A Statistical Analysis of Speed Camera Data

Lee Fawcett and Neil Thorpe

Newcastle University

ASP seminar: Monday 17th October 2011

Structure of this talk

1. Background

- Speed cameras in the U.K.
- Regression to the mean (RTM)
- Empirical Bayes approach

2. Application

- Empirical Bayes versus Full Bayes
- Healthcare implications
- Further modelling

3. Reviewers' comments

All help welcome!

Background

- 1996: Government report: road safety cameras effective weapon in reducing casualty figures
- High implementation/running costs
- 1998: Government allowed traffic authorities to recover these costs via speeding fines
- 2000 paper: Speed cameras an important part of the government's 2010 casualty reduction targets
- April 2000: two year pilot programme involving eight road safety camera partnerships (SCPs)
- Results at the end of 2000 prompted an earlier-than-expected national roll-out of SCPs

Northumbria SCP

NSCP

- Joined the national programme in April 2003
- 56 mobile speed camera sites
- 'before' period (April 2001–March 2003) vs 'after' period (April 2004–March 2006)

Aims:

- To investigate changes in the number/severity of casualties
- To investigate changes in cost-of-treatment estimates

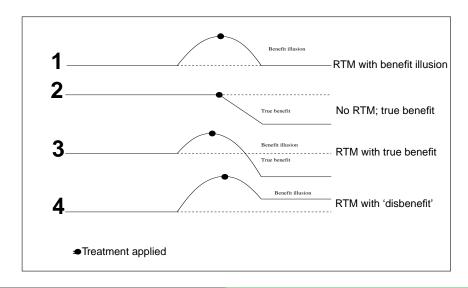
Regression To [the] Mean (RTM)

The 56 sites were chosen because of their unusually high casualty history ("blackspots").

The number of casualties is bound to decrease in any 'after' period, "...even if a garden gnome is used instead of a speed camera" (Paul Smith, SafeSpeed)

- Main consequence: 'before' versus 'after' will probably exaggerate the treatment effect
- Studies have shown that a reduction owing to RTM of between 20–30% is common

Regression To [the] Mean (RTM)



[The modelling framework I am about to describe was suggested in the early 1980s (e.g. Hauer, 1980) and has become the 'gold standard' in the road safety literature]

Let $y_{j,\text{before}}$ be the casualty frequency at site j in the before period. Then let

$$y_{j, \text{before}} | m_j \sim \text{Poisson}(m_j),$$

where m_j itself has a gamma distribution with mean μ_j and variance μ_i^2/γ .

This Poisson–Gamma specification gives a posterior for $m_j|y_{jbefore}$ that is also of gamma form:

$$m_i | y_{i, \text{before}} \sim \text{Gamma}(\gamma + y_{i, \text{before}}, \gamma / \mu_i + 1).$$

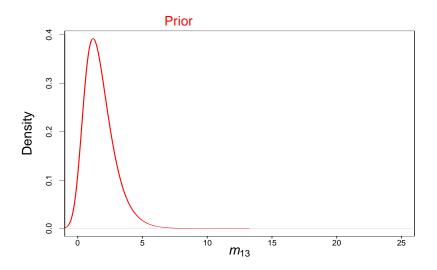
The mean of this posterior is then

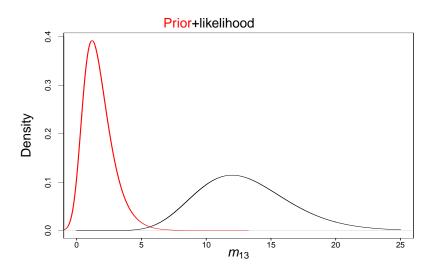
$$E[m_{j}|y_{j,\text{before}}] = \frac{\gamma + y_{j,\text{before}}}{\gamma/\mu_{j} + 1}$$

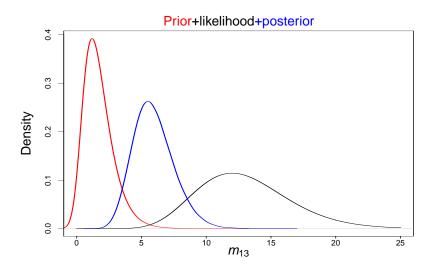
$$= \alpha_{j}\mu_{j} + (1 - \alpha_{j})y_{j,\text{before}}, \qquad (1)$$

where

$$\alpha_j = \gamma/(\gamma + \mu_j), \quad 0 \le \alpha_j \le 1.$$







Estimating μ_j

A generalised linear modelling approach can be used to build a predictive accident model (PAM) for the prior mean μ_j , where data from non–treatment sites are used to estimate the regression coefficients:

$$\hat{\mu}_j = \exp\left\{\hat{\beta}_0 + \sum_{\rho=1}^{n_\rho} \hat{\beta}_\rho x_{\rho_j}\right\}.$$

Problem: are treatment/non-treatment sites exchangeable?

