6.1 Randomness: quantifying uncertainty

@ The concepts of uncertainty and randomness have intrigued humanity for
a long time.

@ The world around us is not deterministic and we are faced continually
with chance occurrences.

@ Uncertainty is inherent in nature; for example, the behaviour of
fundamental physical particles, genes and chromosomes in biology, and
individuals in society under stress or strain.

@ The methodology for exploring uncertainty involves the use of random
numbers.



6.2 Pseudo—random numbers

Suppose we need to obtain a list of random digits 0, 1, 2, ..., 9. How might we
go about this? There are several options:



Fair ten—sided die

If the sides are labelled from 0 to 9 then tosses of this die will yield the required
digits.




Decimal expansion of 7t

Irrational number — decimal expansion goes on forever, with no pattern!



Decimal expansion of 7t

Irrational number — decimal expan

M= 3 1 4 1 5
92653589793

238462643383

279502884197169
39937510582097494

4592307816406286208998




Tosses of a fair coin

Toss a fair coin four times. The following equally likely outcomes could
correspond to the integers shown:



Tosses of a fair coin

Toss a fair coin four times. The following equally likely outcomes could
correspond to the integers shown:

HHHH O|HTHT 5
HHHT 1| HTTH 6
HHTH 2| HTTT 7
HHTT 3 |THHH 8
HTHH 4| THHT 9

The coin has no ‘memory’, and so each block of 4 tosses is independent of
any other. If any outcome other than those listed occurs, we can ignore and
toss a new set of 4.



Tosses of a fair coin

Toss a fair coin four times. The following equally likely outcomes could
correspond to the integers shown:

HHHH O|HTHT 5
HHHT 1| HTTH 6
HHTH 2| HTTT 7
HHTT 3 |THHH 8
HTHH 4| THHT 9

The coin has no ‘memory’, and so each block of 4 tosses is independent of
any other. If any outcome other than those listed occurs, we can ignore and
toss a new set of 4.

This method is rather inefficient as a lot of the time a combination of outcomes
is rejected!



Other physical devices: Wheels of fortune




Other physical devices: Lottery machines




Other physical devices: Gamma ray counters

@ Quantum mechanics predicts that the nuclear decay of atoms is random



Other physical devices: Gamma ray counters

@ Quantum mechanics predicts that the nuclear decay of atoms is random
@ Idea: Use a geiger counter to generate random numbers!



6.2 Pseudo—random numbers

@ Mechanical and electronic devices are not reproducible...



6.2 Pseudo—random numbers

@ Mechanical and electronic devices are not reproducible...
@ So we use Pseudo—-random numbers generators (RNG)



6.2 Pseudo—random numbers

The German Federal Office for Information Security (Bundesamt fiir Sicherheit
in der Informationstechnik, or BSI) has established criteria for quality RNG:
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identical consecutive elements
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sub-sequence, any previous or future values in the sequence
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6.2 Pseudo—random numbers

The German Federal Office for Information Security (Bundesamt fiir Sicherheit
in der Informationstechnik, or BSI) has established criteria for quality RNG:

@ A sequence of random numbers has a high probability of containing no
identical consecutive elements

@ A sequence of numbers which is indistinguishable from ‘true random’
numbers (tested using statistical tests)

© It should be impossible to calculate — or guess — from any given
sub-sequence, any previous or future values in the sequence

© It should be impossible, for all practical purposes, for an attacker to
calculate, or guess, the values used in the random number algorithm

Points 3 and 4 are crucial for many applications.



6.3 Congruential generators

@ Consider the set IN? of non—negative integers



6.3 Congruential generators

@ Consider the set IN? of non—negative integers
@ Thatis,IN° =10,1,2,...
@ Let ‘mod’ represent the modulo operation, so that, for x, m € IN?, x # 0,

(x) mod m means that x is divided by m and the remainder is taken as
the result



6.3.1 Example: modulo operations

@ What is 13 mod 4? Answer =

© What is 19 mod 5? Answer =

© What is 2008 mod 3? Answer =

© What is 10,008 mod 11? Answer =
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© What is 10,008 mod 11? Answer =
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@ Whatis 13 mod 4? Answer = 1.
© What is 19 mod 5? Answer = 4.
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© What is 10,008 mod 11? Answer =



6.3.1 Example: modulo operations

@ Whatis 13 mod 4? Answer = 1.

© What is 19 mod 5? Answer = 4.

© What is 2008 mod 3? Answer = 1.

© What is 10,008 mod 11? Answer = 9.



