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Introduction

A time series is a collection of observations made sequentially in
time.

Time series can be continuous and discrete.

In this course we consider only discrete time series, with
observations being taken at equally spaced intervals.

The first step in the analysis of time series is to plot the data
against time in a time series plot.



Describing time series

The lecture notes give the commands for producing time series
plots in Minitab. Note that the axes should be labelled
appropriately and that the plot should have a title.
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You should be able to describe a time series in words:

Is there any trend in the plot? Is this trend “upwards”
(increasing/positive) or “downwards” (decreasing/negative)?

Is there any seasonality in the plot? Are there other, more
complex, cyclic patterns?

Does the plot show both trend and seasonality?

Are there any outliers?

Does the plot look stationary?



Figure: Left: Time series plots of monthly average air temperatures in
England and Wales (right–hand–side plot shows edited time axis and
inserted title)



Figure: Time series plot of the monthly means of daily relative sunspot
numbers



Figure: Time series plot of four–monthly sales for a department store



Figure: Time series plot yearly total precipitation in New York
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Example

We will focus on the department store sales example. This one’s
easy to analyse by hand because it’s relatively small!

The raw data are shown in the table below.

Jan–Apr May–Aug Sep–Dec

1994 8 13 10
1995 10 14 11
1996 10 15 11
1997 11 16 13
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Isolating the trend

There are lots of ways we can analyse the trend in this series. The
simplest is to look at moving averages.

To calculate moving averages, you first have to decide on the
cycle length. This is the number of “seasons” you have, and
is usually pretty obvious.

In our example there are 3 seasons (Jan–Apr, May–Aug and
Sep–Dec).



The first moving average is just the mean of the first 3
observations, i.e.
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3
= 11.

This moving average is centred around time point 3.
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We proceed in this way to calculate all the moving averages. Note
that there’s no moving average for the first time point or the last
time point.

The calculated moving averages are shown in the table below. A
plot of these against time, along with the original data, is shown in
the figure on the next slide.

Moving averages

Jan–Apr May–Aug Sep–Dec

1994 * 10.33 11.00
1995 11.33 11.67 11.67
1996 12.00 12.00 12.33
1997 12.67 13.33 *



Figure: Time series plot of sales, with overlaid moving averages
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Using regression to estimate the trend

Notice the linearity in the time series plot of moving averages. We
can use linear regression to fit a line of best fit through the
points!

Recall from lecture 6 that the simple linear regression model is

Y = α + βX + ǫ,

where

α̂ = ȳ − β̂x̄ and

β̂ =
SXY

SXX
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We now reformulate this model so that we have

Y = α + βT + ǫ,

where T is the “time point”.

The first observation in the time series has a time point of 1 (i.e.
T = 1).

The second observation in the time series has a time point of 2
(i.e. T = 2).

So if we wanted to predict sales in the period Jan–Apr 1998, we
would substitute T = 13 into the regression equation above, since
the last observed time point was for Sep–Dec 1997 and was the
12th time point.

But, before we do this, we need to estimate α and β!
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The formulae for α and β are exactly the same as in chapter 6, but
now X is replaced with T , i.e.

β̂ =
STY

STT

and

α̂ = ȳ − β̂t̄,

where

STY =
(

∑

ty
)

− nt̄ȳ and

STT =
(

∑

t2

)

− nt̄2.

Remember, the easiest way to calculate these quantities is to draw
up a table!



Note that for y we use the moving average values, not the actual
observations!



Note that for y we use the moving average values, not the actual
observations!

Notice also that we don’t have any observations at time points 1
and 12, since we were unable to calculate moving averages here.



Note that for y we use the moving average values, not the actual
observations!

Notice also that we don’t have any observations at time points 1
and 12, since we were unable to calculate moving averages here.

t y (moving averages) ty t2

2 10.33 20.66 4
3 11.00 33.00 9
4 11.33 45.32 16
5 11.67 58.35 25
6 11.67 70.02 36
7 12.00 84.00 49
8 12.00 96.00 64
9 12.33 110.97 81
10 12.67 126.7 100
11 13.33 146.63 121

65 118.33 791.65 505
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Thus,

t̄ =
65

10
= 6.5 and

ȳ =
118.33

10
= 11.83.

