Part IV

Graphical Presentation of Data

4 .1 Introduction

@ Graphical displays of data can be very useful in showing the main
features of a data set.

4 .1 Introduction

@ Graphical displays of data can be very useful in showing the main
features of a data set.

@ The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

4 .1 Introduction

@ Graphical displays of data can be very useful in showing the main
features of a data set.

@ The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

@ However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

4 .1 Introduction

@ Graphical displays of data can be very useful in showing the main
features of a data set.

@ The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

@ However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

 Master cam® ‘ALl Other

European Parliament Party Broakdown

Pathtrace .
Delcam

http://www.fusioncharts.com/explore/pie-doughnut-charts

]
\.;
s, 8
L .e#
] e .&;
A SR

Enpent von Bamanen in Tonnen von 19842005

4.1 Label your %#?* axes!

T THINK WE SHOULD MAYRE YOURE RIGHT.
GMVE 1T ANCTHER SHCT. { :mmmmwmf.m.
WE SHOULD BREAK, N0 T T HAK T G0
\ 0B AND T O OUR RELATIONSHI BENER TN SOMEONE LHO
HOH, DOESN'T LABELWER AXES,
/

SUENG g

4.1 Label your %#?* axes!

T THINK WE SHOULD MAYRE YOURE RIGHT.
GIVE T ANOTHER SHOT. { :murmmmmwmzm.
NO, T JUSTTHINK T CAN DO
BENER THAN SOMECNE WHO

\ue SHOULD RREAK| OUR RELATIONSHIP
HOH, v LABEL HER P,

Rl T

Rant over!

4.2 Qualitative data: bar charts

@ The most useful way to display qualitative data is usually with a bar chart.

@ The length of each bar is proportional to the frequency of the
corresponding value of the variable in the sample of data.

@ Note that the widths of the bars should be equal to avoid giving a false
impression.

MPAA breakdown

3000

2500
2000

g

L1500

1000

NC-17 PG PG-13 R
MPAA Rating

Figure: Barchart of the mpaa ratings for 4847 films.

MPAA breakdown

> table(movies$mpaa)
NC-17 PG PG-13 R
16 526 989 3316

MPAA breakdown

> table(movies$mpaa)
NC-17 PG PG-13 R
16 526 989 3316

Inside the barplot function:

> barplot(table(movies$mpaa), xlab= 5
+ ylab= , border = 0
+ col=)

MPAA breakdown

> table(movies$mpaa)
NC-17 PG PG-13 R
16 526 989 3316

Inside the barplot function:

> barplot(table(movies$mpaa), xlab= 5
+ ylab= , border = 0
+ col=)

Remember to load the data first!

> library(mas1343)
> data(movies)

4.3 Histograms

@ To represent the distribution of a sample of values of a continuous
variable we can use a histogram.

@ The range of values of the variable is divided into intervals, known as
classes, and the frequencies in classes are represented by columns.

@ As the variable is continuous, there are no gaps between neighbouring
columns — unlike a bar chart.

4.3 Histograms

@ To represent the distribution of a sample of values of a continuous
variable we can use a histogram.

@ The range of values of the variable is divided into intervals, known as
classes, and the frequencies in classes are represented by columns.

@ As the variable is continuous, there are no gaps between neighbouring
columns — unlike a bar chart.

@ Note also that, strictly speaking, it is the area of the column which is
proportional to the frequency, not the height.

@ The reason for this is that columns need not be of the same width.
@ Computer software tends to use columns of the same width.
@ However this default can be overridden in R if you really want to.

4.3 Histograms

Mean film budget

serco "—’—»1

0.0e+00 5.0e+07 1.0e+08 150408 2.0e+08

Figure: Histogram of film ratings and budgets.

4.3 Histograms

@ Figure 4.2 shows histograms of the film budgets.

@ When dealing with densities (relative frequency), we can easily work out
the height using this formula:

frequency

Height = —rcauency
= X Bin-width

When the y-axis is labelled with density or relative frequencies, the area
under the histogram is one.

4.3 Histograms

@ Figure 4.2 shows histograms of the film budgets.

@ When dealing with densities (relative frequency), we can easily work out
the height using this formula:

frequency

Height = —rcauency
= X Bin-width

When the y-axis is labelled with density or relative frequencies, the area
under the histogram is one.

