Lecture 3

HYPOTHESIS TESTS FOR TWO MEANS

Announcements

CBA4 goes live in practice mode this week – exam mode next week

Announcements

CBA4 goes live in practice mode this week – exam mode next week

Assignment 1 feedback

Announcements

CBA4 goes live in practice mode this week – exam mode next week

Assignment 1 feedback

Mean	St. dev.	Median	IQR	95% CI	Missing
89.9	10.2	94.0	11.1	(89.1, 90.9)	27

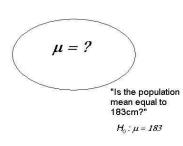
Introduction

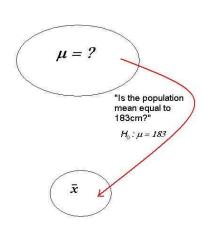
Last week you were introduced to the concept of hypothesis testing in statistics, and we considered hypothesis tests for the mean if we have a single sample drawn from a single population.

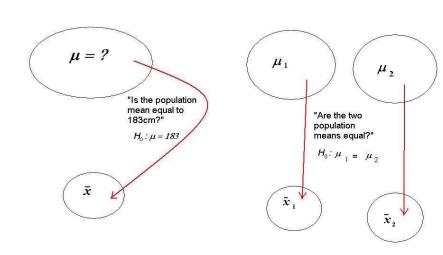
Introduction

Last week you were introduced to the concept of hypothesis testing in statistics, and we considered hypothesis tests for the mean if we have a single sample drawn from a single population.

If we have **two** independent random samples from **two** populations, we can compare the two sample means in a test for two means (*c.f.* comparing one sample mean to a *proposed value* in the one–sample case).







1. State the **null hypothesis**, H_0 ;

- **1.** State the **null hypothesis**, H_0 ;
- **2.** State the alternative hypothesis, H_1 ;

- **1.** State the **null hypothesis**, H_0 ;
- **2.** State the alternative hypothesis, H_1 ;
- 3. Calculate a test statistic;

- **1.** State the **null hypothesis**, H_0 ;
- **2.** State the alternative hypothesis, H_1 ;
- 3. Calculate a test statistic;
- 4. Find the p-value, and

- **1.** State the **null hypothesis**, H_0 ;
- **2.** State the alternative hypothesis, H_1 ;
- 3. Calculate a test statistic;
- 4. Find the p-value, and
- **5.** Use table 2.1 to form your **conclusions**.

- **1.** State the **null hypothesis**, H_0 ;
- **2.** State the alternative hypothesis, H_1 ;
- 3. Calculate a test statistic;
- 4. Find the p-value, and
- **5.** Use table 2.1 to form your **conclusions**.

However, the calculations required for the test statistic in step 3 are slightly different.

Testing two means

Recall that, in the test for one mean, there were two cases: population variance (σ^2) known and population variance unknown.

Testing two means

Recall that, in the test for one mean, there were two cases: population variance (σ^2) known and population variance unknown.

Similarly, when comparing two means, we can consider

- case 1: both population variances known and

Testing two means

Recall that, in the test for one mean, there were two cases: population variance (σ^2) known and population variance unknown.

Similarly, when comparing two means, we can consider

- case 1: both population variances known and
- case 2: both population variances unknown.

1. State the null hypothesis

This time, the null hypothesis is

$$H_0$$
: $\mu_1 = \mu_2$,

i.e. the two population means are equal.

1. State the null hypothesis

This time, the null hypothesis is

$$H_0$$
: $\mu_1 = \mu_2$,

i.e. the two population means are equal.

2. State the alternative hypothesis

We usually test against the (two-tailed) alternative:

$$H_1 : \mu_1 \neq \mu_2,$$

i.e. the population means *are not* equal. However, we might use the one–tailed alternatives:

1. State the null hypothesis

This time, the null hypothesis is

$$H_0$$
: $\mu_1 = \mu_2$,

i.e. the two population means are equal.

2. State the alternative hypothesis

We usually test against the (two-tailed) alternative:

$$H_1 : \mu_1 \neq \mu_2,$$

i.e. the population means *are not* equal. However, we might use the one–tailed alternatives:

$$H_1 : \mu_1 > \mu_2,$$
 or

1. State the null hypothesis

This time, the null hypothesis is

$$H_0$$
: $\mu_1 = \mu_2$,

i.e. the two population means are equal.