6.3.1 Example: modulo operations

Now consider the relation

ri= (a1 +b)modm, i=1,2,...,m, (6.1)

where r, is the initial number, known as the seed, and a, b, m € IN? are the
multiplier, additive constant and modulo respectively.



6.3.1 Example: modulo operations

@ The modulo operation means that at most m different numbers can be
generated before the sequence must repeat — namely the integers
0,1,2,...,m—1.



6.3.1 Example: modulo operations

@ The modulo operation means that at most m different numbers can be
generated before the sequence must repeat — namely the integers
0,1,2,...,m—1.

@ The actual number of generated numbers is h < m, called the period of
the generator.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19
rr 13 21 57 41 33 61 37 29 93 81 77 1 17




6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n 13 21 57 69 41 33 61 37 29 93 81 77 117

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0o 1t 2 38 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n 13 21 57 69 73 4 33 61 37 29 93 81 77 117

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n 13 21 57 69 73 41 97 33 61 37 29 93 81 77 1147

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n 13 21 57 69 73 41 97 49 33 61 37 29 93 81 77 117

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
n 13 21 57 69 73 41 97 49 33 61 37 29 93 81 77 9 117

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
n 13 21 57 69 73 41 97 49 33 61 37 29 93 81 77 9 B3 1 17

Let’s try this in R.



6.3.2 Example: Congruential generators

Selectinga =17, b =0, m = 100, r, = 13 in relation (6.1) generates the
following sequence:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n 13 21 57 69 73 41 97 49 33 61 37 29 93 8 77 9 53 1 17 89

Let’s try this in R.



6.3.3 Example: Bad random number generators

@ Inthe 1970’s a popular random generator used was RANDU, where
M = 23" a = 65539 and b = 0.

@ Unfortunately this is a spectacularly bad choice of parameters!



6.3.3 Example: Bad random number generators

@ Inthe 1970’s a popular random generator used was RANDU, where
M = 23" a = 65539 and b = 0.

@ Unfortunately this is a spectacularly bad choice of parameters!
@ On noting that a = 65539 = 26 + 3, then

ri1 = ar = 65539 x r, = (2'° +3)r; .



6.3.3 Example: Bad random number generators

So
fiye = aryr = (2'°+3) xriyg = (2" +3)%r; .

On expanding the square, we get



6.3.3 Example: Bad random number generators

So
fiye = aryr = (2'°+3) xriyg = (2" +3)%r; .

On expanding the square, we get
fiig=(2%46x2%+9)r, =[6(2" +3) —9]r, = 6r,11 — 95

Note: all these calculations should be to the mod 2°'.
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fiye = aryr = (2'°+3) xriyg = (2" +3)%r; .

On expanding the square, we get
fiig=(2%46x2%+9)r, =[6(2" +3) —9]r, = 6r,11 — 95

Note: all these calculations should be to the mod 23'. So there is a large
correlation between the three points! What does this mean in practice?



6.3.3 Example: Bad random number generators

So
fipo=ars = (2" +3) x iy = (2" +3)%r.

On expanding the square, we get
fiig=(2%46x2%+9)r, =[6(2" +3) —9]r, = 6r,11 — 95

Note: all these calculations should be to the mod 23'. So there is a large
correlation between the three points! What does this mean in practice? Well,
let’s consider triplets from this random generator, as illustrated in R:



Figure: Comparison of the Randu algorithm and a standard R algorithm
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6.3.3 Example: Bad random number generators

Some more modern pseudo-RNGs:
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Some more modern pseudo-RNGs:

@ Mersenne-Twister



6.3.3 Example: Bad random number generators

Some more modern pseudo-RNGs:
@ Mersenne-Twister

@ Super-Duper



Generation of pseudo-random numbers — remarks

@ As computers essentially use numbers to base 2, generators generally
use m = 2, where k is a very large number (k € IN).

© We want the period of the sequence to be as large as possible.



Generation of pseudo-random numbers — remarks

@ As computers essentially use numbers to base 2, generators generally
use m = 2, where k is a very large number (k € IN).

© We want the period of the sequence to be as large as possible.
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the maximum period, m, is achieved for b > 0 if, and only if:
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6.4 Assessing random number generators

For the relation
= (ar_y+b)modm, i=1,2..., m, (6.2)

the maximum period, m, is achieved for b > 0 if, and only if:

(i) band mhave no common factors other than 1;

(i) (a— 1) is a multiple of every prime number that divides m;
(i) (a—1) is a multiple of 4 if mis a multiple of 4.



