
Part IV

Graphical Presentation of Data

4.1 Introduction

Graphical displays of data can be very useful in showing the main
features of a data set.

The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

4.1 Introduction

Graphical displays of data can be very useful in showing the main
features of a data set.

The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

4.1 Introduction

Graphical displays of data can be very useful in showing the main
features of a data set.

The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

4.1 Introduction

Graphical displays of data can be very useful in showing the main
features of a data set.

The appropriate form of graph depends on the nature of the variables
being displayed and what aspects are to be shown.

However it should always be borne in mind that the object is to provide a
clear and truthful representation of the data, not to distort and not to
impress with unnecessary “fancy” features.

http://www.fusioncharts.com/explore/pie-doughnut-charts

4.1 Label your %#?* axes!

Rant over!

4.1 Label your %#?* axes!

Rant over!

4.2 Qualitative data: bar charts

The most useful way to display qualitative data is usually with a bar chart.

The length of each bar is proportional to the frequency of the
corresponding value of the variable in the sample of data.

Note that the widths of the bars should be equal to avoid giving a false
impression.

MPAA breakdown

NC−17 PG PG−13 R

MPAA Rating

F
re

qu
en

cy

0

500

1000

1500

2000

2500

3000

Figure: Barchart of the mpaa ratings for 4847 films.

MPAA breakdown

> table(movies$mpaa)

NC-17 PG PG-13 R

16 526 989 3316

Inside the barplot function:

> barplot(table(movies$mpaa), xlab="MPAA Rating",

+ ylab="Frequency", border = "black",

+ col="mistyrose")

Remember to load the data first!

> library(mas1343)

> data(movies)

MPAA breakdown

> table(movies$mpaa)

NC-17 PG PG-13 R

16 526 989 3316

Inside the barplot function:

> barplot(table(movies$mpaa), xlab="MPAA Rating",

+ ylab="Frequency", border = "black",

+ col="mistyrose")

Remember to load the data first!

> library(mas1343)

> data(movies)

MPAA breakdown

> table(movies$mpaa)

NC-17 PG PG-13 R

16 526 989 3316

Inside the barplot function:

> barplot(table(movies$mpaa), xlab="MPAA Rating",

+ ylab="Frequency", border = "black",

+ col="mistyrose")

Remember to load the data first!

> library(mas1343)

> data(movies)

4.3 Histograms

To represent the distribution of a sample of values of a continuous
variable we can use a histogram.

The range of values of the variable is divided into intervals, known as
classes, and the frequencies in classes are represented by columns.

As the variable is continuous, there are no gaps between neighbouring
columns — unlike a bar chart.

Note also that, strictly speaking, it is the area of the column which is
proportional to the frequency, not the height.

The reason for this is that columns need not be of the same width.

Computer software tends to use columns of the same width.

However this default can be overridden in R if you really want to.

4.3 Histograms

To represent the distribution of a sample of values of a continuous
variable we can use a histogram.

The range of values of the variable is divided into intervals, known as
classes, and the frequencies in classes are represented by columns.

As the variable is continuous, there are no gaps between neighbouring
columns — unlike a bar chart.

Note also that, strictly speaking, it is the area of the column which is
proportional to the frequency, not the height.

The reason for this is that columns need not be of the same width.

Computer software tends to use columns of the same width.

However this default can be overridden in R if you really want to.

4.3 Histograms

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

Figure: Histogram of film ratings and budgets.

4.3 Histograms

Figure 4.2 shows histograms of the film budgets.

When dealing with densities (relative frequency), we can easily work out
the height using this formula:

Height =
frequency

n× Bin-width
.

When the y -axis is labelled with density or relative frequencies, the area
under the histogram is one.

Bin widths should be chosen so that you get a good idea of the
distribution of the data, without being swamped by random variation.

4.3 Histograms

Figure 4.2 shows histograms of the film budgets.

When dealing with densities (relative frequency), we can easily work out
the height using this formula:

Height =
frequency

n× Bin-width
.

When the y -axis is labelled with density or relative frequencies, the area
under the histogram is one.

Bin widths should be chosen so that you get a good idea of the
distribution of the data, without being swamped by random variation.

4.3 Histograms

To generate Figure 4.2 in R we use the following commands:

> hist(movies$Budget, col="grey",

+ main="Mean film budget", freq=FALSE,

+ xlab="Budget ($)")

4.3.1 How many bins should we have?

First we will define the notation we will use:

n: the sample size;

k : the number of bins in the histogram;

h: the bin-width.