Estimating γ

The unconditional distribution of $y_{j,before}$, found by integrating the posterior with respect to m_i , is negative binomial with

- \blacksquare mean μ_j ;
- variance $\mu_j + \kappa \mu_j^{2*}$.

The variance can be estimated by the squared residuals from the regression model, and thus an estimate of γ obtained.

From this, we can get an estimate of the weight α_j and thus the EB estimate of casualty frequency via Equation (1).

 $^{^*\}kappa = 1/\gamma$ is the negative binomial 'over-dispersion' parameter

Application of Empirical Bayes

From 67 (non–speed camera) sites in Northumbria, we were given data relating to:

- x₁: Speed limit (mph)
- x₂: Average observed speed (mph)
- x₃: 85th percentile speed (mph)
- x₄: % of drivers over the speed limit
- x₅: % of drivers at least 15mph over the speed limit
- x₆: Daily traffic flow
- x₇: Road classification (A, B, C, U)
- *x*₈: Road type (single/dual/mixed)

Standard regression techniques were used to obtain the PAM.

Application of Empirical Bayes

- x₂: Average observed speed (mph)
- x₄: % of drivers over the speed limit
- x₆: Daily traffic flow
- \blacksquare x_7 : Road classification (A, B, C, U)

This gives:

$$\hat{\mu}_j = \exp\big\{1.93 - 0.04\textit{x}_{2_j} - 0.01\textit{x}_{4_j} + 0.44\textit{x}_{6_j} + 0.67\textit{I}_{1_j} + 0.85\textit{I}_{2_j} + 1.06\textit{I}_{3_j}\big\}$$

EB estimates of casualty frequency

This PAM was then used to estimate μ_j , j = 1, ..., 56, for each of our speed camera sites...

... and hence we obtain the EB estimate of casualty frequency for each of these sites, giving results like:

	<i>y</i> _{j,before}	μ_{j}	α_{j}	EB	y _{j,after}
:	:	:	:	:	:
Site 13	12	1.71	0.59	5.95	2
:	:	:	:	:	:
Site 47	16	7.84	0.24	14.06	5
:	:	:	:	:	:
Total	436			321	298

Site 13: Observed change: -10; after RTM: -4

Total: Observed change: -138; after RTM: $-23 \rightarrow 26.4\%$ RTM.

Fully Bayesian analysis

Initially, exactly the same model structure as the EB analysis.

However, we now unify the entire modelling procedure by assigning independent prior distributions to the regression coefficients:

$$\beta_i \sim N(0, v_{\beta_i}), \qquad i = 0, \ldots, n_p,$$

and

$$\log(\kappa) \sim N(0, v_{\kappa}),$$

using large v_{-} to represent non–informative priors.

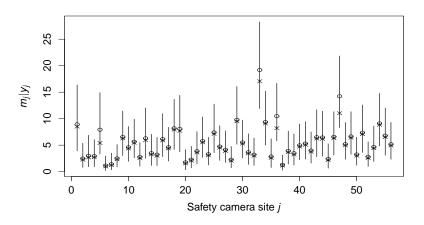
MCMC sampling scheme

- Initialise β_i and $\log(\kappa)$ at their prior means
- Use random walk Metropolis—Hastings scheme to update
- At each iteration R:
 - 1. use $\beta_i^{(R)}$ to estimate $\mu_j^{(R)}$ at each speed camera site j;
 - 2. use the current values $\mu_j^{(R)}$ and $\gamma^{(R)} = 1/\kappa^{(R)}$ as the mean and shape of the gamma prior for m_i ;
 - 3. now use Gibbs sampling for straightforward sampling from the full conditional distribution for m_i
- Run for a million iterations (from many starting points to check convergence)

Results

			Posterior f	for <i>m_j</i>
	Mean	St. dev.	Median	95% credible interval
:	:	:	i	:
Site 2	2.47	1.19	2.26	(0.78, 5.37)
	2.38	0.936	_	_
:	:	:	÷	:
Site 13	6.28	2.45	5.945	(2.50, 12.04)
	5.95	1.56	_	_
:	:	:	÷	<u>:</u>
Site 47	14.23	3.47	11.03	(8.32, 21.84)
	14.06	3.27	_	_
:	<u> </u>	:	÷	<u>:</u>
Total T	322	23.83	308	(289.92, 369.97)

Results



Implications for healthcare demand

If the speed cameras 'saved' $(T - \sum_{\forall j} y_{j,after})$ casualties, what would these have cost the NHS, in terms of treatment?