@ If m = 2X thenif a = 4c + 1 for some positive integer c, (ii) and (iii) will
hold.

@ Similarly, for (i) to be true then b must be a positive odd integer if m = 2.

© As areal example, the Numerical Algorithms Group (NAG) Fortran

library uses k = 59, b = 0 and a = 132 in one of it's random number
generator.



6.4.1 Example: Maximum periods of RNG

Check to see if the maximum period can be achieved if the Congruential
method with the following parameters is used to generate a sequence of
pseudo—random numbers:



a=16,b=5 m=20

All three conditions must be satisfied for the maximum period to be obtained,
so we check each in turn.

@ Condition (i): False. b = 5 and m = 20 have a common factor, 5. Hence
the maximum period is not achieved.



a=16,b=3, m=20

@ Condition (i): True. b and m have no common factors other than 1.



a=16,b=3, m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): False. (a— 1) = 15, and this is not divisible by 2. But 20 is
divisible by 2.



a=16,b=3, m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): False. (a— 1) = 15, and this is not divisible by 2. But 20 is
divisible by 2.

@ Hence the maximum period is not achieved.



a=11,b=3,m=20




a=11,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.



a=11,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 10, which is divisible by both 2 and 5,
which are the only primes which divide 20.



a=11,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 10, which is divisible by both 2 and 5,
which are the only primes which divide 20.

@ Condition (jii): False. m = 20 is a multiple of 4, but (a— 1) = 10isn't.



a=11,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 10, which is divisible by both 2 and 5,
which are the only primes which divide 20.

@ Condition (jii): False. m = 20 is a multiple of 4, but (a— 1) = 10isn't.
@ Hence the maximum period is not achieved.



a=21,b=3,m=20
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@ Condition (i): True. b and m have no common factors other than 1.



a=21,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 20, which is divisible by both 2 and 5,
which are the only primes which divide 20.



a=21,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 20, which is divisible by both 2 and 5,
which are the only primes which divide 20.

@ Condition (jii): True. m = 20 is a multiple of 4, and (a — 1) = 20 is too.



a=21,b=3,m=20

@ Condition (i): True. b and m have no common factors other than 1.

@ Condition (ii): True. (a— 1) = 20, which is divisible by both 2 and 5,
which are the only primes which divide 20.

@ Condition (jii): True. m = 20 is a multiple of 4, and (a — 1) = 20 is too.
@ Hence the maximum period of 20 is achieved.



6.5.1 The runif function

‘> runif(n, min=0, max=1) ‘

@ This function will generate n random numbers between the values of min
and max.

@ If the arguments min or max are omitted, then the default values are 0
and 1 respectively.



6.5.1 The runif function

For example,

> runif(1)

[1] 0.2729965

> runif(1)

[1] 6.9990863

> runif(5)

[1] 0.8122783 0.9069950 0.1731072 0.3454292 0.6102412
> runif(1l, 6, 7)

[1] 6.427512




6.5.1 The runif function

> set.seed(12345)
> runif(1)

[1] 0.7209039

> runif(1)

[1] 0.8757732




6.5.1 The runif function

> set.seed(12345)
> runif(1)

[1] 0.7209039

> runif(1)

[1] 0.8757732

> set.seed(12345)
> runif(1)
[1] 0.7209039




6.5.2 The sample function

Another important R function that we will use is the sample function:

‘> sample(x, size, replace = FALSE, prob = NULL) ‘




6.5.2 The sample function

This takes the following arguments
@ x: alist of values
@ size: non-negative integer giving the number of items to choose.
@ replace: Should sampling be with replacement? Default: FALSE.
@ prob: A vector of probability weights. Default: All values equally likely.



Example usage of sample

Suppose we wish to sample five numbers from {1, 2, 3, 4, 5, 6}, then

> set.seed(1)

>x=c(l, 2, 3, 4, 5, 6)
> sample(x, 5)

[1]1 26 341

We can also sample with replacement:

> sample(x, 5, replace=TRUE)
[11 66 441

This means that values may appear more than once.



6.5.3 Simulating the Captial One Cup draw

We are in the semi-finals of the Capital One Cup, and need to organise the
draw for the final stage. The remaining teams are:

Manchester Utd, Mancehster City, Sunderland, West Ham.



6.5.3 Simulating the Captial One Cup draw

Here’s how we do this in R:

> set.seed(3)
> teams = c( 5 ' ’

)
> sample(teams, 4)
[1] "Man Utd" "Sunderland" "West Ham" "Man City"

So we have ‘Man Utd vs Sunderland’ and ‘West Ham vs Man City’.