Then the number of bins we will use to construct a histogram is:

k =

⌈
max(x)−min(x)

h

⌉
(4.1)

where d·e is the ceiling function.

Table 4.1: Sturges’ rule

kST = dlog2 n + 1e
Default

Tends not to be very good for n > 30.

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

Table 4.1: Scotts’ rule

hSC = 3.49× s× n−1/3

breaks = “Scott"

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Table 4.1: Freedman-Diaconis

hFR = 2× IQR(x)× n−1/3

breaks = “FD"

When the distribution is symmetric, this is very similar to Scott’s rule.

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable.

For Sturges’ rule we have:

kST = dlog2(n)e+ 1 = dlog2(4847)e+ 1 = 14 .

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kST = dlog2(n)e+ 1 = dlog2(4847)e+ 1 = 14 .

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kST =

dlog2(n)e+ 1 = dlog2(4847)e+ 1 = 14 .

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kST = dlog2(n)e+ 1 =

dlog2(4847)e+ 1 = 14 .

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kST = dlog2(n)e+ 1 = dlog2(4847)e+ 1 =

14 .

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

4.3.2 Example: Movie data

Suppose we want to calculate the number of bins for the budget movie
variable. For Sturges’ rule we have:

kST = dlog2(n)e+ 1 = dlog2(4847)e+ 1 = 14 .

Mean film budget
D

en
si

ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =

3.49× s
n1/3

=
3.49× 23039711

48471/3
' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

'

4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
=

43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Scotts’ rule

For Scotts’ rule, we first calculate the bin width

hSC =
3.49× s

n1/3
=

3.49× 23039711
48471/3

' 4, 751, 289

then the number of bins is:

kSC =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

4751289

⌉
= 43 .

Scott's rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =

2× IQR(x)
n1/3

=
2× (8× 106 − (−1))

48471/3
' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

'

945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉

=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
=

212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Movie data: Freedman-Diaconis rule

For the FD rule, the bin width is:

hFD =
2× IQR(x)

n1/3
=

2× (8× 106 − (−1))
48471/3

' 945, 429 .

Hence,

kFD =

⌈
max(x)−min(x)

hsc

⌉
=

⌈
2× 108 − (−1)

945429

⌉
= 212 .

The FD rule

Budget($)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

4.4 Box and whisker plots

A box and whisker plot, sometimes simply called a ‘boxplot’, is another
way to represent continuous data.

This kind of plot is particularly useful for comparing two or more groups,
by placing the boxplots side-by-side.

4.4 Box and whisker plots

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●●●●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●●
●

●

●
●●
●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●
●
●

●

●●●
●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●

●

0

50

100

150

200

250

F
ilm

 le
ng

th
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●

●
●

NC−17 PG PG−13 R

0

50

100

150

200

250

F
ilm

 le
ng

th

Figure: Box and whisker plots of (a) film length (b) film length split according to the
mpaa rating.

4.4 Box and whisker plots

To do this in R we use the following commands:

> par(mfrow=c(1, 2))

> boxplot(movies$Length, ylab="Film length",

+ col="bisque")

> boxplot(movies$Length ˜ movies$mpaa,

+ ylab="Film length",

+ col="bisque")

4.4 Box and whisker plots

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●

●

●
●

●
●
●

●●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

NC−17.0 PG.0 PG−13.0 R.0 NC−17.1 PG.1 PG−13.1 R.1

0

50

100

150

200

250
F

ilm
 le

ng
th

> boxplot(movies$Length ˜ movies$mpaa + movies$Romance)

4.4.1 Boxplot example 1

For the data set

0.1 0.1 0.2 0.4 0.4 0.8 0.8 0.8
0.9 0.9 1.0 1.4 1.6 2.0 2.4 3.5

Table: An example data set.

construct a boxplot.

4.4.1 Solution

First we calculate the median and quartiles

Median 1st quartile 3rd quartile IQR

0.85 0.4 1.55 1.15

Table: Summary statistics for the first example data in Table 4.3.

Solution

To calculate the outliers and whiskers, we first calculate:

WL = lower quartile− 1.5IQR = −1.325

and
WU = upper quartile + 1.5IQR = 3.275

Since 3.5 > WU = 3.275, this means that 3.5 is an outlying point. Since we
have no points less than WL, the lower whisker is the smallest data point, i.e.
0.1. The upper whisker is max(x∗) where x∗ does not include any outlying
points, i.e. 2.4.