@ Bin widths should be chosen so that you get a good idea of the
distribution of the data, without being swamped by random variation.

4.3 Histograms

To generate Figure 4.2 in R we use the following commands:

> hist(movies$Budget, col=)
+ main= , Treq=FALSE,
+ xlab=)

4.3.1 How many bins should we have?

First we will define the notation we will use:
@ n: the sample size;
@ k: the number of bins in the histogram;
@ h: the bin-width.
Then the number of bins we will use to construct a histogram is:

(- [max(x);min(x)w 1)

where [-] is the ceiling function.

Table 4.1: Sturges’ rule

® kst = [log, n+ 1]
@ Default

@ Tends not to be very good for n > 30.

Mean film budget

zzzzz

aaaaaaaaaaaaaaaaaaaaaaaa

able 4.1: Scotts’ rule

@ hgc =349 xsxn /3
@ breaks = “Scott"

Scott's rule
L.2e-07
L.0e-07
3.0e-08
5.0e-08
1.0e-08
2.0e-08
).0e+00 -lTh""”f""-
0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08
Budget($)

Table 4.1: Freedman-Diaconis

@ hepp =2 X /OR(X) x n~1/3
@ breaks = “FD"

@ When the distribution is symmetric, this is very similar to Scott’s rule.

6e-07

5e-07

4e-07

3e-07

2e-07

le-07

0e+00

The FD rule

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

Budget($)

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable.

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kst =

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

ks = [logy(n)] +1 =

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kst = [logy(n)] +1 = [log,(4847)] +1 =

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kst = [logs(n)] +1= [log,(4847)] +1 = 14.

Mean film budget

0.0e+00 5.0e+07 1.0e+08 15e+08 2.0e+08

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hsc =

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

h _3.49><s_
SC = T/ T

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

| _ 349xs _ 349 x 23039711
SCT /s T 4847173

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hen — 349 X s - 3.49 x 23039711
SC — nt/3 48471/3

~ 4,751,289

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hen — 349 X s - 3.49 x 23039711
SC — nt/3 48471/3

~ 4,751,289

then the number of bins is:

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hen — 349 X s - 3.49 x 23039711
SC — nt/3 48471/3

~ 4,751,289

then the number of bins is:

ksc =

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hen — 349 X s - 3.49 x 23039711
SC — nt/3 48471/3

~ 4,751,289

then the number of bins is:

keo = [max(x)h:C min(x)-‘ _

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hen — 349 X s - 3.49 x 23039711
SC — nt/3 48471/3

~ 4,751,289

then the number of bins is:

keo = [max(x)—min(x)-‘ _ [2x108—(—1)w _

hsc 4751289

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

| _ 349xs _ 3.49 x 23039711
SCT /s T T 48471/8

~ 4,751,289

then the number of bins is:

ksc = [max(x)h;mm(x)w = [Ww —43.

Scott's rule
L2e-071 ||
L.0e-07
3.0e-08
5.0e-08
1.0e-08

2.0e-08

).0e+00

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hep =

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

2% IQR(x)
FD_T_

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_2xIQR(x) 2x (8x10°—(=1)) _
VR 48471/3 -

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Hence,

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Hence,

Kep =

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Hence,

kep = [max(x)h; min(x)"

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Hence,

ke — [maX(X)—min(x)" _ Fxmg_(_ﬂw

hsc 945429

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:
_ 2XIQR(x) 2% (8x 108 —(—1))
VR 48471/3

~ 945, 429 .

Hence,

Kep = [max(x)h;mi”(xw _ {“;';5;2;—1)} — 212,

The FD rule

6e-07

5e-07

4e-07

3e-07

2e-07

le-07

NaxNN

4.4 Box and whisker plots

@ A box and whisker plot, sometimes simply called a ‘boxplot’, is another
way to represent continuous data.

@ This kind of plot is particularly useful for comparing two or more groups,
by placing the boxplots side-by-side.

4.4 Box and whisker plots

250 e 250
s .
] H
200 s 200 8
H R .
. §
8
3 []
o 150 £ 150] H
=3 5 '
5 ' 3 ! i : '
E : E ! ! : :
3 8
50 § 50 o
£ §
H ° H
8 o
0 8 o §
NC-17 PG PG-13 R

Figure: Box and whisker plots of (a) film length (b) film length split according to the
mpaa rating.

