
New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403



New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403

Lecturers: Lee Fawcett and Eric Ruto



New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403

Lecturers: Lee Fawcett and Eric Ruto

Compulsory for Stage 1 Marketers, optional for Stage 1
Business Management and Marketing & Management



New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403

Lecturers: Lee Fawcett and Eric Ruto

Compulsory for Stage 1 Marketers, optional for Stage 1
Business Management and Marketing & Management

Topics:

– Hypothesis testing
– Forecasting and prediction
– Dynamic modelling
– Resource allocation



New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403

Lecturers: Lee Fawcett and Eric Ruto

Compulsory for Stage 1 Marketers, optional for Stage 1
Business Management and Marketing & Management

Topics:

– Hypothesis testing
– Forecasting and prediction
– Dynamic modelling
– Resource allocation

Students can take this module in second/third year



New stage 2 module – ACE20**: Applied Statistics

Designed to follow–on from MAS1403

Lecturers: Lee Fawcett and Eric Ruto

Compulsory for Stage 1 Marketers, optional for Stage 1
Business Management and Marketing & Management

Topics:

– Hypothesis testing
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– Dynamic modelling
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Students can take this module in second/third year

Not sure about A&F students etc...



Lecture 4

GOODNESS–OF–FIT
TESTS
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Introduction

Goodness–of–fit tests are often used to see if our data follow any
pattern, or fit a specified probability distribution.

We compare observed frequencies with expected frequencies
obtained from the hypothesised distribution;

If there is a large difference between the observed and
expected frequencies, then this might cast doubt on our
hypothesised distribution.
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A simple example: traffic accidents

The following data are the number of traffic accidents involving
children within two kilometres of schools:

Day No. of accidents

Monday 23
Tuesday 18

Wednesday 17
Thursday 19
Friday 23
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equal to, say, 20 per day;
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In the previous chapter, we might have tested the null
hypothesis that the population mean number of accidents is
equal to, say, 20 per day;

In the present chapter, we are interested in the distribution
of the data. We might ask the following questions:

“Are there any patterns in the data?”
“Do the data follow any theoretical probability
distribution?”

We can use goodness–of–fit tests to answer such questions!
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Do traffic accidents occur uniformly?

There seems to be more accidents at the start of the week
and the end of the week;

The number of accidents seems to dip mid–week;

But is this pattern significant? Is there really a dip mid–week,
or are these differences just an effect of sampling variation?
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Consider the (null) hypothesis that traffic accidents occur
uniformly.

If this were true, then we’d expect there to be the same number
of accidents each day.

So our expected frequencies would be

Day No. of accidents

Monday 20
Tuesday 20

Wednesday 20
Thursday 20
Friday 20
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Do you think there is a substantial difference between the
observed frequencies and the expected frequencies?

How close do these observed and expected frequencies have to
be for us to say that accidents do occur uniformly?

Or how far apart do they have to be for us to say there is a
difference in the number of accidents each day?

A goodness–of–fit test will help us decide!
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Basic framework

The basic framework for a goodness–of–fit hypothesis test is the
same as that for the tests we looked at in chapters 2 and 3, i.e.

1. State the null hypothesis (H0)

In the traffic accidents example, this might be

H0 : Traffic accidents occur uniformly or

H0 : Traffic accidents follow a Poisson distribution

2. State the alternative hypothesis (H1)

As usual, this is just the opposite to the null hypothesis, i.e.

H1 : Traffic accidents do not occur uniformly or

H1 : Traffic accidents do not follow a Poisson distribution



3. Calculate the test statistic



3. Calculate the test statistic

In goodness–of–fit tests, this is

X 2 =
∑ (O − E )2

E
,

where O and E are the observed and expected frequencies
(respectively).



3. Calculate the test statistic

In goodness–of–fit tests, this is

X 2 =
∑ (O − E )2

E
,

where O and E are the observed and expected frequencies
(respectively).

