Lecture 9

LINEAR PROGRAMMING
(1)
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Introduction

Decision making is a process that is carried out in many areas of
life.

Usually there is a particular aim in making one decision rather than
another.

Two aims often considered in business are:
@ maximising profit, and

® minimising cost.
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During World War Two, American mathematicians developed some
mathematical methods to help the decision making process.

Their aims were to express all
@ requirements
@ constraints and
@ objectives

as algebraic equations. They then developed methods for obtaining
the optimal solution to the problem posed.
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One such method is called linear programming.

Linear programming belongs to a field of statistics known as
operational research.

For our set of algebraic equations to reflect the requirements,
constraints and objectives of a real-life situation, you can
imagine how complex they would be!
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In this chapter, we will study simple problems, for which all the
algebraic expressions are linear, i.e.

(a number)x + (a number)y = a number.

For example, we might express profit as a linear combination of
two other variables:

4x 4+ 3y = Profit.

This is a linear equation.
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If we want our profit to be at least £50, we might consider the
following linear inequality:

4x + 3y > £50.

In today’s lecture, we will consider how to formulate real-life
situations as linear programming problems.

Next week, we will discuss how to solve such problems.
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Formulating the problem

© Identify the decision variables
These are the quantities you need to know in order to solve
the problem.

Q Identify the constraints
For example, there may be a limit on resources or a
maximum/minimum value a decision variable can take.

© Determine the objective function

This is the quantity to be be optimised, usually profit or
costs.
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We will consider three real-life examples:
@ A chair manufacturer,
@ A book publisher, and
o A haulage company.
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Example 1: A chair manufacturer

A manufacturer makes two kinds of chairs — A and B. Each type
of chair has to be processed in two departments — I and I1.

Chair A spends 3 hours in department I and 2 hours in department
II. Chair B spends 3 hours in department I and 4 hours in
department II.



The time available in department I in any given month is 120
hours, and the time available in department II in the same month
is 150 hours.
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hours, and the time available in department II in the same month
is 150 hours.

Chair A has a selling price of £10 and chair B of £12.
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How many of each type of chair should be made?



You'll notice that there’s a lot of information given in the question
— this is typical of a linear programming problem. Sometimes it's
easier to summarise the information given in a table:



You'll notice that there’s a lot of information given in the question
— this is typical of a linear programming problem. Sometimes it's
easier to summarise the information given in a table:

Chair Time in dept. I | Time in dept. II | Selling price
A 3 2 10
B 3 4 12
Time limits 120 150
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1. What are the decision variables? (i.e. which quantities do
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2. What are the constraints?
3. What is the objective?
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Step 1: Decision variables

Read through the question and identify the things you'd like to
know. You can usually do this by going straight to the last
sentence of the question:

“How many of each chair should be made...”

Thus, we'd like to know
@ the number of type A chairs to make, and

@ the number of type B chairs to make.
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lower case letters. Thus, our decision variables are

X = number of type A chairs made and

= number of type B chairs made.
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This is probably the hardest bit! Consider what could happen in
each department.

For example, if we focus on what could happen in department I:
Since: the production of 1 type A chair uses 3 hours,

then: the production of x type A chairs takes 3x hours.

Similarly:  the production of 1 type B chair uses 3 hours,
so: the production of y type B chairs takes 3y hours.
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Since only 120 hours are available in department I, one constraint
is

(3x + 3y) hours
(3x +3y)

120 hours, or just

<
< 120.
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( 2x + 4y) hours.
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The total time used is therefore
( 2x + 4y) hours.

Since only 150 hours are available in department II, a second
constraint is

(2x + 4y) hours
(2x +4y)

150 hours, or just
150.
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We're still not done! We can’'t make a negative number of chairs,
so we also have:

and

AVARLY}

0.

These are called the non—negativity constraints.
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Step 3: Objective function

Our objective here is to maximise income.

If we make x type A chairs, then we get £10 x x = £10x, since
each type A chair sells for £10.

Similarly, if we make y type B chairs, then we get
£12 x y = £12y, since each type B chair sells for £12.



The total income is then



The total income is then

£7 = £(10x +12y).



The total income is then
£Z = £(10x + 12y).

The aim is to maximise income, so we'd like to maximise



The total income is then
£Z = £(10x + 12y).
The aim is to maximise income, so we'd like to maximise

Z = 10x+ 12y,



The total income is then
£Z = £(10x + 12y).
The aim is to maximise income, so we'd like to maximise
Z = 10x+ 12y,

where Z is the objective function.
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Thus, to summarise, we have the following linear
programming problem:

Maximise Z = 10x + 12y subject to the constraints

3x+3y < 120,
2x+4y < 150,
x > 0 and
y =2 0.



Example 2: A book publisher

A book publisher is planning to produce a book in two different
bindings: paperback and library. Each book goes through a sewing
process and a gluing process. The table below gives the time
required, in minutes, for each process and for each of the bindings:

Sewing (mins) | Gluing (mins)
Paperback 2 4
Library 3 10




The sewing process is available for 7 hours per day and the gluing
process for 15 hours per day.
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The sewing process is available for 7 hours per day and the gluing
process for 15 hours per day.

The profits are 25p on a paperback edition and 60p on a library
edition.

How many books in each binding should be manufactured to
maximise profits?



It might be a good idea to extend this table to include all the
information given by adding the restrictions on time and profits, i.e.



It might be a good idea to extend this table to include all the
information given by adding the restrictions on time and profits, i.e.

Sewing (mins) Gluing Profit (P)
Paperback 2 4 25
Library 3 10 60
Total time | 420 (in minutes!) | 900 (in minutes!)
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The decision variables are the number of books to be made in each
binding. Let

= number in paperback binding and

= number in library binding.
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The constraints are:

420 and
900,

sewing : 2x + 3y <
gluing : 4x + 10y <

together with the non—negativity conditions

0 and

AVARLYS
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we make x number of paperback bindings, the publisher will make
25x pence profit.



Step 3: Objective function

For each paperback edition, the publisher makes 25p profit. Since
we make x number of paperback bindings, the publisher will make
25x pence profit.

Similarly, for each library edition, the publisher makes 60p profit.
Since we make y number of library bindings, the publisher will
make 60y pence profit.



Step 3: Objective function

For each paperback edition, the publisher makes 25p profit. Since
we make x number of paperback bindings, the publisher will make
25x pence profit.

Similarly, for each library edition, the publisher makes 60p profit.
Since we make y number of library bindings, the publisher will
make 60y pence profit.

The objective is to maximise the profit P pence. The total profit is
25x + 60y — thus our aim is to maximise



Step 3: Objective function

For each paperback edition, the publisher makes 25p profit. Since
we make x number of paperback bindings, the publisher will make
25x pence profit.

Similarly, for each library edition, the publisher makes 60p profit.
Since we make y number of library bindings, the publisher will
make 60y pence profit.

The objective is to maximise the profit P pence. The total profit is
25x + 60y — thus our aim is to maximise

P = 25x+60y.
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Thus, to summarise, we have the following linear
programming problem:

Maximise P = 25x + 60y subject to the constraints

2x+3y < 420,
4x 4+ 10y < 900,
x > 0 and
y =z 0