4.4 Box and whisker plots

To do this in R we use the following commands:

> par(mfrow=c(1l, 2))

> boxplot(movies$Length, ylab= ,
+ col=)

> boxplot(movies$Length ~ movies$mpaa,

+ ylab= D

+ col=)

4.4 Box and whisker plots

2504 3 —

©00000 o

200 1 ° °
°
H . 8
° ° ° 8
£ 1 H 8
57150 § - °
k5 : A ' : ' '
E — : : : ' : :
T 100{ e/ — |:| — l:l |:|
{ ; T —
- 0V ; T | T
1 l °l — 1
3
50 i ;
° ° :
. .
ol 8 .

NC-17.0 PG.0 PG-13.0 R.0 NC-17.1 PG.1 PG-13.1 R.1

> boxplot(movies$Length ~ movies$mpaa + movies$Romance)

4.4.1 Boxplot example 1

For the data set

01 01 02 04 04 08 08 0.8
09 09 10 14 16 20 24 35

Table: An example data set.

construct a boxplot.

4.4.1 Solution

First we calculate the median and quartiles

Median 1%t quartile 3 quartile IQR
0.85 0.4 1.55 1.15

Table: Summary statistics for the first example data in Table 4.3.

To calculate the outliers and whiskers, we first calculate:
W, = lower quartile — 1.5/QR = —1.325

and
Wy = upper quartile + 1.5/QR = 3.275

Since 3.5 > Wy = 3.275, this means that 3.5 is an outlying point. Since we
have no points less than W, the lower whisker is the smallest data point, i.e.
0.1. The upper whisker is max(x*) where x* does not include any outlying
points, i.e. 2.4.

4.4.1 Boxplot example 1

35 . Outlier: 3.5
3.0q
2.5
_ Upper whisker: 2.4
2.0 |
s Upper hinge : Upper quartile: 1.5
1.0
Box Median: 0.85
0.5
Lower hinge - Lower quartile: 0.4
_ Lower whisker: 0.1
0.01

4.4.2 Boxplot example 2

For the following data set, construct a boxplot

9.0 328 33.0 349 354 397 416 420
423 432 469 492 516 517 550 81.0

Table: An example data set.

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

W, = lower quartile —1.5/QR =

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

W, = lower quartile —1.5/QR = 11.0625

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

W, = lower quartile —1.5/QR = 11.0625

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

W, = lower quartile —1.5/QR = 11.0625
Wy = Upper quartile + 1.5/QR =

4.4.2 Boxplot example 2

Median 1St quartile 3 quartile 1QR w, Wy
4215 35.025 51.00 15.975 11.0625 74.9625

Table: Summary statistics for the second example data in table 4.5

W, = lower quartile —1.5/QR = 11.0625
Wy = Upper quartile 4+ 1.5/QR = 74.9625

4.4.2 Boxplot example 2

9.0 328 33.0 349 354 39.7 416 420
42.3 432 469 492 516 51.7 550 81.0

@ From table 4.5, we see that 9.0 < W, = 11.0625.

4.4.2 Boxplot example 2

9.0 328 33.0 349 354 39.7 416 420
42.3 432 469 492 516 51.7 550 81.0

@ From table 4.5, we see that 9.0 < W, = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

4.4.2 Boxplot example 2

9.0 328 33.0 349 354 39.7 416 420
42.3 432 469 492 516 51.7 550 81.0

@ From table 4.5, we see that 9.0 < W, = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

@ From table 4.5, we see that 81 > W, = 74.9625.

4.4.2 Boxplot example 2

9.0 328 33.0 349 354 39.7 416 420
42.3 432 469 492 516 51.7 550 81.0

@ From table 4.5, we see that 9.0 < W, = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

@ From table 4.5, we see that 81 > Wy = 74.9625. So the upper whisker
extends to the point 55.0 and 81 is an outlier.

4.4.2 Boxplot example 2

80
1

60
L

50
L

40

30
L

20
L

Part V

Control statements and functions

5.1.1 Basic functions

This function takes in a single argument x and returns x2:

> Funl = function(x) {
+ return (x*x)

+ }

5.1.1 Basic functions

The key elements in the function call are:

@ The word function;

5.1.1 Basic functions

The key elements in the function call are:
@ The word function;

@ The brackets () which enclose the argument list. This list may be empty.

5.1.1 Basic functions

The key elements in the function call are:
@ The word function;
@ The brackets () which enclose the argument list. This list may be empty.
@ A sequence of statements in curly braces { }.