6.5.3 Simulating the Capital One Cup draw

However, if we think Sunderland are likely to get beaten by Man Utd, we can
rig the voting:

> prob_weights = c(0.4, 0.4, 0.05, 0.2)
> sample(teams, 4, prob=prob_weights)
[1] "Man Utd" "Man City" "West Ham"
"Sunderland"

That’s better!



6.5.3 Simulating the Capital One Cup draw
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Part VII

Simulating Discrete Random Numbers



7.1 Simulating a Bernoulli random variable

The Bernoulli random variable / ~ Bern(p) has already been encountered
in MAS1341. It is perhaps the simplest random variable and has the
probability mass function




7.1 Simulating a Bernoulli random variable

To simulate such a quantity, we generate an observation u from a uniform
U(0, 1) distribution and set

= 0 ifu<t1—p
11 fu>1-—p



7.1.1 Example: Bernoulli random numbers

Suppose we generate a number from a uniform U(0, 1) distribution
0.332, 0.739, 0.653, 0.110, 0.587, 0.144

and we wish to use these to simulate six independent observations from /, a
Bern(0.8) random variable.



7.1.1 Example: Bernoulli random numbers

Suppose we generate a number from a uniform U(0, 1) distribution
0.332, 0.739, 0.653, 0.110, 0.587, 0.144

and we wish to use these to simulate six independent observations from /, a
Bern(0.8) random variable. Here p = 0.8, so we convert using:

,_ [0 ifu<ti—p=02
“ 11 ifu>1-p=08.

to obtain the sequence 1, 1, 1, 0, 1, 0 as our Bernoulli random sample.



7.1.2 Using R to simulate a Bernoulli R.V.

To simulate a Bernoulli variable using R is straightforward. The easiest way
is just to use the sample command:

>p=0.5

> sample(c(0, 1), 1, prob=c(1l-p, p), replace=TRUE)
[1] ©

> sample(c(0, 1), 10, prob=c(l-p, p), replace=TRUE)
[1]11101010111




7.2 Simulation of discrete random variables

Suppose we want to simulate a discrete random variable X which has
probability mass function

PriX=x]|=p forj=12...,

and where ) ., pj = 1.



7.2 Simulation of discrete random variables

To accomplish this we first simulate a value u from a U(0, 1) distribution
and set
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7.2 Simulation of discrete random variables

To accomplish this we first simulate a value u from a U(0, 1) distribution
and set
(X4 if u< P
Xo if pr <u<py+p2
Xg ifpr+p2 < uU<pr+p2tps

j—1 j
Xj if Y p<u<) p
i= i=
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Now, for a Uniform random variable u, and for 0 < a < b < 1, it is the case
thatPrla< U < b] = b— a.
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7.2 Simulation of discrete random variables

Now, for a Uniform random variable u, and for 0 < a < b < 1, it is the case
that Prla < U < b] = b — a.Thus,

j—1 J
PriXx=x] = Pr [ZP:’ <UL Zp,-]
i=1 i=1

j j=1
= Z pi — Z Pi
i=1 i=1



7.2 Simulation of discrete random variables

Now, for a Uniform random variable u, and for 0 < a < b < 1, it is the case
that Prla < U < b] = b — a.Thus,

j—1 J
PriXx=x] = Pr [ZP:’ <UL Zp,-]
i=1 i=1

j j=1
= Zpi—ZPi
i=1 i=1

= pj_

as required.



7.2.1 Example: discrete random numbers

Simulate a random variable with the following probability mass function:

X 1 2 3 4
Prf(Xx=x] 02 015 025 0.4




We calcaluate the CDF of the distribution

X 1 2 3 4
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Then we generate an observation u from U ~ Uniform(0, 1), so
o ifu<02setX=1;



We calcaluate the CDF of the distribution

X 1 2 3 4
PrX=x] 02 015 025 0.4
PrXx <x] 02 035 060 1.0

Then we generate an observation u from U ~ Uniform(0, 1), so
o ifu<02setX=1;
0 if0.2<u< (0.240.15) = 0.35, set X = 2;



We calcaluate the CDF of the distribution

X 1 2 3 4
PrX=x] 02 015 025 0.4
PrXx <x] 02 035 060 1.0

Then we generate an observation u from U ~ Uniform(0, 1), so
o ifu<02setX=1;
0 if0.2<u< (0.240.15) = 0.35, set X = 2;
© if0.35 < u < (0.24 0.1540.25) = 0.6, set X = 3;



We calcaluate the CDF of the distribution

X 1 2 3 4
PrX=x] 02 015 025 0.4
PrXx <x] 02 035 060 1.0

Then we generate an observation u from U ~ Uniform(0, 1), so
o ifu<02setX=1;
0 if0.2<u< (0.240.15) = 0.35, set X = 2;
© if0.35 < u < (0.24 0.1540.25) = 0.6, set X = 3;
@ ifu>0.6,set X =4.