For a goodness–of–fit test to be valid, all expected frequencies
must be ≥ 5; to achieve this, adjacent categories can be
“pooled” (see later).
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4. Find your p–value

In goodness–of–fit tests, we use the chi–squared (χ2)
distribution, with ν degrees of freedom, where

ν = (number of categories after pooling)

−(number of parameters estimated)

−1.

As before, we compare our test statistic to the 10%, 5% and
1% critical values from the χ2 distribution to obtain a range
for our p–value.



5. Reach a conclusion

Exactly the same as always – use table 2.1 to form your
conclusion!
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Back to the traffic accidents example...

Let us now test the hypothesis that the number of traffic accidents
occurs uniformly throughout the week

Steps 1 and 2 (hypotheses)

Our hypotheses are

H0 : There are the same number of accidents each day of the week

H1 : There aren’t the same number of accidents each day of the week.
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Step 3 (calculating the test statistic)

This is the hard bit! Remember, the test statistic is

X 2 =
∑ (O − E )2

E
.

Drawing up a table usually helps!

Day Observed (O) Expected (E ) (O−E)2

E

Monday 23 20 0.45
Tuesday 18 20 0.2

Wednesday 17 20 0.45
Thursday 19 20 0.05
Friday 23 20 0.45



So we get

X 2 = 0.45 + 0.2 + 0.45 + 0.05 + 0.45

= 1.6.



So we get

X 2 = 0.45 + 0.2 + 0.45 + 0.05 + 0.45

= 1.6.

Notice we didn’t have to pool any categories since all expected
frequencies were ≥ 5.
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Step 4 (finding the p–value)

Using table 4.1, with degrees of freedom

ν = (number of categories after pooling)

−(number of parameters estimated) − 1

= 5 − 0 − 1

= 4,

we get the following critical values:

Significance level 10% 5% 1%

Critical value 7.78 9.49 13.28

Our test statistic lies to the left of the first critical value, and so
the p–value is bigger than 10%.
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Step 5 (conclusion)

Using table 2.1 to interpret our p–value:

There is no evidence against H0

So we retain H0

So accidents do occur uniformly! Or at least there’s no
evidence to suggest otherwise!
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Probability distributions

Recall from semester 1:

A probability distribution of a random variable X is the list
of all possible values X can take, with their associated
probabilities;

for example, consider X : outcome of a roll of a dice. The
probability distribution is

x 1 2 3 4 5 6

Pr(X = x) 1/6 1/6 1/6 1/6 1/6 1/6

This is a discrete probability distribution, since X can only
take integer values.



The binomial distribution
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The binomial distribution

Used to model the number of “successes” in a series of n

independent trials;

Each trial has two possible outcomes – “success” or “failure”;

The probability of ”success”, p, is constant across trials;
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If the previous statements hold true, then we can use a binomial
distribution for our data, where

Pr(X = r) = nCr × pr
× (1 − p)n−r .

Here are some examples where we might assume a binomial
distribution for our data:

1 100 students of equal ability sit an exam. The total number
passing is recorded;

2 A fair, six–sided dice is rolled 50 times and the number of
sixes obtained is recorded;

3 ten barley seeds are sown in a petri dish. The number of
germinating seeds is recorded.
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The Poisson distribution

Used to model data which are counts of events in a certain
time interval;

There is usually no fixed upper limit to the value the random
variable can take;

Events occur at a constant rate, λ;

Poisson probabilities take the form

Pr(X = r) =
λre−λ

r !
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Here are some examples where we might assume a Poisson
distribution for our data:

1 Number of radioactive emissions per unit of time;

2 seedlings per unit area;

3 knots per cubic foot of wood.
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1 91
2 32
3 11
4 2

5 + 0

280



A More Complex Example

Consider the following data:

Number of claims Observed frequency (O)

0 144
1 91
2 32
3 11
4 2

5 + 0

280

The data represents the number of small factories in northern
England in which industrial injuries resulted in claims for
compensation between April 2003 and March 2004.
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Which distribution?

The data are discrete

So do we use the binomial or the Poisson?