5.1.1 Basic functions

The key elements in the function call are:
@ The word function;
@ The brackets () which enclose the argument list. This list may be empty.
@ A sequence of statements in curly braces { }.

@ A return statement.

5.1.1 Basic functions

We ‘call’ Fun1l in the following manner

> Funl(5)
[1] 25

5.1.1 Basic functions

We ‘call’ Fun1l in the following manner

> Funl(5)
[1] 25

>y = Funl(10)

5.1.1 Basic functions

We ‘call’ Fun1l in the following manner

> Funl(5)
[1] 25

>y = Funl(10)

>y
[1] 100

5.1.1 Basic functions

We ‘call’ Fun1l in the following manner

> Funl(5)
[1] 25

>y = Funl(10)

>y
[1] 100

>z = C(ll 2; 3! 4)
> Funl(z)
[1] 1 4 9 16

5.1.1 Basic functions

Of course, the old saying ‘Garbage in, Garbage out’ is true:

#Incorrect function calls.

> Funl()
Error in Funl() : argument "x" is missing, with no default
> Funl("5")

Error in x * X : non-numeric argument to binary operator

The error messages do give you an idea of what went wrong.

What is the value of y?

> funl = function(x) {
+ return(2%x)
+ }
>y = funl(2)

@5

e 10

o2

4

What is the value of y?

X =5

funl = function(x) {
return(2*x)

}
(y= funl(2))
1] 4

— VvV 4+ + VvV V

@5
e 10
e 2
e 4

What is the value of y?

> funl = function(x) {
z =3

return(x*z)

+
+
+ }

>y = funl(2)

e 2
e 3
4
6

What is the value of y?

> funl = function(x) {
+ z =3
+ return(x*z)
+ 7
> (y = funl(2))
[1] 6
2
o3
o4

@6

What is the value of y?

funl = function(x) {
z =3

return(x*z)

5
funl(k)

>
+
+
+ 7
>
>

What is the value of y?

funl = function(x) {
z =3

return(x*z)

k=5
(y = funl(k))
1] 15

>
+
+
+ }
>
>
[

5.1.1 Basic functions

Other variations to this simple function are:

> Fun2 = function(x=1) {
+ return (x*x)

+

5.1.1 Basic functions

Other variations to this simple function are:

A\

Fun2 = function(x=1) {
return (x*x)

+

+

> Fun2()
[1] 1

5.1.1 Basic functions

Other variations to this simple function are:

> Fun2 = function(x=1) {
+ return (x*x)

+

> Fun2()
[1] 1

> Fun2(4)
[1] 16

5.1.1 Basic functions

> Fun3 = function(x, y) {
+ return (xxy)

+

5.1.1 Basic functions

> Fun3 = function(x, y) {
+ return (xxy)
+ }

> Fun3(3, 4)
[1] 12

What is the value of y?

> funl = function(x=3) {
+ return(2xx)
+ }
>y = funl(2)
o3
4

@6

What is the value of y?

> funl = function(x=3) {
+ return(2*x)
+ 7
> (y = funl(2))
[1] 4
@3
e 4

@6

What is the value of y?

funl = function(x=3) {
return(2x*x)

>
+
+
>

}
y = funl()

o3
4
@6

What is the value of y?

funl = function(x=3) {
return(2x*x)
}
(y = funl())
1] 6

— VvV + + V

@3
4
@6

What is the value of y?

funl = function(x=3) {
X = 2
return(2#*x)

V o+ + + V

}
y = funl()

@3
4
@6

What is the value of y?

funl = function(x=3) {
X = 2
return(2x*x)
}
(y = funl())
1] 4

— VvV + + + VvV

o3
e 4
@6

5.1.2 A more useful function

Here the function below takes in a vector, plots a histogram and returns a
vector containing the mean and standard deviation:

> Investigate = function(values) {

+ hist(values)

+ m_std = c(mean(values), sd(values))
+ return(m_std)
+

by

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)
[1] 5.522715 1.451864

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)
[1] 5.522715 1.451864

> Investigate(movies$Length)
[1] 100.87807 17.34152

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)
[1] 5.522715 1.451864

> Investigate(movies$Length)
[1] 100.87807 17.34152

> Investigate(movies$Budget)
[1] 10286893 23039711

5.1.3 Variable scope

5.1.3 Variable scope

@ When we call a function, R first looks for local variables, then global
variables.

