Designed to follow-on from MAS1403

- Designed to follow-on from MAS1403
- Lecturers: Lee Fawcett and Eric Ruto

- Designed to follow-on from MAS1403
- Lecturers: Lee Fawcett and Eric Ruto
- Compulsory for Stage 1 Marketers, optional for Stage 1 Business Management and Marketing & Management

- Designed to follow-on from MAS1403
- Lecturers: Lee Fawcett and Eric Ruto
- Compulsory for Stage 1 Marketers, optional for Stage 1 Business Management and Marketing & Management
- Topics:
 - Hypothesis testing
 - Forecasting and prediction
 - Dynamic modelling
 - Resource allocation

- Designed to follow-on from MAS1403
- Lecturers: Lee Fawcett and Eric Ruto
- Compulsory for Stage 1 Marketers, optional for Stage 1 Business Management and Marketing & Management
- Topics:
 - Hypothesis testing
 - Forecasting and prediction
 - Dynamic modelling
 - Resource allocation
- Students can take this module in second/third year

- Designed to follow-on from MAS1403
- Lecturers: Lee Fawcett and Eric Ruto
- Compulsory for Stage 1 Marketers, optional for Stage 1 Business Management and Marketing & Management
- Topics:
 - Hypothesis testing
 - Forecasting and prediction
 - Dynamic modelling
 - Resource allocation
- Students can take this module in second/third year
- Not sure about A&F students etc...

Lecture 4

GOODNESS-OF-FIT TESTS

Introduction

Goodness-of-fit tests are often used to see if our data follow any pattern, or fit a specified probability distribution.

Introduction

Goodness—of—fit tests are often used to see if our data follow any pattern, or fit a specified probability distribution.

 We compare observed frequencies with expected frequencies obtained from the hypothesised distribution;

Introduction

Goodness—of—fit tests are often used to see if our data follow any pattern, or fit a specified probability distribution.

- We compare observed frequencies with expected frequencies obtained from the hypothesised distribution;
- If there is a large difference between the observed and expected frequencies, then this might cast doubt on our hypothesised distribution.

A simple example: traffic accidents

The following data are the number of traffic accidents involving children within two kilometres of schools:

A simple example: traffic accidents

The following data are the number of traffic accidents involving children within two kilometres of schools:

Day	No. of accidents
Monday	23
Tuesday	18
Wednesday	17
Thursday	19
Friday	23

 In the previous chapter, we might have tested the null hypothesis that the population mean number of accidents is equal to, say, 20 per day;

- In the previous chapter, we might have tested the null hypothesis that the population mean number of accidents is equal to, say, 20 per day;
- In the present chapter, we are interested in the **distribution** of the data. We might ask the following questions:

- In the previous chapter, we might have tested the null hypothesis that the population mean number of accidents is equal to, say, 20 per day;
- In the present chapter, we are interested in the distribution of the data. We might ask the following questions:
 - "Are there any patterns in the data?"

- In the previous chapter, we might have tested the null hypothesis that the population mean number of accidents is equal to, say, 20 per day;
- In the present chapter, we are interested in the **distribution** of the data. We might ask the following questions:
 - "Are there any **patterns** in the data?"
 - "Do the data follow any theoretical probability distribution?"

- In the previous chapter, we might have tested the null hypothesis that the population mean number of accidents is equal to, say, 20 per day;
- In the present chapter, we are interested in the distribution of the data. We might ask the following questions:
 - "Are there any patterns in the data?"
 - "Do the data follow any theoretical probability distribution?"
- We can use goodness-of-fit tests to answer such questions!

 There seems to be more accidents at the start of the week and the end of the week;

- There seems to be more accidents at the start of the week and the end of the week;
- The number of accidents seems to dip mid-week;

- There seems to be more accidents at the start of the week and the end of the week;
- The number of accidents seems to dip mid-week;
- But is this pattern significant? Is there really a dip mid—week, or are these differences just an effect of sampling variation?

Consider the (null) hypothesis that **traffic accidents occur uniformly**.

Consider the (null) hypothesis that **traffic accidents occur uniformly**.

If this were true, then we'd **expect** there to be the same number of accidents each day.