0 0.2 0.35 0.6 1
CDF

Figure: Simulating discrete random numbers.



To simulate the above distribution in R, there a two (obvious) methods that
we can use: the sample command

>x =c(l, 2, 3, 4)

> prob = ¢c(0.2, 0.15, 0.25, 0.4)

> sum(prob)

[1] 1

> sample(x, 1, prob, replace=TRUE)
[1] 4




To simulate the above distribution in R, there a two (obvious) methods that
we can use: the sample command

>x =c(1l, 2, 3, 4)

> prob = ¢c(0.2, 0.15, 0.25, 0.4)

> sum(prob)

[1] 1

> sample(x, 1, prob, replace=TRUE)
[1] 4

or use a bunch of if statements:
> u = runif(1)

> if(u <= 0.2) {

+ X=1

+ } else if(u <= (0.2+0.15)) {
+ X =2
+
+

} else if(u <= (0.240.154+0.25)) {
X =3




7.2.2 Simulating a Poisson random variable

For the uniform random numbers,
0.253, 0.588, 0.789

simulate three random numbers from a Poisson distribution with mean A = 2.



The pdf of the poisson distribution is

where A > 0.



The pdf of the poisson distribution is

where A > 0. So we have

0 1 2 3 4

X
Pr[X =x] 0.135 0.271 0271 0.180 0.090




The pdf of the poisson distribution is

where A > 0. So we have

X 0 1 2 3 4

x] 0135 0271 0.271 0.180 0.090
x| 0.135 0.406 0.677 0.857 0.947

PriX =
Pr[X <




0 0.14 0.41 0.68 0.86 0.951
CDF

Figure: Diagram illustrating on simulating discrete random numbers from the Poisson
distribution.

Hence our random numbers are 1, 2 and 3.
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Let X ~ Geom(p), so that X takes the random values 1,2, 3, ... with
probabilities p, (1 — p)p, (1 — p)?p, .. ..



7.3 Simulating a Geometric random variable

Let X ~ Geom(p), so that X takes the random values 1,2, 3, ... with
probabilities p, (1 — p)p, (1 — p)?p, .. .. Hence,

PriX = K| = p(1 —p)* "

The Geometric distribution is the distribution of the number of independent
Bernoulli trials until the first success is encountered. For each individual trial,
the probability of success is p.



7.3 Simulating a Geometric random variable

We know that we will obtain the value X = k (say) when simulating an
observation from X using a value of U if
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PriX =1] +...+Pr[X = k],
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7.3 Simulating a Geometric random variable

We know that we will obtain the value X = k (say) when simulating an
observation from X using a value of U if

PriX = 1]+ Pr[X =

i.e.
Z Pr
i.e.
k—1
Y (1—p
j=1
since
Pr[X = k]

=2|+... +PrX=k—-1<U<

Pr[X;1]+...

|<U< ZPr =Jl,
j=
K
< ) (1
j=1

= K],



7.3 Simulating a Geometric random variable

We know (for 0 < r < 1) that
n
r2(1 —nk=1—-(1—-r)"

k=0

i.e. a Geometric progression.
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7.3 Simulating a Geometric random variable

Hence for expression 7.1 we have

1—-(1—-pf'<u<t1-(1-p¥k

(1=p) 2 1-U>(1-p)"

(k—1)In(1—p) >In(1 —U) > kIn(1 — p),



7.3 Simulating a Geometric random variable

Hence for expression 7.1 we have

1—-(1—-pf'<u<t1-(1-p¥k

i.e.

(1=pf 21U (1 p)
i.e. (k—=1)In(1—p) >In(1 = U) > kiIn(1 - p),
ie.

k1< In(1 — V)
In(1 — p)
with the inequality sign reversing since In(1 — p) < 0.