@ For example, Fun4 uses a global variable:

> blob =5

> Fun4 = function() {

+ return(blob)

+

}

5.1.3 Variable scope

@ When we call a function, R first looks for local variables, then global
variables.

@ For example, Fun4 uses a global variable:
> blob = 5

> Fun4 = function() {

+ return(blob)
+

by

> Fun4()
[1]1 5

5.1.3 Variable scope

But Fun5 uses a local variable:

blob = 5

Fun5 = function() {
blob = 6
return(blob)

\

+ + + Vv

3

5.1.3 Variable scope

But Fun5 uses a local variable:

blob = 5

Fun5 = function() {
blob = 6
return(blob)

+ + 4+ VvV V

3

> Fun5()
[1] 6

5.1.3 Variable scope

But Fun5 uses a local variable:

blob = 5

Fun5 = function() {
blob = 6
return(blob)

+ + 4+ VvV V

3

> Fun5()
[1] 6

> blob
[1]1 5

What is the value of y?

x =1

funl = function(x) {
X = 2
return(x)

}

y= funl(3)

V + + + V Vv

o1
2
o3

What is the value of y?

x =1
funl = function(x) {
X = 2
return(x)
}
(y= funl(3))
1] 2

— V + + + V Vv

e 1
o2
o3

What is the value of y?

x =1

funl = function(x=3) {
X = 2
return(x)

}

y= funl()

V + + + V Vv

o1
2
o3

What is the value of y?

x =1
funl = function(x=3) {
X = 2
return(x)
}
(y= funl())
1] 2

— V + + + V Vv

e 1
o2
o3

What is the value of y?

>x =1
> funl = function(x=3) {
+ return(2#*x)

+ 7
> x = funl(x)
>y = funl(x)

What is the value of y?

x =1
funl = function(x=3) {
return(2x*x)
}
x = funl(x)
(y = funl(x))
1] 4

— VvV V + + V V

5.2 The cat command

@ A useful function to help debugging is the cat function.
@ This function is used to print messages to the screen.

5.2 The cat command

@ A useful function to help debugging is the cat function.
@ This function is used to print messages to the screen.
@ For example,

>x =25

> cat(x,)

5

> (y = cat(x,))
5

NULL

@ We will use the cat function in the next section.

5.3 Conditionals

Conditional statements are features of a programming language which
perform different computations or actions depending on whether a
condition evaluates to TRUE or FALSE.

They are used in almost all computer programs.

5.3.1 If statements

The basic structure of an if statement is:

> if(expr) {
+ ##do something

+ }

where expr is evaluated to be either TRUE or FALSE.

5.3.1 If statements

The following example illustrates if statements in R:

>x =5
>y =5

> if(x<5) {
+ y =0
+ }

5.3.1 If statements

The following example illustrates if statements in R:

X =5

y =5

if(x<5) {
y =0

+ + Vv Vv V

by

>y
[1] 5

In this code chunk, x < 5 evaluates to be FALSE so the following brackets
are not evaluated.

5.3.1 If statements

We test for greater than in a similar manner:

X =5

y =5

if(x > 0) {
y =0

}

y
11 0

— VvV 4+ + V V V

Here x > 0 evaluates to be TRUE so, y is set equal to 0. If we wanted to test
for equality with zero, then we would use =>.

5.3.2 If else statements

We can link together a number of if statements

>Xx =0

> if(x > 0) {

+ cat()
+ } else if(x < 0) {

+ cat()

+ } else {

+ cat()

+ cat()

+ }

x must be zero!

The final else is optional.

5.3.2 If else statements

> IsNegative = function(value) {
+ is_pos = FALSE
+ if(value < 0) {
+ is_pos = TRUE
+ }

+ return(is_pos)
+

by

5.3.2 If else statements

> IsNegative = function(value) {
+ is_pos = FALSE

+ if(value < 0) {

+ is_pos = TRUE

+ }

+ return(is_pos)

+ }

> IsNegative(1)

[1] FALSE

5.3.2 If else statements

> IsNegative = function(value) {
+ is_pos = FALSE
+ if(value < 0) {
+ is_pos = TRUE
+ }