Consider the (null) hypothesis that **traffic accidents occur uniformly**.

If this were true, then we'd **expect** there to be the same number of accidents each day.

So our **expected frequencies** would be

Day	No. of accidents
Monday	20
Tuesday	20
Wednesday	20
Thursday	20
Friday	20

 How close do these observed and expected frequencies have to be for us to say that accidents do occur uniformly?

- How close do these observed and expected frequencies have to be for us to say that accidents do occur uniformly?
- Or how far apart do they have to be for us to say there **is** a difference in the number of accidents each day?

- How close do these observed and expected frequencies have to be for us to say that accidents do occur uniformly?
- Or how far apart do they have to be for us to say there **is** a difference in the number of accidents each day?
- A goodness-of-fit test will help us decide!

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

1. State the **null hypothesis** (H_0)

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

State the null hypothesis (H₀)
 In the traffic accidents example, this might be

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

1. State the **null hypothesis** (H_0)

In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

1. State the **null hypothesis** (H_0)

In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

 H_0 : Traffic accidents follow a **Poisson distribution**

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

State the null hypothesis (H₀)
 In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

 H_0 : Traffic accidents follow a **Poisson distribution**

2. State the alternative hypothesis (H_1)

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

State the null hypothesis (H₀)
 In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

 H_0 : Traffic accidents follow a **Poisson distribution**

2. State the alternative hypothesis (H_1)

As usual, this is just the opposite to the null hypothesis, i.e.

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

State the null hypothesis (H₀)
 In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

 H_0 : Traffic accidents follow a **Poisson distribution**

2. State the alternative hypothesis (H_1)

As usual, this is just the opposite to the null hypothesis, i.e.

 H_1 : Traffic accidents do *not* occur uniformly or

Basic framework

The basic framework for a goodness-of-fit hypothesis test is the same as that for the tests we looked at in chapters 2 and 3, i.e.

State the null hypothesis (H₀)
 In the traffic accidents example, this might be

 H_0 : Traffic accidents occur uniformly or

 H_0 : Traffic accidents follow a **Poisson distribution**

2. State the alternative hypothesis (H_1)

As usual, this is just the opposite to the null hypothesis, i.e.

 H_1 : Traffic accidents do *not* occur uniformly or

 H_1 : Traffic accidents do not follow a Poisson distribution

3. Calculate the test statistic

3. Calculate the test statistic

In goodness-of-fit tests, this is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where O and E are the observed and expected frequencies (respectively).

3. Calculate the test statistic

In goodness-of-fit tests, this is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where O and E are the observed and expected frequencies (respectively).

For a goodness–of–fit test to be valid, all expected frequencies must be \geq 5; to achieve this, adjacent categories can be "pooled" (see later).

In goodness–of–fit tests, we use the chi–squared (χ^2) distribution, with ν degrees of freedom, where

In goodness–of–fit tests, we use the chi–squared (χ^2) distribution, with ν degrees of freedom, where

```
\nu = \text{(number of categories after pooling)}

-\text{(number of parameters estimated)}

-1.
```

In goodness–of–fit tests, we use the chi–squared (χ^2) distribution, with ν degrees of freedom, where

$$\nu = \text{(number of categories after pooling)}$$
 $-\text{(number of parameters estimated)}$
 -1 .

As before, we compare our test statistic to the 10%, 5% and 1% critical values from the χ^2 distribution to obtain a range for our p-value.

5. Reach a conclusion

Exactly the same as always – use table 2.1 to form your conclusion!

Let us now test the hypothesis that the number of traffic accidents occurs uniformly throughout the week

Let us now test the hypothesis that the number of traffic accidents occurs uniformly throughout the week

Steps 1 and 2 (hypotheses)

Let us now test the hypothesis that the number of traffic accidents occurs uniformly throughout the week

Steps 1 and 2 (hypotheses)

Our hypotheses are

Let us now test the hypothesis that the number of traffic accidents occurs uniformly throughout the week

Steps 1 and 2 (hypotheses)

Our hypotheses are

 \mathcal{H}_0 : There are the same number of accidents each day of the week

Let us now test the hypothesis that the number of traffic accidents occurs uniformly throughout the week

Steps 1 and 2 (hypotheses)

Our hypotheses are

 H_0 : There are the same number of accidents each day of the week

 H_1 : There aren't the same number of accidents each day of the week

This is the hard bit! Remember, the test statistic is

This is the hard bit! Remember, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

This is the hard bit! Remember, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

Drawing up a table usually helps!