- Each A&E admission falls into one of 8 Health Resource Group (HRG) tarrifs:
 - 'High cost' e.g. patients requiring CT or MRI scans, to
 - 'Low cost' e.g. routine urine/bacteriological investigations
 - Each HRG has an associated financial tarrif
- If an A&E admission then becomes an inpatient admission:
 - there are over 700 inpatient HRGs
 - total inpatient costs are mainly a function of time
 - we break inpatient costs into financial groups of £500

Implications for healthcare demand

- 1. Consider each A&E HRG/Inpatient tarrif category combination τ as a multinomial outcome with associated financial tarrif $\mathfrak{L}C_{\tau}$
- 2. probabilities p_{τ} are just the observed proportions falling into each τ in the 'before' period (found via a difficult data linkage exercise)

Implications for healthcare demand

- **3.** Estimate of the number of casualties that *would have* fallen into each category τ obtained by multiplying p_{τ} by the total change in casualty frequency after RTM
- 4. Overall financial saving £S:

$$\mathbb{E}(S) = \left(\sum_{j=1}^{56} \mathbb{E}(m_j|y_j) - y_{j,\text{after}}\right) \sum_{\forall \tau} p_{\tau} C_{\tau},$$

in the EB analysis; in the FB analysis, at each iteration *R* we find

$$\mathcal{S}^{(R)} = \left(\mathcal{T}^{(R)} - \sum_{j=1}^{56} y_{j, \mathsf{after}} \right) \sum_{orall_{ au}} p_{ au} C_{ au}$$

Results

			Posterior				
	Thousand £	Empirical Bayes	Mean	St. dev.	Median	95% credible interval	
	Midpoint	25.6	24.9	13.2	24.4	(0.3, 57.5)	
S	Minimum	23.5	22.8	12.1	22.3	(0.1, 52.5)	
	Maximum	27.7	27.1	14.4	26.5	(0.6, 62.5)	
S	*	1215.6	1529.8	786.3	1479.8	(45.6, 4122.3)	

Results

Message to the road safety people

- The standard (EB) approach to account for RTM is over-optimistic in its estimation of the variability in casualty frequency
- A fully Bayesian analysis gives a more complete inferential procedure...
- ... providing an easy, convenient way of summarising the posterior
- A fully Bayesian analysis also allows us to:
 - easily try out other (possibly more realistic) non–conjugate priors for m_i;
 - consider more complex model structures.

Sensitivity to other priors

We examined the sensitivity of our results to the choice of prior for m_i by considering

- $m_i \sim \text{lognormal(mean} = \lambda_i, \text{variance} = \sigma^2)$, and
- $m_j \sim \text{Weibull(shape} = \omega, \text{scale} = \nu_j)$,

choosing (λ_j, σ^2) and (ω, ν_j) so as to allow relative comparisons with the original gamma prior.

Results

	EB	Gamma Mean Median		Lognormal Mean Median		Weibull Mean Median		
		(95%	% CI)	(95%	6 CI)	(95)	% CI)	
T	321	322	308	355	338	317	303	
		(290	(290, 370)		(309, 394)		(296, 371)	
RTM (%)	-26.4	-26.5	-29.7	-18.9	-22.8	-27.6	-30.8	
		(-35.6)	, -14.2)	(-26.3)	3, -9.0)	(-39.3	3, -15.3	
S (thousand £)	25.6	24.9	24.4	29.3	29.3	25.3	24.9	
		(0.3, 57.5)		(6.1,	73.5)	(0.7	,70.9)	
S* (thousand £)	1215.6	1529.8	1479.8	2803.0	2801.0	986.3	951.3	
		(45.6, 4122.3)		(581.4, 5126.5)		(69.1,	4910.9)	

- Some agreement between Gamma and Weibull priors
- Lognormal prior: less reduction due to RTM → greater treatment effect → greater financial savings due to the cameras
- DIC suggests Weibull most appropriate
- Need for more careful prior elicitation!