+ return(is_pos)
+

by

> IsNegative(1)
[1] FALSE

> IsNegative(=-5.6)
[1] TRUE

5.3.2 If else statements

A more sophisticated function could be

> IsGreaterThan = function(valuel, value2) {
is_greater_than = FALSE
if(valuel > value2) {
is_greater_than = TRUE
}
return(is_greater_than)

by

+ + 4+ + + +

5.3.2 If else statements

> IsGreaterThan(-5, -6)
[1] TRUE

5.3.2 If else statements

> IsGreaterThan(-5, -6)
[1] TRUE

> IsGreaterThan(10, 10)
[1] FALSE

What is the value of y?
X =5
if(x==6) {
y = FALSE
} else {
y = TRUE

+ + 4+ + V Vv

by

e TRUE
e FALSE

What is the value of y?
X =5
if(x==6) {
y = FALSE
} else {
y = TRUE

by

y
1] TRUE

— V + + + + VvV V

@ TRUE
@ FALSE

What is the value of y?

>x =5

> if(x > 6){

+ y =0

} else if(x >= 5) {
y =1

} else {

y =2

}

+ + 4+ + 4+

e 0
o1
2

What is the value of y?

X =5

if(x > 6){
y =0

}else if(x >= 5) {
y=1

} else {

y =2

1] 1

— V + 4+ + 4+ + + V V

}
y
]

o0
o1
2

What is the value of z?

>x =25

>y =

> if(x > 6 & y ==){
+ z =0

+ Yelse if(x < 5 & y ==) {
+ z =1

+ } else {

+ z =2

+ }

e 0

e 1

2

What is the value of z?

>x =5

>y=

> if(x > 6 & y ==)
+ z =0

+ }else if(x < 5 & y ==) {
+ z =1

+ } else {

+ z =2

+ }

> z

[1] 2

0

o1

2

5.4 Control statements

@ Attimes we would like to perform some operation on a vector or a data
frame.

@ Often R has built-in functions that will do this for you, e.g. mean, sd, other
times we have to write our own functions.

@ For example, suppose we want calculate Y12, /% .

@ In R we can use a for loop:

>x =0
> for(i in 1:10) {
+ X =X+ 172

+ }

5.4 Control statements

@ Attimes we would like to perform some operation on a vector or a data
frame.

@ Often R has built-in functions that will do this for you, e.g. mean, sd, other
times we have to write our own functions.

@ For example, suppose we want calculate Y12, /% .
@ In R we can use a for loop:

>x =0
> for(i in 1:10) {
+ X =X+ 172

+ }

> X
[1] 385

5.4 Control statements

lf—sel/j 1

total =
for(j in -5:-1) {
total = total + exp(j)/j~2

+ + Vv Vv

by

5.4 Control statements

/7—5€I/j 1

total =
for(j in -5:-1) {
total = total + exp(j)/j~2

+ + Vv Vv

by

> total
[1] 0.4086594

5.4 Control statements

A more tricky example is, calculate " e¥/k?, for k = 3,6,9,...,21:

total = 0
for(i in 1:7) {
k = ix3
total = total + exp(k)/k~2

}
total
1] 3208939

— V + + + V V

What it the value of x?

total = 0
for(blob in 1:4) {
total = total + 1

v + + Vv V

}
X = total

What it the value of x?

total = 0
for(blob in 1:4) {
total = total + 1

}
(x = total)
1] 4

— VvV 4+ + VvV V

What it the value of x?

total = 0
for(blob in 1:10) {
if(blob > 9) {
total = total + 1
}

V + + + + V Vv

}
X = total

What it the value of x?

total = 0
for(blob in 1:10) {
if(blob > 9) {
total = total + 1
}

}
(x = total)
1] 1

— V + + + 4+ VvV V

5.5 Putting it all together

Rather than have to constantly write R code to solve the summations in §5.4
we can create a function to solve the general form:

i i
Z,-E fori =g, is+j, is+2f, ..., i .

i=ls

5.5 Putting it all together

So in R we have

> Summationl = function(i_s, i_e, j) {
+ total =0

+ for(i in i_s:(i_e/j)) {

+ k = ixj

+ total = total + exp(k)/k~2

+ }

+ return(total)

+ }

5.5 Putting it all together

So in R we have

> Summationl = function(i_s, i_e, j) {
total = 0
for(i in i_s:(i_e/j)) {
k = ixj
total = total + exp(k)/k~2
+
return(total)

+ + 4+ + + + o+

}

> Summationl(-5, -1, 1)
[1] 0.4086594

5.5 Putting it all together

So in R we have

> Summationl = function(i_s, i_e, j) {
total = 0
for(i in i_s:(i_e/j)) {
k = ixj
total = total + exp(k)/k~2
+
return(total)

+ + 4+ + + + o+

}

> Summationl(-5, -1, 1)
[1] 0.4086594

> Summationl(3, 21, 3)
[1] 3208925

5.6.1 The apply function

@ We use the apply function when we want to apply the same function to
every row or column of a data frame.