4.4.1 Boxplot example 1

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lower whisker: 0.1

Lower quartile: 0.4

Median: 0.85

Upper quartile: 1.55

Upper whisker: 2.4

Outlier: 3.5

Lower hinge

Box

Upper hinge

4.4.2 Boxplot example 2

For the following data set, construct a boxplot

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0
42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

Table: An example data set.

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR = 11.0625

WU = Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

WL =

lower quartile − 1.5IQR = 11.0625

WU = Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR =

11.0625

WU = Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR = 11.0625

WU = Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR = 11.0625

WU =

Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975 11.0625

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR = 11.0625

WU = Upper quartile + 1.5IQR =

74.9625

4.4.2 Boxplot example 2

Median 1st quartile 3rd quartile IQR WL WU

42.15 35.025 51.00 15.975 11.0625 74.9625

Table: Summary statistics for the second example data in table 4.5

WL = lower quartile − 1.5IQR = 11.0625

WU = Upper quartile + 1.5IQR = 74.9625

4.4.2 Boxplot example 2

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0
42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

From table 4.5, we see that 9.0 < WL = 11.0625.

So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

From table 4.5, we see that 81 > WU = 74.9625. So the upper whisker
extends to the point 55.0 and 81 is an outlier.

4.4.2 Boxplot example 2

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0
42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

From table 4.5, we see that 9.0 < WL = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

From table 4.5, we see that 81 > WU = 74.9625. So the upper whisker
extends to the point 55.0 and 81 is an outlier.

4.4.2 Boxplot example 2

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0
42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

From table 4.5, we see that 9.0 < WL = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

From table 4.5, we see that 81 > WU = 74.9625.

So the upper whisker
extends to the point 55.0 and 81 is an outlier.

4.4.2 Boxplot example 2

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0
42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

From table 4.5, we see that 9.0 < WL = 11.0625. So the lower whisker
extends to the point 32.8 and 9.0 is an outlier.

From table 4.5, we see that 81 > WU = 74.9625. So the upper whisker
extends to the point 55.0 and 81 is an outlier.

4.4.2 Boxplot example 2

●

●

10
20

30
40

50
60

70
80

x

Part V

Control statements and functions

5.1.1 Basic functions

This function takes in a single argument x and returns x2:

> Fun1 = function(x) {

+ return (x*x)

+ }

5.1.1 Basic functions

The key elements in the function call are:

The word function;

The brackets () which enclose the argument list. This list may be empty.

A sequence of statements in curly braces { }.
A return statement.

5.1.1 Basic functions

The key elements in the function call are:

The word function;

The brackets () which enclose the argument list. This list may be empty.

A sequence of statements in curly braces { }.
A return statement.

5.1.1 Basic functions

The key elements in the function call are:

The word function;

The brackets () which enclose the argument list. This list may be empty.

A sequence of statements in curly braces { }.

A return statement.

5.1.1 Basic functions

The key elements in the function call are:

The word function;

The brackets () which enclose the argument list. This list may be empty.

A sequence of statements in curly braces { }.
A return statement.

5.1.1 Basic functions

We ‘call’ Fun1 in the following manner:

> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

5.1.1 Basic functions

We ‘call’ Fun1 in the following manner:

> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

5.1.1 Basic functions

We ‘call’ Fun1 in the following manner:

> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

5.1.1 Basic functions

We ‘call’ Fun1 in the following manner:

> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

5.1.1 Basic functions

Of course, the old saying ‘Garbage in, Garbage out’ is true:

#Incorrect function calls.

> Fun1()

Error in Fun1() : argument "x" is missing, with no default

> Fun1("5")

Error in x * x : non-numeric argument to binary operator

The error messages do give you an idea of what went wrong.

Question 1

What is the value of y?