2. State the alternative hypothesis

We usually test against the (two-tailed) alternative:

$$H_1 : \mu_1 \neq \mu_2,$$

i.e. the population means *are not* equal. However, we might use the one–tailed alternatives:

$$H_1 : \mu_1 > \mu_2,$$
 or

$$H_1 : \mu_1 < \mu_2.$$

3. Calculate the test statistic

The test statistic for a two–sample test (when both population variances are known) is

$$z = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

3. Calculate the test statistic

The test statistic for a two–sample test (when both population variances are known) is

$$z = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

4. Find the p-value

This is found from statistical tables; since, in this case, both population variances σ_1^2 and σ_2^2 are *known*, we refer to standard normal tables.

As before, we find a range for our p-value by comparing our test statistic to the 10%, 5% and 1% critical values.

5. Form a conclusion

Exactly the same again! Use table 2.1 to help you decide what to do! Word your conclusions in the context of the original question.

Before a training session for call centre employees a sample of 50 calls to the call centre had an average duration of 5 minutes, whereas after the training session a sample of 45 calls had an average duration of 4.5 minutes.

The population variance is known to have been 1.5 minutes before the course and 2 minutes afterwards.

Has the course been effective?

Steps 1 and 2 (hypotheses)
We test

Steps 1 and 2 (hypotheses)

We test

$$H_0$$
 : $\mu_B = \mu_A$ against

Steps 1 and 2 (hypotheses)

We test

$$H_0$$
 : $\mu_B = \mu_A$ against

 H_1 : $\mu_B \neq \mu_A$

Step 3 (test statistic)

Step 3 (test statistic)

$$z = \frac{|\bar{x}_B - \bar{x}_A|}{\sqrt{\frac{\sigma_B^2}{n_B} + \frac{\sigma_A^2}{n_A}}}$$

Step 3 (test statistic)

$$z = \frac{|\bar{x}_B - \bar{x}_A|}{\sqrt{\frac{\sigma_B^2}{n_B} + \frac{\sigma_A^2}{n_A}}}$$
$$= \frac{|5 - 4.5|}{\sqrt{\frac{1.5}{50} + \frac{2}{45}}}$$

Step 3 (test statistic)

$$z = \frac{|\bar{x}_B - \bar{x}_A|}{\sqrt{\frac{\sigma_B^2}{n_B} + \frac{\sigma_A^2}{n_A}}}$$
$$= \frac{|5 - 4.5|}{\sqrt{\frac{1.5}{50} + \frac{2}{45}}}$$
$$= 1.833$$

Step 4 (p-value)

We used a two-tailed alternative; using table 2.2, we get:

Step 4 (p-value)

We used a **two-tailed** alternative; using table 2.2, we get:

Significance level	10%	5%	1%
Critical value	1.645	1.96	2.576

Step 4 (p-value)

We used a **two-tailed** alternative; using table 2.2, we get:

Significance level	10%	5%	1%
Critical value	1.645	1.96	2.576

Since z = 1.833 lies between 1.645 and 1.96, our p-value lies between 5% and 10%.

Step 5 (conclusion)

Using table 2.1 (last week), this means that:

Step 5 (conclusion)

Using table 2.1 (last week), this means that:

• we have slight evidence against H_0

Step 5 (conclusion)

Using table 2.1 (last week), this means that:

- we have slight evidence against H_0
- This is not small enough to reject H_0 , and so we retain H_0

Step 5 (conclusion)

Using table 2.1 (last week), this means that:

- we have slight evidence against H_0
- This is not small enough to reject H_0 , and so we retain H_0
- There is insufficient evidence to suggest that the training has had any affect on the average duration of a call.

In the more likely situation where the population variances are unknown, the test statistic becomes

In the more likely situation where the population variances are unknown, the test statistic becomes

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

In the more likely situation where the population variances are unknown, the test statistic becomes

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

where s is a "pooled standard deviation", and is found as

In the more likely situation where the population variances are unknown, the test statistic becomes

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

where s is a "pooled standard deviation", and is found as

$$s = \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}.$$

In the more likely situation where the population variances are unknown, the test statistic becomes

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

where s is a "pooled standard deviation", and is found as

$$s = \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}.$$

Like before, we have to use t-tables to obtain our critical value; the degrees of freedom is now found as $\nu = n_1 + n_2 - 2$.