Independent Normal priors, i.e.

$$\beta_i \sim N(0, v_{\beta_i}), \qquad i = 0, \ldots, n_p,$$

probably not the best! How can we improve on this? Difficult.

1. Data augmentation prior? Use

$$\boldsymbol{\beta}_{\backslash 0, n_p} \sim N_{n_p} \left(\boldsymbol{0}, \boldsymbol{n} (\boldsymbol{X}_{n_p}^T \boldsymbol{X}_{n_p})^{-1} \right),$$

and a vague prior for β_0 (as before).

2. Conditional mean prior?

- Elicit a prior on $\tilde{\mathbf{M}} = (\tilde{M}_1, \dots, \tilde{M}_{n_p})$, where the \tilde{M}_p 's are mean responses at covariates \mathbf{x}_p , $p = 1, \dots, n_p$;
- Denote by $\tilde{\mathbf{X}}$ the matrix with \mathbf{x}_{p}^{T} in the *i*th row;
- Following the notation of Bedrick *et al.* (1996), **G** and **G**⁻¹ are vector transformations that apply g and g^{-1} to each element e.g. $g(\cdot) = \log(\cdot)$ or $g(\cdot) = \log(t(\cdot))$;
- Assessing the \tilde{M}_p 's independently, the conditional mean prior is

$$\pi_0(\tilde{\mathbf{M}}) = \prod_{p=1}^{n_p} \pi_{0_p}(\tilde{M}_p).$$

Writing

$$ilde{\mathbf{M}} = \mathbf{G}^{-1}(ilde{\mathbf{X}}eta_{\setminus 0, n_p}) \qquad ext{and} \qquad eta_{\setminus 0, n_p} = ilde{\mathbf{X}}^{-1}\mathbf{G}(ilde{\mathbf{M}})$$

induces a prior on β of the form

$$\pi(\boldsymbol{\beta}_{\backslash 0, n_p}) = \prod_{p=1}^{n_p} \pi_{0_p} g^{-1}(\tilde{\boldsymbol{x}}_p^T \boldsymbol{\beta}_{\backslash 0, n_p}) / |\tilde{\boldsymbol{X}}^{-1}| \prod_{p=1}^{n_p} \dot{g}(\tilde{M}_p).$$

To implement the conditional mean prior, we need means a_i and variances b_p for each mean response \tilde{M}_p at covariate \mathbf{x}_p , $p = 1, \dots, n_p$.

A regression analysis from a previous study of casualty frequencies at another group of sites in the Northumbria region gives a regression equation of the form

$$\mu = \exp\left\{\beta_0 + \sum_{p=1}^{n_p} \beta_p x_{p_j}\right\}.$$

Covariates at n_p of these sites can then be used to suggest means a_p and variances b_p , and suitable priors for \tilde{M}_p proposed around these.

			Gamma		Lognormal		Weibull	
	a _i	b_i	Shape	Scale	Mean	Variance	Shape	Scale
\tilde{M}_1	9.93	11.63	8.48	0.85	2.24	0.11	3.20	11.09
\tilde{M}_2	2.77	1.64	4.68	1.69	0.92	0.19	2.29	3.13
\tilde{M}_3	3.59	3.10	4.16	1.16	1.17	0.22	2.15	4.05
\tilde{M}_4	3.12	1.87	5.21	1.67	1.05	0.18	2.43	3.52
\tilde{M}_5	8.19	6.25	10.73	1.31	2.06	0.09	3.64	9.08
\tilde{M}_6	5.42	3.79	7.75	1.43	1.63	0.12	3.04	6.07

Effect of using more informed priors: Greater posterior precision.

Trend?

Casualty figures for the Northumbria region reveal that:

- Since the mid–1970s, overall casualty figures have fallen by around 2% per year;
- Since 2005, the number of (reported) 'slight' casualties has increased by about 0.5% per year.

Thus, we now specify the following modified form for μ_i :

$$\mu_j = \xi \exp \left\{ eta_0 + \sum_{p=1}^{n_p} eta_p \mathbf{x}_{p_j}
ight\},$$

where ξ is a trend effect constant across all sites j.