> fun1 = function(x) {

+ return(2*x)

+ }

> y = fun1(2)

5

10

2

4

Question 1

What is the value of y?
> x = 5

> fun1 = function(x) {

+ return(2*x)

+ }

> (y= fun1(2))

[1] 4

5

10

2

4

Question 2

What is the value of y?
> fun1 = function(x) {

+ z = 3

+ return(x*z)

+ }

> y = fun1(2)

2

3

4

6

Question 2

What is the value of y?
> fun1 = function(x) {

+ z = 3

+ return(x*z)

+ }

> (y = fun1(2))

[1] 6

2

3

4

6

Question 3

What is the value of y?
> fun1 = function(x) {

+ z = 3

+ return(x*z)

+ }

> k = 5

> y = fun1(k)

Question 3

What is the value of y?
> fun1 = function(x) {

+ z = 3

+ return(x*z)

+ }

> k = 5

> (y = fun1(k))

[1] 15

5.1.1 Basic functions

Other variations to this simple function are:

> Fun2 = function(x=1) {

+ return (x*x)

+ }

> Fun2()

[1] 1

> Fun2(4)

[1] 16

5.1.1 Basic functions

Other variations to this simple function are:

> Fun2 = function(x=1) {

+ return (x*x)

+ }

> Fun2()

[1] 1

> Fun2(4)

[1] 16

5.1.1 Basic functions

Other variations to this simple function are:

> Fun2 = function(x=1) {

+ return (x*x)

+ }

> Fun2()

[1] 1

> Fun2(4)

[1] 16

5.1.1 Basic functions

> Fun3 = function(x, y) {

+ return (x*y)

+ }

> Fun3(3, 4)

[1] 12

5.1.1 Basic functions

> Fun3 = function(x, y) {

+ return (x*y)

+ }

> Fun3(3, 4)

[1] 12

Question 4

What is the value of y?

> fun1 = function(x=3) {

+ return(2*x)

+ }

> y = fun1(2)

3

4

6

Question 4

What is the value of y?

> fun1 = function(x=3) {

+ return(2*x)

+ }

> (y = fun1(2))

[1] 4

3

4

6

Question 5

What is the value of y?

> fun1 = function(x=3) {

+ return(2*x)

+ }

> y = fun1()

3

4

6

Question 5

What is the value of y?

> fun1 = function(x=3) {

+ return(2*x)

+ }

> (y = fun1())

[1] 6

3

4

6

Question 6

What is the value of y?

> fun1 = function(x=3) {

+ x = 2

+ return(2*x)

+ }

> y = fun1()

3

4

6

Question 6

What is the value of y?

> fun1 = function(x=3) {

+ x = 2

+ return(2*x)

+ }

> (y = fun1())

[1] 4

3

4

6

5.1.2 A more useful function

Here the function below takes in a vector, plots a histogram and returns a
vector containing the mean and standard deviation:

> Investigate = function(values) {

+ hist(values)

+ m_std = c(mean(values), sd(values))

+ return(m_std)

+ }

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)

[1] 5.522715 1.451864

> Investigate(movies$Length)

[1] 100.87807 17.34152

> Investigate(movies$Budget)

[1] 10286893 23039711

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)

[1] 5.522715 1.451864

> Investigate(movies$Length)

[1] 100.87807 17.34152

> Investigate(movies$Budget)

[1] 10286893 23039711

5.1.2 A more useful function

Once we have created our function, we can put it to good use:

> Investigate(movies$Rating)

[1] 5.522715 1.451864

> Investigate(movies$Length)

[1] 100.87807 17.34152

> Investigate(movies$Budget)

[1] 10286893 23039711

5.1.3 Variable scope

5.1.3 Variable scope

When we call a function, R first looks for local variables, then global
variables.

For example, Fun4 uses a global variable:

> blob = 5

> Fun4 = function() {

+ return(blob)

+ }

> Fun4()

[1] 5

5.1.3 Variable scope

When we call a function, R first looks for local variables, then global
variables.

For example, Fun4 uses a global variable:

> blob = 5

> Fun4 = function() {

+ return(blob)

+ }

> Fun4()

[1] 5

5.1.3 Variable scope

But Fun5 uses a local variable:

> blob = 5

> Fun5 = function() {

+ blob = 6

+ return(blob)

+ }

> Fun5()

[1] 6

> blob

[1] 5

5.1.3 Variable scope

But Fun5 uses a local variable:

> blob = 5

> Fun5 = function() {

+ blob = 6

+ return(blob)

+ }

> Fun5()

[1] 6

> blob

[1] 5

5.1.3 Variable scope

But Fun5 uses a local variable:

> blob = 5

> Fun5 = function() {

+ blob = 6

+ return(blob)

+ }

> Fun5()

[1] 6

> blob

[1] 5

Question 7

What is the value of y?

> x = 1

> fun1 = function(x) {

+ x = 2

+ return(x)

+ }

> y= fun1(3)

1

2

3

Question 7

What is the value of y?

