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– Group D: Thursday 9, Agriculture Clement Stephenson LT

– Group E: Thursday 12, Herschel LT1
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A Minitab practical will take the place of the tutorial in week 7



New arrangements for 2009

There will be three CBAs

There will be one written assignment over the Easter holidays

There will be an exam at the end of Semester 2 covering material
from the entire year !

You should refer to the week–by–week schedule for this course
for CBA/assignment deadlines, computer practicals etc. etc.



Lecture 1

ESTIMATION
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Recall that data can be summarised in two ways:

1. Graphical summaries

Stem–and-leaf plots;

Bar charts;

Histograms;

Relative frequency histograms;

Frequency polygons.
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2. Numerical summaries

Measures of location

(i) Sample mean;
(ii) Sample median;
(iii) Sample mode.

Measures of spread

(i) Range;
(ii) Variance (and standard deviation);
(iii) Interquartile range.
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What does our sample tell us about the population?

We can rarely observe the entire population, so the
population mean and population variance are hardly ever
known exactly ;

These unknown quantities are called parameters;

We use Greek letters to denote them – µ for the mean, and
σ2 for the variance (and so σ for the standard deviation);

We hope that the sample mean (x̄) will be quite close to the
true mean (µ);

But how do we know if it is?
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call this x̄1;

Let x1, x2, . . . , xn be a random sample from another N(µ, σ2)
distribution. We can calculate the mean from this sample too
– call this x̄2;

We can calculate the means from many samples, and look at
the distribution of the x̄ ’s!















It turns out that, if the populations from which the samples
were drawn follow normal distributions, then the x̄ ’s will also
follow a normal distribution; in fact,
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It turns out that, if the populations from which the samples
were drawn follow normal distributions, then the x̄ ’s will also
follow a normal distribution; in fact,

x̄ ∼ N(µ, σ2/n).

The Central Limit Theorem goes one step further and says
that, if n is large, then this result will (approximately) hold no
matter what the ‘parent’ population distribution!
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Interval estimation

x̄ is a point estimate of the population mean µ. We can improve
estimation by constructing an interval estimate.

To construct such an interval, we first calculate the sample
mean x̄ ;

We then go a little bit to the left of x̄ and a little bit to the
right of x̄ to create an interval to (hopefully!) ‘capture’ µ;

It’s more likely that µ will fall within this interval than exactly
‘on top of’ the point estimate.





















But how much do we go to the left and right? This depends on:

(i) The size of our sample;

(ii) How ‘confident’ we want to be that our interval captures µ,
and

(iii) What (if anything) we know about the population.
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Construction of a confidence interval

We know from the Central Limit Theorem that

x̄ ∼ N

(

µ,
σ2

n

)

;

We can ‘standardise’ x̄ , using “slide–squash”, i.e.

Z =
x̄ − µ
√

σ2/n
,

where Z ∼ N(0,1).
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We know that (from tables)

Pr(–1.96 < Z < 1.96) = 0.95;

We can think about this graphically:

Thus,

Pr

(

–1.96 <
x̄ − µ
√

σ2/n
< 1.96

)

= 0.95;
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Construction of a confidence interval

Rearranging the LHS, we get

Pr

(

x̄ − 1.96 ×

√

σ2/n < µ < x̄ + 1.96 ×

√

σ2/n

)

.

If we want a 99% confidence interval, the only thing that will
change is the value 1.96.



Case 1: Known variance σ
2

If we know the population variance σ2, we can just bung our
numbers into the formula on the previous slide! Remember, the
(95%) confidence interval is

x̄ ± 1.96 ×

√

σ2/n,

where

x̄ is the sample mean;

σ2 is the population variance, and

n is the sample size.



Example 1 (page 5)

A coffee machine fills cups with hot water; the variance of the
filling process is known to be σ2 = 10ml.

A sample of 100 filled cups gives a sample mean and we have
calculated a sample mean of x̄ = 40ml.

What is the 95% confidence interval of the population mean µ?
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Example 1 (page 5)

We already have a formula for the 95% confidence interval:

x̄ ± 1.96
√

σ2/n.

So, inputting our values, we get

40 ± 1.96
√

10/100, i.e.

40 ± 0.61.

Hence, the 95% confidence interval for the population mean µ is
(39.39, 40.61).
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What would happen if the sample size increased to 200 and
everything else remained the same? We’d get

40 ± 1.96
√

10/200, i.e.

40 ± 0.44.

Hence, the 95% confidence interval for the population mean µ is
(39.56, 40.44).

This should be intuitive, since as the sample size increases we are
becoming more sure of our estimate for the population value.
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Example 1 (page 5)

What would be the 99% confidence interval in this case? From
tables for the standard normal distribution, we can find that

Pr(−2.58 < Z < 2.58) = 0.99;

hence, the 99% confidence interval is given by

x̄ ± 2.58
√

σ2/n,

in this case giving

40 ± 2.58
√

10/200, i.e.

40 ± 0.58.

Hence, the 99% confidence interval for the population mean µ is
(39.42, 40.58).
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t–distribution.
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Case 2: Unknown variance σ
2

If the population variance is unknown (which is usually the case),
the quantity

T =
x̄ − µ
√

s2/n

does not have a N(0,1) distribution, but a Student’s
t–distribution.

This is similar to the normal distribution (i.e. symmetric and
bell–shaped), but is more ‘heavily tailed’;

The t–distribution has one parameter, called the “degrees of
freedom” (ν = n − 1).
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So if we don’t know σ2, the formula for the confidence interval
becomes:

x̄ ± tp ×

√

s2/n.