This is the hard bit! Remember, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

Drawing up a table usually helps!

Day	Observed (O)	Expected (E)	(O−E) ² E
Monday	23	20	0.45
Tuesday	18	20	0.2
Wednesday	17	20	0.45
Thursday	19	20	0.05
Friday	23	20	0.45

So we get

$$X^2 = 0.45 + 0.2 + 0.45 + 0.05 + 0.45$$

= 1.6.

So we get

$$X^2 = 0.45 + 0.2 + 0.45 + 0.05 + 0.45$$

= 1.6.

Notice we didn't have to pool any categories since all expected frequencies were ≥ 5 .

Using table 4.1, with degrees of freedom

```
\nu = \text{(number of categories after pooling)}

-(\text{number of parameters estimated}) - 1

= 5 - 0 - 1

= 4,
```

Using table 4.1, with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ & = & 5 - 0 - 1 \\ & = & 4, \end{array}$$

we get the following critical values:

Using table 4.1, with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ \\ & = & 5 - 0 - 1 \\ \\ & = & 4, \end{array}$$

we get the following critical values:

Significance level	10%	5%	1%
Critical value	7.78	9.49	13.28

Using table 4.1, with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ & = & 5 - 0 - 1 \\ & = & 4, \end{array}$$

we get the following critical values:

Significance level	10%	5%	1%
Critical value	7.78	9.49	13.28

Our test statistic lies to the left of the first critical value, and so the p-value is **bigger than 10%**.

Using table 2.1 to interpret our *p*—value:

Using table 2.1 to interpret our *p*-value:

• There is **no** evidence against H_0

Using table 2.1 to interpret our *p*-value:

- There is no evidence against H_0
- So we retain H_0

Using table 2.1 to interpret our *p*-value:

- There is no evidence against H_0
- So we retain H_0
- So accidents do occur uniformly! Or at least there's no evidence to suggest otherwise!

Recall from semester 1:

 A probability distribution of a random variable X is the list of all possible values X can take, with their associated probabilities;

- A probability distribution of a random variable X is the list of all possible values X can take, with their associated probabilities;
- for example, consider

- A probability distribution of a random variable X is the list of all possible values X can take, with their associated probabilities;
- for example, consider X: outcome of a roll of a dice.

- A probability distribution of a random variable X is the list of all possible values X can take, with their associated probabilities;
- for example, consider X: outcome of a roll of a dice. The probability distribution is

X	1	2	3	4	5	6
Pr(X = x)	1/6	1/6	1/6	1/6	1/6	1/6

Recall from semester 1:

- A probability distribution of a random variable X is the list of all possible values X can take, with their associated probabilities;
- for example, consider X: outcome of a roll of a dice. The probability distribution is

X	1	2	3	4	5	6
Pr(X = x)	1/6	1/6	1/6	1/6	1/6	1/6

• This is a **discrete probability distribution**, since *X* can only take **integer** values.

• Used to model the number of "successes" in a series of *n* independent trials;

- Used to model the number of "successes" in a series of *n* independent trials;
- Each trial has two possible outcomes "success" or "failure";

- Used to model the number of "successes" in a series of n independent trials;
- Each trial has two possible outcomes "success" or "failure";
- The probability of "success", p, is constant across trials;

$$\Pr(X = r) = {}^{n}\mathsf{C}_{r} \times p^{r} \times (1-p)^{n-r}.$$

Here are some examples where we might assume a binomial distribution for our data:

$$\Pr(X = r) = {}^{n}\mathsf{C}_{r} \times p^{r} \times (1-p)^{n-r}.$$

Here are some examples where we might assume a binomial distribution for our data:

 100 students of equal ability sit an exam. The total number passing is recorded;

$$\Pr(X = r) = {}^{n}\mathsf{C}_{r} \times p^{r} \times (1-p)^{n-r}.$$

Here are some examples where we might assume a binomial distribution for our data:

- 100 students of equal ability sit an exam. The total number passing is recorded;
- A fair, six-sided dice is rolled 50 times and the number of sixes obtained is recorded;

$$Pr(X = r) = {}^{n}C_{r} \times p^{r} \times (1-p)^{n-r}.$$

Here are some examples where we might assume a binomial distribution for our data:

- 100 students of equal ability sit an exam. The total number passing is recorded;
- A fair, six-sided dice is rolled 50 times and the number of sixes obtained is recorded;
- ten barley seeds are sown in a petri dish. The number of germinating seeds is recorded.

