1}{9}.$$

Mean and Variance

Recall that:

- If $X \sim \text{bin}(n, p)$, then
 - $E(X) = n \times p$ and
 - $\mathsf{Var}(X) = n \times p \times (1-p)$
- If $X \sim Po(\lambda)$, then
 - $E(X) = \lambda$ and
 - $Var(X) = \lambda$

We have equivalent formulae for $X \sim U(a, b)$:

$$E(X) = \frac{a+b}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}.$$

In the above example, we have

$$E(X) = \frac{a+b}{2} = \frac{0+540}{2} = 270,$$

so that the mean arrival of the inspectors is 9am+270 minutes = 13.30.

Also

$$Var(X) = \frac{(540 - 0)^2}{12} = 24300,$$

and therefore $SD(X) = \sqrt{Var(X)} = \sqrt{24300} = 155.9$ minutes.

The Exponential Distribution

The **exponential distribution** is another common distribution that is used to describe continuous random variables.

It is often used to model lifetimes of products and times between "random" events, for example:

- Lifetime of bulbs
- Arrival of customers in a queueing system
- Arrival of orders

The distribution has one parameter, λ . If our random variable X follows an **exponential distribution**, then we say

$$X \sim \exp(\lambda)$$
.

Its probability density function is

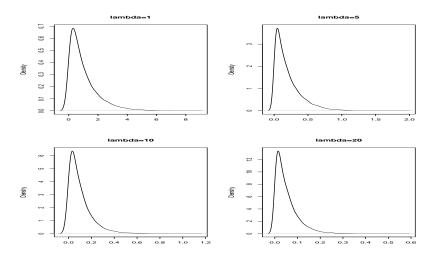
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

and probabilities can be calculated using

$$P(X \le x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 - e^{-\lambda x} & \text{for } x > 0. \end{cases}$$

The main **features** of this distribution are:

- an exponentially distributed random variable can only take positive values
- larger values are increasingly unlikely "exponential decay"
- **3** the value of λ fixes the **rate of decay** *larger values* correspond to more rapid decay.



Consider an example in which the time (in minutes) between successive users of a pay phone can be modelled by an exponential distribution with $\lambda=0.3$.

The probability of the gap between phone users being less than 5 minutes is

$$P(X < 5) = 1 - e^{-0.3 \times 5} = 1 - 0.223 = 0.777.$$

Also the probability that the gap is more than 10 minutes is

$$P(X > 10) = 1 - P(X \le 10) = 1 - (1 - e^{-0.3 \times 10}) = e^{-0.3 \times 10} = 0.050$$

and the probability that the gap is between 5 and 10 minutes is

$$P(5 < X < 10) = P(X < 10) - P(X \le 5) = 0.950 - 0.777 = 0.173.$$

One of the main uses of the exponential distribution is as a model for the **times between events occurring randomly in time**.

We have previously considered events which occur at random points in time in connection with the **Poisson distribution**.

The Poisson distribution describes probabilities for the number of events taking place in a given time period.

The exponential distribution describes probabilities for the times between events. Both of these concern events occurring randomly in time (at a constant average rate, say λ). This is known as a **Poisson process**.

Consider a series of randomly occurring events such as calls at a credit card call centre. The times of calls might look like

We can view these data in two ways:

- The number of calls in each minute (here 2, 0, 2, 1 and 1)
- the times between successive calls

For the **Poisson process**,

- the number of calls has a **Poisson** distribution with parameter λ , and
- the time between successive calls has an **exponential** distribution with parameter λ .

Mean and Variance

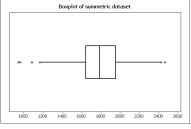
The mean and variance of the exponential distribution can be shown to be

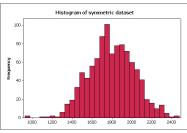
$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}.$$

Commenting on graphs

Is your graph symmetric or asymmetric?

Are there any outliers?





Commenting on graphs

When comparing groups...

- Highest/lowest?
- Overlap/completely separate?
- which has greater variability?