A company is interested in knowing if two branches have the same level of average transactions. The company sample a small number of transactions and calculates the following statistics:

Shop 1 |
$$\bar{x}_1 = 130$$
 $s_1^2 = 700$ $n_1 = 12$
Shop 2 | $\bar{x}_2 = 120$ $s_2^2 = 800$ $n_2 = 15$

Test whether or not the two branches have (on average) the same level of transactions.

Steps 1 and 2 (hypotheses)

Our null and alternative hypotheses are:

Steps 1 and 2 (hypotheses)

Our null and alternative hypotheses are:

$$H_0$$
 : $\mu_1 = \mu_2$ versus

Steps 1 and 2 (hypotheses)

Our null and alternative hypotheses are:

 H_0 : $\mu_1 = \mu_2$ versus

 $H_1 : \mu_1 \neq \mu_2.$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

$$s = \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
$$= \sqrt{\frac{11 \times 700 + 14 \times 800}{25}}$$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
$$= \sqrt{\frac{11 \times 700 + 14 \times 800}{25}}$$
$$= \sqrt{\frac{7700 + 11200}{25}}$$

Step 3 (calculating the test statistic)

Since both population variances are unknown (only the *sample* values are given), the test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
$$= \sqrt{\frac{11 \times 700 + 14 \times 800}{25}}$$
$$= \sqrt{\frac{7700 + 11200}{25}}$$
$$= 27.495.$$

$$t = \frac{|130 - 120|}{27.495 \times \sqrt{\frac{1}{12} + \frac{1}{15}}}$$

$$t = \frac{|130 - 120|}{27.495 \times \sqrt{\frac{1}{12} + \frac{1}{15}}}$$
$$= \frac{10}{27.495 \times \sqrt{0.15}}$$

$$t = \frac{|130 - 120|}{27.495 \times \sqrt{\frac{1}{12} + \frac{1}{15}}}$$
$$= \frac{10}{27.495 \times \sqrt{0.15}}$$
$$= \frac{10}{10.649}$$

$$t = \frac{|130 - 120|}{27.495 \times \sqrt{\frac{1}{12} + \frac{1}{15}}}$$
$$= \frac{10}{27.495 \times \sqrt{0.15}}$$
$$= \frac{10}{10.649}$$
$$= 0.939.$$

Step 4 (finding the p-value)

Since both population variances are unknown, we use t-tables to obtain our critical value.

The degrees of freedom is

$$\nu = n_1 + n_2 - 2$$
 i.e
 $= 12 + 15 - 2$
25.

Step 4 (finding the p-value)

Since both population variances are unknown, we use t-tables to obtain our critical value.

The degrees of freedom is

$$\nu = n_1 + n_2 - 2$$
 i.e
 $= 12 + 15 - 2$
25.

Under a two-tailed test, and using table 2.3, we get the following critical values:

Step 4 (finding the p-value)

Since both population variances are unknown, we use t-tables to obtain our critical value.

The degrees of freedom is

$$\nu = n_1 + n_2 - 2$$
 i.e
 $= 12 + 15 - 2$
25.

Under a two-tailed test, and using table 2.3, we get the following critical values:

Significance level	10%	5%	1%
Critical value	1.708	2.060	2.787

Step 4 (finding the p-value)

Since both population variances are unknown, we use t-tables to obtain our critical value.

The degrees of freedom is

$$\nu = n_1 + n_2 - 2$$
 i.e
 $= 12 + 15 - 2$
25.

Under a two-tailed test, and using table 2.3, we get the following critical values:

Significance level	10%	5%	1%
Critical value	1.708	2.060	2.787

Our test statistic t = 0.939 lies to the left of the first critical value, and so our p-value is bigger than 10%.

Step 5 (conclusion)

Using table 2.1, we see that, since our p-value is larger than 10%, we have no evidence to reject the null hypothesis. Thus, we retain H_0 and conclude that there is no significant difference between the average level of transactions at the two shops.