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Simulation studies:

– Monoploy

– Replicating rolls on a die: the binomial distribution

– The distribution of the sample mean: CLT
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We generate a random data point from a simulation grid. Let

A = {The data point lies below the curve}.

Then

Pr[A] =
Area under curve

Area of simulation grid
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∫ b

a
f (x)dx = Pr[A]× Area of simulation grid

≈
[
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Part IX

Kernel Density Estimation



9.1 Introduction
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Figure: (a) Histogram of ten values sampled from a N(0, 1) distribution. (b) Three
different Kernel density estimators. The data are the X’s.



9.2 Definition

A kernel is a non-negative real-valued integrable function K which satisfies the
following two requirements: ∫ ∞

−∞
K (t) dt = 1 (9.1)

and
K (−t) = K (t) for all values of t . (9.2)

Expression 9.1 ensures that the kernel is a pdf, whilst Expression 9.2 makes
the distribution symmetric about 0.
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Figure: (a) The Epanechnikov and Uniform kernels. (b) The triangular and Gaussian
kernel.



9.2 Definition (Standard kernels):

Epanechnikov:

K (t) =

{
3
4 (1− t2) −1 < t < 1

0 otherwise.

Uniform:

K (t) =

{
1
2 −1 < t < 1

0 otherwise.

Triangular:

K (t) =

{
1− |t | −1 < t < 1

0 otherwise.

Gaussian:

K (t) =
1√
2π

e−t2/2 .
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Figure: (a) Plot showing the data. (b) A Gaussian kernel is drawn round each point.
(c) The kernels are combined. (d) The function is scaled to give an area of one.



9.3 The general idea

Kernel density estimation can be summarised in four steps:

1 We have some sample data. In Figure 9.3a we have three points, so
n = 3.

2 Around each of the data points, we draw a kernel. In Figure 9.3b we have
used a Gaussian kernel. However, we could have used a Uniform,
triangular, or Epanechnikov kernel.

3 Next we combine the kernels - the blue dashed line in Figure 9.3c.
4 The final step is to normalise the distribution. In our example, since we

have three points, the total area under the blue dashed curve is 3. Hence,
to recover a density we divide by 3 to get the black curve in Figure 9.3d.
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9.4 Estimation

Let K be a kernel

and suppose our sample contains n values: x1, . . . , xn. Then
our estimate of the true pdf f (x) is

f̂ (x) =
1
n

n

∑
i=1

K (x − xi) . (9.3)

Notice we use K (x − xi), since we draw a kernel around each xi .
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It’s fairly straightforward to see that f̂ (x) is also a pdf, namely
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Example: River Monsters

The data shown below are the lengths (to the nearest cm) of 10 Giant
Groupers caught by expert angler Jeremy Wade for the TV series River
Monsters.

This sample was taken in 2013 in a lake near the Chernobyl nuclear disaster
of 1986. These fish usually grow to around 75cm in length, but genetic
mutations caused by the nuclear explosions are thought to have increased the
size of this species.
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Example: River Monsters

Produce a density plot for these data using the Gaussian kernel.

Let X represent the length of a fish. We have

f̂ (x) =
1
n

n

∑
i=1

K (x − xi) ,

where

K (x − xi) =
1√
2π

exp

{
− (x − xi)2

2

}
.

The range of our data is 94−→106, so let’s plot over the range 90−→110. For
example,

f̂ (90) =
1

10

[
1√
2π

e−(90−101)2/2 + . . . +
1√
2π

e−(90−106)2/2
]

= 0.0000267
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Example: River Monsters

As another example:

f̂ (94) =
1

10

[
1√
2π

e−(94−101)2/2 + . . . +
1√
2π

e−(94−106)2/2
]

= 0.08023.

Also,

f̂ (102) =
1
10

[
1√
2π

e−(102−101)2/2 + . . . +
1√
2π

e−(102−106)2/2
]

= 0.13404.
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Example: River Monsters

This gives:

x f̂ (x) x f̂ (x)
90 0.0000267 101 0.0995432
91 0.0000886 102 0.1340384
92 0.0107983 103 0.1183411
93 0.0484075 104 0.0807319
94 0.0802317 105 0.0546929
95 0.0538066 106 0.0457634
96 0.0354386 107 0.0246539
97 0.0461933 108 0.0054126
98 0.0488910 109 0.0004433
99 0.0515926 110 0.0000138

100 0.0600920



Example: River Monsters

Plotting f̂ (x) against x gives:
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Example: River Monsters

Plotting f̂ (x) against x gives:
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