< k,



7.3 Simulating a Geometric random variable

Thus, we observe X = k if

In(1—U
@ x> lr:l((1—p))




7.3 Simulating a Geometric random variable

Thus, we observe X = k if

In(1 p)
In(1—U) In(1—U)
O X=1= i n(i—p)"

Both (1) and (2) are satisfied by X = 1 + Llﬂ((tg”'

e X <1+




7.3.1 Examples: geometric random numbers

Given u = 0.2179, simulate a Geom(0.2) random variable X.

Now, for a geometric random variable with p = 0.2, we have
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7.3.1 Examples: geometric random numbers

Given u = 0.2179, simulate a Geom(0.2) random variable X.

Solution
Now, for a geometric random variable with p = 0.2, we have

Lln 1 —0.2179)J
= 14+ |—-—" "=/
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Given u = 0.2179, simulate a Geom(0.2) random variable X.

Now, for a geometric random variable with p = 0.2, we have
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7.3.1 Examples: geometric random numbers

Given u = 0.2179, simulate a Geom(0.2) random variable X.

Now, for a geometric random variable with p = 0.2, we have

-l

B In(1 — 0.2179)
- 1+_ In(1 —0.2) J

0.2458J

| —0.2231

= 14 [1.1014]

= 1+




7.3.1 Examples: geometric random numbers

Given u = 0.2179, simulate a Geom(0.2) random variable X.

Now, for a geometric random variable with p = 0.2, we have

SN
(
In

In(1 — p)
In(1 —0.2179)
(1-0.2) J
—0.2458
_—0.2231J
14 [1.1014]
= 14+1=2

= 14+

= 1+




7.3.1 Question 2

Given u = 0.8923, simulate a Geom(0.4) random variable X.

Now, for a geometric random variable with p = 0.4, we have

Y o LIn(1—O.8923)J

In(1 —0.4)
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Now, for a geometric random variable with p = 0.4, we have

In(1 — 0.
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7.3.1 Question 2

Given u = 0.8923, simulate a Geom(0.4) random variable X.

Now, for a geometric random variable with p = 0.4, we have

In(1 — 0.
X — n(1 — 0.8923)
In(1—0.4)
_ —2.228406
- —0.5108256

1+ |4.362361 |
= 14+4=5.




The infinite monkey theorem

This theorem states:

“If you have enough monkeys banging randomly on typewriters, they
will, with absolute certainty, eventually type the complete works of
William Shakespeare”



The infinite monkey theorem

This theorem was first discussed in a book by Emile Borel in 1909, and can be
proven, subject to the following assumptions:

@ there are an infinite number of bananas to feed the monkeys;
@ the monkeys type constantly, with no rest periods;
@ each monkey is equally as intelligent as every other monkey.



The infinite monkey theorem

We can ‘prove’ the infinite monkey theorem by assuming a geometric
distribution for the number of attempts until a monkey is successful.

Let’'s assume there’s just one monkey, and let there be M keys on the
monkey’s typewriter. Thus,

1
Pr(monkey hits some particular key) = m
Let there be T characters in the complete works of Shakespeare. Thus,

y
MT
= a>0, say.

Pr(complete works of shakespeare) =



The infinite monkey theorem

Define an attempt to be T consecutive independent key presses by the
monkey.

Pr(attempt fails) = 1-—a, and
Pr(attempt succeeds) = a.

Clearly, all attempts are independent (unless a monkey reads while it goes
along!). Let

X : number of attempts until the first success is encountered.
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The infinite monkey theorem

Define an attempt to be T consecutive independent key presses by the
monkey.

Pr(attempt fails) = 1-—a, and
Pr(attempt succeeds) = a.

Clearly, all attempts are independent (unless a monkey reads while it goes
along!). Let

X : number of attempts until the first success is encountered.

Then
Pr(X=i) = (1—-a)'a
Thus, X has a geometric distribution, with probability a, i.e.

X ~ geom(a).



The infinite monkey theorem

Let A; be the event “attempt j is the first success”. Then A4, A, ... are all
disjoint events, so that

PI‘(A1 UA2UA3U...> = PI'(A1) —|—PI‘(A2) —|—PI‘(A3) +...,



The infinite monkey theorem

Let A; be the event “attempt j is the first success”. Then A4, A, ... are all
disjoint events, so that

PI‘(A1UA2UA3U...> = PI‘(A1)—|—PI‘(A2)—|—PI‘(A3)+...,
i.e.