For the binomial distribution, we need n “trials”, each with
two outcomes... we don’t have that set–up here!

The Poisson distribution is often used to model ‘count’ data



Recall that the mean of a Poisson random variable is equal to the
rate parameter λ, so



Recall that the mean of a Poisson random variable is equal to the
rate parameter λ, so

λ =
0 × 144 + 1 × 91 + 2 × 32 + 3 × 11 + 4 × 2

280

=
196

280

= 0.7.



Recall that the mean of a Poisson random variable is equal to the
rate parameter λ, so

λ =
0 × 144 + 1 × 91 + 2 × 32 + 3 × 11 + 4 × 2

280

=
196

280

= 0.7.

Now that we have this we can proceed as before:

The expected probabilities based on the Poisson distribution
will be calculated using the Poisson formula



Recall that the mean of a Poisson random variable is equal to the
rate parameter λ, so

λ =
0 × 144 + 1 × 91 + 2 × 32 + 3 × 11 + 4 × 2

280

=
196

280

= 0.7.

Now that we have this we can proceed as before:

The expected probabilities based on the Poisson distribution
will be calculated using the Poisson formula

These can be converted to expected frequencies by
multiplying by the sample size.
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Steps 1 and 2 (hypotheses)

Since we think the Poisson distribution might be an appropriate
model for our data, we test

H0 : Claims follow a Poisson distribution against

H1 : Claims do not follow a Poisson distribution.
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Step 3 (calculating the test statistic)

Recall that, for goodness–of–fit tests, the test statistic is

X 2 =
∑ (O − E )2

E
.

We already have the O’s – these are just the observed frequencies.
What we need to calculate are the E ’s (the expected frequencies).

From earlier, we know that Poisson probabilities are found using

Pr(X = r) =
e−λλr

r !
.

We have estimated λ as 0.7; thus, we just need to substitute this
into the formula to calculate our probabilities for different values of
r .



For example, the expected probability of no claims is

Pr(X = 0) =
e−0.7 × 0.70
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= 0.4966.



For example, the expected probability of no claims is

Pr(X = 0) =
e−0.7 × 0.70

0!

= 0.4966.

Similarly,

Pr(X = 1) =
e−0.7 × 0.71

1!

= 0.3476.
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frequencies by multiplying by the total number of accidents we
have observed (280). This gives
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We can do this for all our categories and then convert these to
frequencies by multiplying by the total number of accidents we
have observed (280). This gives

Number of claims Expected probability Expected frequency (E )
0 0.4966 139.048
1 0.3476 97.328
2 0.1217 34.076
3 0.0284 7.952
4 0.0050 1.4

5 + 0.0007 0.196
280
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For the χ2 test to be valid, the expected frequencies must be at
least 5, so we need to “pool” the last three categories!

Number of claims Observed frequency (O) Expected frequency (E )

0 144 139.048
1 91 97.328
2 32 34.076

3+ 13 9.548
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Now that we have the “O’s” and the “E’s”, we can calculate our
test statistic.

Number of Claims O E
(O−E)2

E

0 144 139.048 0.176
1 91 97.328 0.411
2 32 34.076 0.126

3+ 13 9.548 1.248

Thus,

X 2 =
∑ (O − E )2

E
= 0.176 + 0.411 + 0.126 + 1.248

= 1.961.
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Step 4 (finding the p–value)

We use the χ2 distribution to obtain our p–value. Thus, using
table 4.1 with degrees of freedom

ν = (number of categories after pooling)

−(number of parameters estimated) − 1

= 4 − 1 − 1

= 2,

we obtain the following values:

Significance level 10% 5% 1%

Critical value 4.61 5.99 9.21

Our test statistic X 2 = 1.961 lies to the left of the first critical
value, and so our p–value is bigger than 10%.
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Step 5 (conclusion)

Using table 2.1, we find that there is no evidence against the
null hypothesis

Thus we should retain H0

We can say that it appears that our data do follow a Poisson
distribution.