@ For example, suppose we have a data frame with three columns:

> (df4 = data.frame(cl = 1:4, c2 = 4:7, c3 = 2:5))
cl c2 c3

1 1 4 2

2 2 5 3

3 3 6 4

4 4 7 5

5.6.1 The apply function

@ The apply function takes (at least) three arguments.

@ The first argument is the data frame, the second the number 1 or 2

indicating row or column and the third a function to apply to each row or
column.

@ So

> apply(df4, 1, mean)
[1] 2.333333 3.333333 4.333333 5.333333

calculates the mean value of every row,

Standard deviation of every column

> apply(df4, 2, sd)
cl c2 c3
1.290994 1.290994 1.290994

Suppose one of the columns was non-numeric

Vv

(df5 = data.frame(cl = 1:3, c2 = 4:6,
c3 = LETTERS[1:31))

cl c2 c3

1 1 4 A

2 2 5 B

3 3 6 C

+

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)
[1] NA NA NA

Suppose one of the columns was non-numeric

> (df5 = data.frame(cl = 1:3, c2 = 4:6,
+ c3 = LETTERS[1:31))
cl c2 c3
1 1 4 A
2 2 5 B
3 3 6 C

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)
[1] NA NA NA

Instead, we remove the column, then calculate the mean:

> apply(df5[,1:2], 1, mean)
[1] 2.5 3.5 4.5

What type of variable is z?

‘> apply(z, 1, mean) ‘

@ Data frame
@ Double
@ String
@ logical

What type of variable is z?
‘> apply(z, 1, mean) ‘

@ Data frame
@ Double
@ String
@ logical

Which of these statements is correct?
‘> apply(z, 2, median) ‘

@ We calculate the median of z

@ We calculate the median for each row of z

@ We calculate the median for each column of z
@ We calculate the mean of z

Which of these statements is correct?
‘> apply(z, 2, median) ‘

@ We calculate the median of z

@ We calculate the median for each row of z

@ We calculate the median for each column of z
@ We calculate the mean of z

5.6.2 The tapply function

@ The function tapply is very useful, but at first glance can be tricky to
understand.

@ It’s best described using an example:

> tapply(movies$Length, movies$mpaa, mean)
NC-17 PG PG-13 R
110.18750 97.23384 104.97877 100.18818

5.6.2 The tapply function

@ In the above code, we have calculated the average movie length
conditional on its MPAA rating.

@ So the average length of a PG movie is 97 minutes and the average
NC-17 movie length is 110mins.

@ With tapply we can do we very interesting things.

5.6.2 The tapply function

@ For example, in the next piece of code, we plot the average movie rating
conditional on its length:

> tapply(movies$Length, movies$Rating, mean)[1:6]
1 1.2 1.3 1.4 1.5 1.6
85.5 93.0 87.5 85.0 67.0 86.0

5.6.2 The tapply function

@ For example, in the next piece of code, we plot the average movie rating
conditional on its length:

> tapply(movies$Length, movies$Rating, mean)[1:6]
1 1.2 1.3 1.4 1.5 1.6
85.5 93.0 87.5 85.0 67.0 86.0

> rating_by_len = tapply(movies$Length, movies$Rating,
+ mean)
> plot(names(rating_by_len), rating_by_len)

5.6.2 The tapply function

160

140

120

Movie length

100 L

80

Rating

Figure: Plot of movie length conditional on it’s rating.

5.7 Help

R has a very good help system.

If you need information about a particular function, say plot.

Then typing ?plot in a R terminal will bring up the associated help page.
The internet is another very good source of R help.

Unfortunately, using Google isn’t particularly useful since the letter “R”
appears on most web pages!

@ However, you can use
http://www.rseek.org/
Using this search engine limits searches to R web-pages.

http://www.rseek.org/