Since the difference between the mid–points of the before and after periods is 3 years (2002 \rightarrow 2005), we use:

$$\xi \sim U(0.94, 1.015).$$

Results

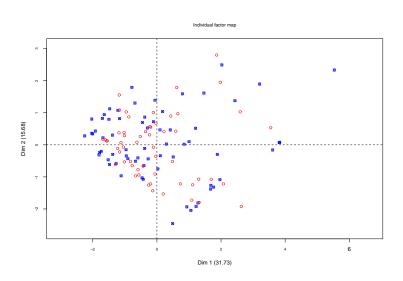
				Posterio	r
		Mean	St. dev.	Median	95% credible interval
T	without trend	327	25.528	313	(285, 354)
	with trend	323	25.709	309	(273, 340)
S	without trend	30.9	14.092	30.9	(0.9, 58.5)
	with trend	28.7	14.192	28.8	(0.9, 56.6)
S*	without trend	1541.5	349.136	1541.7	(72.6, 4183.2)
	with trend	1318.5	358.725	1324.5	(68.5, 3979.6)

"Technique used only valid if reference sites and treatment sites can be considered exchangeable...

Principal Components Analysis/Multiple Factor Analysis on

		<i>X</i> ₁	X 2		x 8
	Site 1				
Reference	: Site 67 Site 1	:	÷	•••	:
Treated	: Site 56	:	:		:

Plot scores for first PC against those for second PC, using different plotting character for "reference" and "treated".



 Permutation tests – e.g., we can compare individual variables between treatment and reference sites using:

$$\delta_{\boldsymbol{\rho}} = |\bar{\boldsymbol{x}}_{\boldsymbol{\rho}}^{\text{TRT}} - \bar{\boldsymbol{x}}_{\boldsymbol{\rho}}^{\text{REF}}|, \qquad \boldsymbol{\rho} = 1, \dots, 8.$$

If the treatment and reference sites *are* exchangeable with respect to the explanatory variables, then the values of δ_p would not be significantly different to those obtained after a random allocation of sites to each group.

- Randomly choose N permutations of "reference" and "treated" allocations
- 2. For each permutation Π_k , $k=1,\ldots,N$, find $\delta_p^{(\Pi_k)}$
- 3. Compare δ_p for the "real" allocation to the permutation distribution for δ_p
- 4. A p-value for the hypothesis H_0 : sites are exchangeable can be estimated as the proportion of permutations for which $\delta_p^{(\Pi_k)} \geq \delta_p$

Result: H_0 retained for all covariates.

Can also perform a permutation test on the mean Mahalanobis distance of each site in the treatment set to sites in the reference set:

$$\bar{D} = \frac{1}{56} \sum_{j=1}^{56} \sqrt{(\mathbf{X}_j^{\mathsf{TRT}} - \bar{\mathbf{M}}^{\mathsf{REF}})^T \mathbf{\Sigma}^{-1} (\mathbf{X}_j^{\mathsf{TRT}} - \bar{\mathbf{M}}^{\mathsf{REF}})},$$

where $\bar{\mathbf{M}}^{\text{REF}}=(\bar{x}_1^{\text{REF}},\ldots,\bar{x}_1^{\text{REF}})$ and the covariance matrix Σ has (s,t)-th entry given by $\text{cov}(x_s^{\text{REF}},x_t^{\text{REF}}),\ s,t=1,\ldots,8$.

Result: H_0 retained!

"The authors account for RTM without explaining the terms of the controversy and the reasons why they are favourable to accept RTM...

- Not sure about this one...
- Perhaps look at historical casualty figures for the speed camera sites to check for "blips"?
- "... little in the way of methodological novelties..."
 - Not necessary for Series A?

References

Bedrick, E.J., Christensen, R. and Johnson, W. (1996). A new perspective on priors for generalized linear models. *J. Am. Statist. Ass.*, **51**, pp. 211—218.

Department for Transport (2009). Benefits to Society Arising from Prevention of Road Accidents and Casualties. Department for Transport, London.

Fawcett, L. and Thorpe, N. (2011). Mobile safety cameras: Estimating casualty reductions and the demand for secondary healthcare. *J. Roy. Statist. Soc., Series A: Statistics in Society.* Submitted.

Hauer, E. (1980). Bias-by-selection: overestimation of the effectiveness of safety countermeasures caused by the process of selection for treatment. *Acci. Anal. & Prev.*, **12**, 2, pp. 113—117.