 Used to model data which are counts of events in a certain time interval;

- Used to model data which are counts of events in a certain time interval;
- There is usually no fixed upper limit to the value the random variable can take;

- Used to model data which are counts of events in a certain time interval;
- There is usually no fixed upper limit to the value the random variable can take;
- Events occur at a constant rate, λ ;

- Used to model data which are counts of events in a certain time interval;
- There is usually no fixed upper limit to the value the random variable can take;
- Events occur at a constant rate, λ ;
- Poisson probabilities take the form

$$\Pr(X = r) = \frac{\lambda^r e^{-\lambda}}{r!}$$

Number of radioactive emissions per unit of time;

- Number of radioactive emissions per unit of time;
- seedlings per unit area;

- Number of radioactive emissions per unit of time;
- seedlings per unit area;
- knots per cubic foot of wood.

A More Complex Example

Consider the following data:

Number of claims	Observed frequency (O)
0	144
1	91
2	32
3	11
4	2
5 +	0
	280

A More Complex Example

Consider the following data:

Number of claims	Observed frequency (O)
0	144
1	91
2	32
3	11
4	2
5 +	0
	280

The data represents the number of small factories in northern England in which industrial injuries resulted in claims for compensation between April 2003 and March 2004.

• The data are discrete

- The data are discrete
- So do we use the **binomial** or the **Poisson**?

- The data are discrete
- So do we use the **binomial** or the **Poisson**?
- For the binomial distribution, we need *n* "trials", each with two outcomes... we don't have that set—up here!

- The data are discrete
- So do we use the **binomial** or the **Poisson**?
- For the binomial distribution, we need *n* "trials", each with two outcomes... we don't have that set—up here!
- The Poisson distribution is often used to model 'count' data

$$\lambda = \frac{0 \times 144 + 1 \times 91 + 2 \times 32 + 3 \times 11 + 4 \times 2}{280}$$

$$= \frac{196}{280}$$

$$= 0.7.$$

$$\lambda = \frac{0 \times 144 + 1 \times 91 + 2 \times 32 + 3 \times 11 + 4 \times 2}{280}$$

$$= \frac{196}{280}$$

$$= 0.7.$$

Now that we have this we can proceed as before:

 The expected probabilities based on the Poisson distribution will be calculated using the Poisson formula

$$\lambda = \frac{0 \times 144 + 1 \times 91 + 2 \times 32 + 3 \times 11 + 4 \times 2}{280}$$

$$= \frac{196}{280}$$

$$= 0.7.$$

Now that we have this we can proceed as before:

- The expected probabilities based on the Poisson distribution will be calculated using the Poisson formula
- These can be converted to expected frequencies by multiplying by the sample size.

Steps 1 and 2 (hypotheses)

Since we think the Poisson distribution might be an appropriate model for our data, we test

Steps 1 and 2 (hypotheses)

Since we think the Poisson distribution might be an appropriate model for our data, we test

 H_0 : Claims follow a Poisson distribution against

Steps 1 and 2 (hypotheses)

Since we think the Poisson distribution might be an appropriate model for our data, we test

 H_0 : Claims follow a Poisson distribution against

 H_1 : Claims do *not* follow a Poisson distribution.

Recall that, for goodness-of-fit tests, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

Recall that, for goodness-of-fit tests, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

We already have the O's – these are just the observed frequencies. What we need to calculate are the E's (the expected frequencies).

Recall that, for goodness-of-fit tests, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

We already have the O's – these are just the observed frequencies. What we need to calculate are the E's (the expected frequencies).

