
Lecture 3

HYPOTHESIS TESTS

FOR TWO MEANS
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Mean St. dev. Median IQR 95% CI Missing

89.9 10.2 94.0 11.1 (89.1, 90.9) 27
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If we have two independent random samples from two

populations, we can compare the two sample means in a test for
two means (c.f. comparing one sample mean to a proposed value
in the one–sample case).
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We use the same framework for hypothesis testing as for the
one–sample tests:

1. State the null hypothesis, H0;

2. State the alternative hypothesis, H1;

3. Calculate a test statistic;

4. Find the p–value, and

5. Use table 2.1 to form your conclusions.

However, the calculations required for the test statistic in step 3
are slightly different.
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4. Find the p–value

This is found from statistical tables; since, in this case, both
population variances σ2

1
and σ2

2
are known, we refer to

standard normal tables.

As before, we find a range for our p–value by comparing our
test statistic to the 10%, 5% and 1% critical values.



5. Form a conclusion

Exactly the same again! Use table 2.1 to help you decide
what to do! Word your conclusions in the context of the
original question.



Example (page 25)

Before a training session for call centre employees a sample of 50
calls to the call centre had an average duration of 5 minutes,
whereas after the training session a sample of 45 calls had an
average duration of 4.5 minutes.

The population variance is known to have been 1.5 minutes before
the course and 2 minutes afterwards.

Has the course been effective?
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Step 4 (p–value)
We used a two–tailed alternative; using table 2.2, we get:

Significance level 10% 5% 1%

Critical value 1.645 1.96 2.576

Since z = 1.833 lies between 1.645 and 1.96, our p–value lies
between 5% and 10%.
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Step 5 (conclusion)
Using table 2.1 (last week), this means that:

we have slight evidence against H0

This is not small enough to reject H0, and so we retain H0

There is insufficient evidence to suggest that the training has
had any affect on the average duration of a call.
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In the more likely situation where the population variances are
unknown, the test statistic becomes

t =
|x̄1 − x̄2|
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where s is a “pooled standard deviation”, and is found as
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2
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Like before, we have to use t–tables to obtain our critical value;
the degrees of freedom is now found as ν = n1 + n2 − 2.



Example (page 26)

A company is interested in knowing if two branches have the same
level of average transactions. The company sample a small number
of transactions and calculates the following statistics:

Shop 1 x̄1 = 130 s2

1
= 700 n1 = 12

Shop 2 x̄2 = 120 s2

2
= 800 n2 = 15

Test whether or not the two branches have (on average) the same
level of transactions.
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Step 4 (finding the p–value)
Since both population variances are unknown, we use t–tables to
obtain our critical value.

The degrees of freedom is

ν = n1 + n2 − 2 i.e

= 12 + 15 − 2

25.

Under a two–tailed test, and using table 2.3, we get the following
critical values:

Significance level 10% 5% 1%

Critical value 1.708 2.060 2.787

Our test statistic t = 0.939 lies to the left of the first critical value,
and so our p–value is bigger than 10%.
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Step 5 (conclusion)
Using table 2.1, we see that, since our p–value is larger than 10%,
we have no evidence to reject the null hypothesis. Thus, we retain
H0 and conclude that there is no significant difference between the
average level of transactions at the two shops.