We find tp from statistical tables (table 1.1 in the notes). We read
along the p column and down the ν row.



So if we don’t know σ2, the formula for the confidence interval
becomes:

x̄ ± tp ×

√

s2/n.

We find tp from statistical tables (table 1.1 in the notes). We read
along the p column and down the ν row.

For a 90% confidence interval, p = 10%;

For a 95% confidence interval, p = 5%;

For a 99% confidence interval, p = 1%.

The degrees of freedom, ν = n − 1.



Example 2 (page 7)

A sample of size 15 is taken from a larger population; the sample
mean is calculated as 12 and the sample variance as 25. What is
the 95% confidence interval for the population mean µ?
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We know that the confidence interval is given by

x̄ ± tp ×

√

s2/n,

where

n = 15,

x̄ = 12 and

s2 = 25.

Also, to find t, we know that

ν = n − 1 = 15 − 1 = 14 and

p = 5%.
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Example 2 (page 7)

We can find our t value by looking in the p = 5% column and the
ν = 14 row, giving a value of 2.145.

Putting what we know into our expression, we get

12 ± t5% ×

√

25

15

12 ± 2.145 ×

√

25

15
i.e.

12 ± 2.77.

Hence, the confidence interval is (9.23, 14.77).
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Case 1: Known population variance σ
2

(i) Calculate the sample mean x̄ from the data;

(ii) Calculate your interval! For example,
for a 90% confidence interval, use the formula

x̄ ± 1.64 ×

√

σ2/n;

for a 95% confidence interval, use the formula

x̄ ± 1.96 ×

√

σ2/n;

for a 99% confidence interval, use the formula

x̄ ± 2.58 ×

√

σ2/n.
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(ii) For a 100(1 − p)% confidence interval, look up the value of t

under column p, row ν of table 1.1, remembering that
ν = n − 1.
Note that, for a 90% confidence interval, p = 10%, for a 95%
confidence interval, p = 5% and for a 99% confidence
interval, p = 1%;



Confidence intervals: a general approach

Case 2: Unknown population variance σ
2

(i) Calculate the sample mean x̄ and the sample variance s2 from
the data;

(ii) For a 100(1 − p)% confidence interval, look up the value of t

under column p, row ν of table 1.1, remembering that
ν = n − 1.
Note that, for a 90% confidence interval, p = 10%, for a 95%
confidence interval, p = 5% and for a 99% confidence
interval, p = 1%;

(iii) Calculate your interval, using

x̄ ± tp ×

√

s2/n.
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could suggest that there is something different about this
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Application of Confidence Intervals

You might be asking: “why do we bother calculating confidence
intervals?”.

By calculating a confidence interval for the population mean,
it allows us to see how confident we are of the point estimate
we have calculated. The wider the range, the less precise we
can be about the population value.

If we have a known (or target) value for a population and this
does not fall within the confidence interval of our sample, this
could suggest that there is something different about this
sample.

It allows us to start looking at differences between groups. If
the confidence intervals for two samples do not overlap, this
could suggest that they are from separate populations.



Example 1.4.1 (page 9)

A credit card company wants to determine the mean income of its
card holders. It also wants to find out if there are any differences
in mean income between males and females.

A random sample of 225 male card holders and 190 female card
holders was drawn, and the following results obtained:

Mean Standard deviation

Males £16 450 £3675
Females £13 220 £3050

Calculate 95% confidence intervals for the mean income for males
and females. Is there any evidence to suggest that, on average,
males’ and females’ incomes differ? If so, describe this difference.
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2 and need to use the t distribution. Thus,
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95% confidence interval for male income
The true population variance, σ2, is unknown, and so we have case
2 and need to use the t distribution. Thus,

x̄ ± tp ×

√

s2/n.

Here,

x̄ = 16450,

s2 = 36752 = 13505625 and

n = 225.
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Example 1.4.1 (page 9)

The value tp must be found from table 1.1.

Recall that the degrees of freedom, ν = n − 1, and so here we
have ν = 225 − 1 = 224;

But table 1.1 only gives value of ν up to 29; for higher values,
we use the ∞ row;

Since we require a 95% confidence interval, we read down the
5% column, giving a t value of 1.96.
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Thus, the 95% confidence interval for µ is found as

16450 ± 1.96 ×

√

13505625/225, i.e.

16450 ± 480.2.

So, the 95% confidence interval is (£15969.80,£16930.20).
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have case 2. Thus,
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95% confidence interval for female income
Again, the true population variance, σ2, is unknown, and so we
have case 2. Thus,

x̄ ± tp ×

√

s2/n.
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95% confidence interval for female income
Again, the true population variance, σ2, is unknown, and so we
have case 2. Thus,

x̄ ± tp ×

√

s2/n.

Now,

x̄ = 13220,

s2 = 30502

= 9302500, and

n = 190.
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Again, since the sample size is large, we use the ∞ row of table
1.1 to obtain the value of tp, giving:
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Again, since the sample size is large, we use the ∞ row of table
1.1 to obtain the value of tp, giving:

13220 ± 1.96 ×

√

9302500/190, i.e.

13220 ± 1.96 × 221.27, i.e.

13220 ± 433.69.

So, the 95% confidence interval is (£12786.31,£13653.69).
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Since the 95% confidence intervals for males and females do not

overlap, there is evidence to suggest that males’ and females’
incomes, on average, are different.

Further, it appears that male card holders earn more than women.