Pr(S’ful attempt at some stage) = Pr(As)+Pr(Az) +Pr(As)+...
at+(1—aa+(1—a2a+... (*



The infinite monkey theorem

Now (*) is the sum to infinity of a geometric progression (G.P.). Recall that the
sum of the first nterms of a G.P. is given by

first term x (1 — (common ratio)”)

1 — (common ratio)

Our first term is a, and the common ratio is (1 — a).



The infinite monkey theorem

Thus, the sum to infinity is given by

-1, a(l—(1-a))
i:1(1—a) a = —(—a

e

Now (1 — a)k — 0 as k — 0, and so

a(1—a)

Pr(successful attempt at some stage) = p

= 1,

i.e. with certainty the monkey will eventually type out the complete works of
Shakespeare.



The infinite monkey theorem

Many people have tried to simulate this problem using random numbers in
order to prove (or disprove!) this theorem (though the simulation methods
involved are beyond the scope of this course).
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and follow the link for the Monkey Shakespeare Simulator.

The simulator was launched on 1 July 2003 (and is still running), and
simulates a large population of monkeys typing randomly.



The infinite monkey theorem

Many people have tried to simulate this problem using random numbers in
order to prove (or disprove!) this theorem (though the simulation methods
involved are beyond the scope of this course).

If you're interested, have a look at

http://infinite-monkey-theorem.wikiverse.org/

and follow the link for the Monkey Shakespeare Simulator.

The simulator was launched on 1 July 2003 (and is still running), and
simulates a large population of monkeys typing randomly.

Currently (18th March 2014), the best attempt has given the first 22 letters
from Romeo and Juliet!



Part VIII

Monte Carlo Methods




Quiz: Distributions

1.

An express coach is due to arrive in Newcastle from London at 23.00.
However, in practice, it is equally likely to arrive anywhere between 15
minutes ear ly to 45 minutes late, depending on traffic conditions. Let the
random variable X denote the amount of time (in minutes) that the coach
is delayed.

. Customers arrive at the drive-thru window of a fast food restaurant at a

rate of 2 per minute during the lunch hour. Let Y be the number of
customers that arrive during the lunch hour.

Let H: height of students taking MAS1343.

Let G: the number of bad eggs in a box of 12. The probability of an egg
being bad is 0.1.



8.1 The continuous uniform U(0,1) distribution

X ~ U(0, 1) denotes the random variable X which has probability density
function (PDF):

1 0<x<1

0 otherwise.

fr(x) = {

Figure: PDF of the uniform distribution.



How do we simulate U(0, 1)?




How do we simulate U(0, 1)?

@ Generating U(0, 1) random variables precisely would be very difficult, but
we can get three decimal places by generating a random integer x from
the set

{0,1,2,..., 999},

with all outcomes equally likely, and then put u = x/1000.

@ Then v is a simulation from a U(0, 1) random variable recorded to three
decimals.

@ So for a full period Congruential generator with m = 22 we get set of
integers:
{0,1,2,...,2% -1} .
Setting u = x/2% would give a pseudo—random number from the
U(0, 1) distribution, recorded to about 8 decimal places.



8.2 Monte Carlo

@ The term “Monte Carlo” is used to describe any simulation study which
involves random numbers.

@ The name is a reference to the famous Monte Carlo Casino in Monaco,
where repetition of random events is the order of the day!



8.2.1 What is a simulation study?

@ For our purposes, a simulation study is any study where we study the
properties of a system using random numbers.

@ We have already seen simulation studies, for example the monopoly
practical.



8.2.1 What is a simulation study?

@ For our purposes, a simulation study is any study where we study the
properties of a system using random numbers.

@ We have already seen simulation studies, for example the monopoly
practical.

@ In general, suppose we do an experiment which has the event A as one
possible outcome.

@ We would like to estimate the probability of A, denoted by Pr[A].



8.2.1 What is a simulation study?

@ Then by repeatedly simulating the experiment, it is simple to estimate
Pr[A], the probability of the event A, using Pg(A), where:

_ No. of times A occurs
~ Number of times experiment simulated”

Pe(A)

e Here Pr(A) is the frequency estimate of Pr[A].
@ Why does this work?



8.2.1 What is a simulation study?

@ Well suppose we denote the number of times we simulate the experiment
by n, then Pg(A) has the following important property:

as n — oo, then Pe(A) — Pr[A].

@ This means that the more simulations we do, the more accurate our
estimate of Pr[A].



Monte-Carlo Integration
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@ Draw a simple a functionfor: 0 < x < 1and0 < y <1
@ Just make it a simple collection of rectangles
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Monte-Carlo Integration

@ Draw a simple a functionfor: 0 < x < 1and0 < y <1
@ Just make it a simple collection of rectangles
@ Calculate the area of your function - write it down.