From earlier, we know that Poisson probabilities are found using

$$\Pr(X = r) = \frac{e^{-\lambda} \lambda^r}{r!}.$$

Recall that, for goodness-of-fit tests, the test statistic is

$$X^2 = \sum \frac{(O-E)^2}{E}.$$

We already have the O's – these are just the observed frequencies. What we need to calculate are the E's (the expected frequencies).

From earlier, we know that Poisson probabilities are found using

$$\Pr(X = r) = \frac{e^{-\lambda} \lambda^r}{r!}.$$

We have estimated λ as 0.7; thus, we just need to substitute this into the formula to calculate our probabilities for different values of r.

For example, the expected probability of no claims is

$$Pr(X = 0) = \frac{e^{-0.7} \times 0.7^{0}}{0!}$$
= 0.4966.

For example, the expected probability of no claims is

$$Pr(X = 0) = \frac{e^{-0.7} \times 0.7^{0}}{0!}$$

$$= 0.4966.$$

Similarly,

$$Pr(X = 1) = \frac{e^{-0.7} \times 0.7^{1}}{1!}$$
$$= 0.3476.$$

Number of claims	Expected probability	Expected frequency (E)
0	0.4966	139.048
	•	'

Number of claims	Expected probability	Expected frequency (E)
0	0.4966	139.048
1	0.3476	97.328
	ı	

Number of claims	Expected probability	Expected frequency (E)
0	0.4966	139.048
1	0.3476	97.328
2	0.1217	34.076
3	0.0284	7.952
4	0.0050	1.4
5 + 0.0007		0.196
		280

For the χ^2 test to be valid, the expected frequencies must be at least 5, so we need to "pool" the last three categories!

For the χ^2 test to be valid, the expected frequencies must be at least 5, so we need to "pool" the last three categories!

Numbe	r of claims	Observed frequency (O)	Expected frequency (E)
	0	144	139.048
	1	91	97.328
	2	32	34.076
	3+	13	9.548

Now that we have the "O's" and the "E's", we can calculate our test statistic.

Now that we have the "O's" and the "E's", we can calculate our test statistic.

Number of Claims	0	E	$\frac{(O-E)^2}{E}$
0	144	139.048	0.176
1	91	97.328	0.411
2	32	34.076	0.126
3+	13	9.548	1.248

Now that we have the "O's" and the "E's", we can calculate our test statistic.

Number of Claims	0	Ε	$\frac{(O-E)^2}{E}$
0	144	139.048	0.176
1	91	97.328	0.411
2	32	34.076	0.126
3+	13	9.548	1.248

Thus,

$$X^{2} = \sum \frac{(O-E)^{2}}{E}$$

$$= 0.176 + 0.411 + 0.126 + 1.248$$

$$= 1.961.$$

We use the χ^2 distribution to obtain our p-value. Thus, using table 4.1 with degrees of freedom

We use the χ^2 distribution to obtain our p-value. Thus, using table 4.1 with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ & = & 4 - 1 - 1 \\ & = & 2, \end{array}$$

we obtain the following values:

We use the χ^2 distribution to obtain our p-value. Thus, using table 4.1 with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ & = & 4 - 1 - 1 \\ & = & 2, \end{array}$$

we obtain the following values:

Significance level	10%	5%	1%
Critical value	4.61	5.99	9.21

We use the χ^2 distribution to obtain our p-value. Thus, using table 4.1 with degrees of freedom

$$\begin{array}{rcl} \nu & = & \text{(number of categories after pooling)} \\ & & - \text{(number of parameters estimated)} - 1 \\ & = & 4 - 1 - 1 \\ & = & 2, \end{array}$$

we obtain the following values:

Significance level	10%	5%	1%
Critical value	4.61	5.99	9.21

Our test statistic $X^2 = 1.961$ lies to the left of the first critical value, and so our p-value is **bigger than 10%**.

• Using table 2.1, we find that there is **no** evidence against the null hypothesis

- Using table 2.1, we find that there is **no** evidence against the null hypothesis
- Thus we should retain H_0

- Using table 2.1, we find that there is **no** evidence against the null hypothesis
- Thus we should retain H_0
- We can say that it appears that our data do follow a Poisson distribution.