Similarly,

STY =
(

∑

ty
)

− nt̄ȳ

= 791.65 − 10 × 6.5 × 11.83

= 22.7 and

STT =
(

∑

t2

)

− nt̄2

= 505 − 10 × 6.5 × 6.5

= 82.5.
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Thus,

β̂ =
STY

STT

=
22.7

82.5

= 0.275 and

α̂ = ȳ − β̂t̄

= 11.83 − 0.275 × 6.5

= 10.043.

So, the regression equation for our trend is

Y = 10.043 + 0.275T + ǫ.
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Isolating the seasonal effects

The linear trend we have estimated can be used to make forecasts,
assuming our sales increase in a linear fashion.

Looking at our time series, we see that there are clear cycles
around this linear increase.

We now look at how to estimate these cycles, known as
seasonal effects.
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Calculating seasonal effects

First of all, we calculate the seasonal deviations by subtracting
the moving average for each observation from the original
observation.

For example, the seasonal deviation for May–Aug 1994 is found as

13 − 10.33 = 2.67.

Similarly, for Sep–Dec 1994, we have

10.00 − 11.00 = −1.



The other seasonal deviations, along with the seasonal means, are
shown in the table below:



The other seasonal deviations, along with the seasonal means, are
shown in the table below:

seasonal deviations

Jan–Apr May–Aug Sep–Dec

1994 * 2.67 –1
1995 –1.33 2.33 –0.67
1996 –2 3 –1.33
1997 –1.67 2.67 *

means –1.67 2.6675 –1
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We can now calculate the seasonal effects.

The seasonal effect for each season is the seasonal mean for that
season minus the overall mean. The overall mean from the table
above is found as

2.67 − 1 − 1.33 + . . . − 1

10
=

2.67

10

= 0.267.
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Thus, the seasonal effects for each season are

ŝ1 = −1.67 − 0.267

= −1.937

ŝ2 = 2.6675 − 0.267

= 2.4005 and

ŝ3 = −1 − 0.267

= −1.267.
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Note that the seasonal effects should add up to give zero. Ours
don’t – we have

ŝ1 + ŝ2 + ŝ3 = −1.937 + 2.4005 − 1.267

= −0.8035.

Thus, we have to make an adjustment so they do add up to give
zero.

To do this, we find the mean of our seasonal effects, and then
subtract this from each of the seasonal effects. In this example,
the mean of our seasonal effects is

−1.937 + 2.4005 − 1.267

3
=

−0.8035

3

= −0.26783.
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ŝ2 = 2.4005 − (−0.26783)

= 2.66833
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adjusted seasonal effects are

ŝ1 = −1.937 − (−0.26783)

= −1.66917

ŝ2 = 2.4005 − (−0.26783)

= 2.66833

ŝ3 = −1.267 − (−0.26783)

= −0.99917.



Thus, if we subtract this from each of the seasonal effects, the
adjusted seasonal effects will then add up to give zero. Thus, the
adjusted seasonal effects are

ŝ1 = −1.937 − (−0.26783)

= −1.66917

ŝ2 = 2.4005 − (−0.26783)

= 2.66833

ŝ3 = −1.267 − (−0.26783)

= −0.99917.

Just be careful with double negatives! Now the seasonal effects do

sum to give zero!
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Forecasting

There are many ways in which we can forecast future observations.

One way is to use the linear regression equation for the trend in
our series. For the department store sales data, recall that this was

Y = 10.043 + 0.275T + ǫ.



To predict average sales in Jan–Apr 1998, we would substitute
T = 13 into the above equation, since this would be our 13th
observation. Doing so, gives



To predict average sales in Jan–Apr 1998, we would substitute
T = 13 into the above equation, since this would be our 13th
observation. Doing so, gives

Y = 10.043 + 0.275 × 13

= 10.043 + 3.575

= 13.618.
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However, we’re not quite done yet! This assumes that our data
follow a straight line!

Looking at the time series plot, clear cycles around an increasing
trend can be seen.

Thus, we now need to add in our seasonal effect.

The seasonal effect for Jan–Apr is ŝ1 = −1.66917. Thus, our “full”
forecast for sales in Jan–Apr 1998 is

13.618 + (−1.66917) = 11.949,

i.e. £11,949, or just under £12,000.