@ Now I will generate points (x, y) using R. Mark these points roughly on
your plot.



8.3 Approximation of integrals

@ We would like to evaluate f01 f(x) dx, but the function may be too
complicated to integrate.

@ We can find an approximate answer by noting that the integral is equal to
the area under the curve, and using Monte Carlo methods.

@ We design an experiment which would work in general, even if the
function was defined on a general range (a, b), and if f(x) € (0, ¢), for
any positive value c.



1.0 A
@

0.8 4

0.6 4

it

0.4 4

0.2 4

0.0 4

0.0 0.2 o.a o.e o.8 1.0

1.0

0.8 4

0.6 4

0.4 4

0.2 4

0.0 4

0.0 0.2 o.a o.e o.8 1.0

Figure: (a) An example function. (b) Twenty points randomly placed on the graph.



8.3 Approximation of integrals

We generate a random data point from a simulation grid. Let

A = {the data point lies below the curve}.



8.3 Approximation of integrals

We generate a random data point from a simulation grid. Let
A = {the data point lies below the curve}.

Then q
area under curve
Pr[A] = , _ —
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so that



8.3 Approximation of integrals

We generate a random data point from a simulation grid. Let
A = {the data point lies below the curve}.

Then q
area under curve
Pr[A] = , _ —
area of simulation grid

so that

b
/ f(x) dx = [area under curve]
a

= Pr[A] x [area of simulation grid].



8.3.1 Example

@ Consider the function we saw earlier in Figure 8.2, defined on (0, 1), and
with f(x) € (0,1).

@ Estimate f01 f(x)dx using Monte Carlo methods.



Solution: Step 1

We simulate n data points from the simulation grid;



Solution: Step 1

We simulate n data points from the simulation grid; here this is the unit square
(0,1) x (0,1).



Solution: Step 2

Each of the coordinates x and y are generated using a U(0, 1) random
variable.
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Solution: Step 2

Each of the coordinates x and y are generated using a U(0, 1) random
variable. Note the fact that

A = {data point (x, y) lies below the curve} = {y < f(x)}.



Solution: Step 3

If r points lie below the curve, then Pr[A] ~ Pr(a) = r/n,
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If r points lie below the curve, then Pr[A] ~ Pg(a) = r/n, and thus

]
/f(x)dx = Pr[A] x [area of simulation grid]
0

= Pr[A]



Solution: Step 3

If r points lie below the curve, then Pr[A] ~ Pg(a) = r/n, and thus

]
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0
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If r points lie below the curve, then Pr[A] ~ Pg(a) = r/n, and thus
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Solution: Step 3

If r points lie below the curve, then Pr[A] ~ Pg(a) = r/n, and thus

/1 f(x)dx = Pr[A] x [area of simulation grid]
0
Pr[A] x 1
= Pr[A]
~ PF(A)



Solution: Step 3

If r points lie below the curve, then Pr[A] ~ Pg(a) = r/n, and thus

]
/ f(x)dx = Pr[A] x [area of simulation grid]
0

Pr[A] x 1



Solution: Step 4

In our case, from the figure above we estimate:
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Solution: Step 4

In our case, from the figure above we estimate:

/01 f(x) dx

r_12

n_ 20

12



Solution: Step 4

In our case, from the figure above we estimate:

/01 f(x) dx

r 12
—=—=06.
n 20

12



1.0+

0.8

f(x)

Figure: A plot of | sin{sin[sin(x*)] }| with the sampling region.



We can also easily implement the above algorithm in R. As an extreme
example, consider the function

f(x) = | sin{sin[sin(x*)]}| .



We can also easily implement the above algorithm in R. As an extreme
example, consider the function

f(x) = | sin{sin[sin(x*)]}] .
We wish to calculate
/02 F(x) dx = /02 | sin{sin[sin(x*)]}| o ,

which according to maple evaluates to approximately 0.71875. First plot the
function to determine the necessary region:



The plot generated in the code above is shown in figure 8.2. Then we use a
for loop to simulate lots of random numbers

A\

set.seed(1)
N = 100000
no_of_hits = 0
for(i in 1:N) {
X = runif(1l, 0, 2); y = runif(1)
if(abs(sin(sin(sin(x~4)))) > y) {
no_of_hits = no_of_hits + 1
}
}
area_under_curve = no_of_hits/Nx2
area_under_curve

vV V+ + + + + V VvV V