> x = 1

> fun1 = function(x) {

+ x = 2

+ return(x)

+ }

> (y= fun1(3))

[1] 2

1

2

3

Question 8

What is the value of y?

> x = 1

> fun1 = function(x=3) {

+ x = 2

+ return(x)

+ }

> y= fun1()

1

2

3

Question 8

What is the value of y?

> x = 1

> fun1 = function(x=3) {

+ x = 2

+ return(x)

+ }

> (y= fun1())

[1] 2

1

2

3

Question 9

What is the value of y?

> x = 1

> fun1 = function(x=3) {

+ return(2*x)

+ }

> x = fun1(x)

> y = fun1(x)

Question 9

What is the value of y?

> x = 1

> fun1 = function(x=3) {

+ return(2*x)

+ }

> x = fun1(x)

> (y = fun1(x))

[1] 4

5.2 The cat command

A useful function to help debugging is the cat function.

This function is used to print messages to the screen.

For example,

> x = 5

> cat(x, "\n")

5

> (y = cat(x, "\n"))

5

NULL

We will use the cat function in the next section.

5.2 The cat command

A useful function to help debugging is the cat function.

This function is used to print messages to the screen.

For example,

> x = 5

> cat(x, "\n")

5

> (y = cat(x, "\n"))

5

NULL

We will use the cat function in the next section.

5.3 Conditionals

Conditional statements are features of a programming language which
perform different computations or actions depending on whether a
condition evaluates to TRUE or FALSE.

They are used in almost all computer programs.

5.3.1 If statements

The basic structure of an if statement is:

> if(expr) {

+ ##do something

+ }

where expr is evaluated to be either TRUE or FALSE.

5.3.1 If statements

The following example illustrates if statements in R:

> x = 5

> y = 5

> if(x<5) {

+ y = 0

+ }

> y

[1] 5

In this code chunk, x < 5 evaluates to be FALSE so the following brackets
are not evaluated.

5.3.1 If statements

The following example illustrates if statements in R:

> x = 5

> y = 5

> if(x<5) {

+ y = 0

+ }

> y

[1] 5

In this code chunk, x < 5 evaluates to be FALSE so the following brackets
are not evaluated.

5.3.1 If statements

We test for greater than in a similar manner:

> x = 5

> y = 5

> if(x > 0) {

+ y = 0

+ }

> y

[1] 0

Here x > 0 evaluates to be TRUE so, y is set equal to 0. If we wanted to test
for equality with zero, then we would use =>.

5.3.2 If else statements

We can link together a number of if statements

> x = 0

> if(x > 0) {

+ cat("x is greater than zero")

+ } else if(x < 0) {

+ cat("x is less than zero")

+ } else {

+ cat("x must be zero!")

+ cat("\n")

+ }

x must be zero!

The final else is optional.

5.3.2 If else statements

> IsNegative = function(value) {

+ is_pos = FALSE

+ if(value < 0) {

+ is_pos = TRUE

+ }

+ return(is_pos)

+ }

> IsNegative(1)

[1] FALSE

> IsNegative(-5.6)

[1] TRUE

5.3.2 If else statements

> IsNegative = function(value) {

+ is_pos = FALSE

+ if(value < 0) {

+ is_pos = TRUE

+ }

+ return(is_pos)

+ }

> IsNegative(1)

[1] FALSE

> IsNegative(-5.6)

[1] TRUE

5.3.2 If else statements

> IsNegative = function(value) {

+ is_pos = FALSE

+ if(value < 0) {

+ is_pos = TRUE

+ }

+ return(is_pos)

+ }

> IsNegative(1)

[1] FALSE

> IsNegative(-5.6)

[1] TRUE

5.3.2 If else statements

A more sophisticated function could be

> IsGreaterThan = function(value1, value2) {

+ is_greater_than = FALSE

+ if(value1 > value2) {

+ is_greater_than = TRUE

+ }

+ return(is_greater_than)

+ }

5.3.2 If else statements

> IsGreaterThan(-5, -6)

[1] TRUE

> IsGreaterThan(10, 10)

[1] FALSE

5.3.2 If else statements

> IsGreaterThan(-5, -6)

[1] TRUE

> IsGreaterThan(10, 10)

[1] FALSE

Question 1

What is the value of y?
> x = 5

> if(x==6) {

+ y = FALSE

+ } else {

+ y = TRUE

+ }

TRUE

FALSE

Question 1

What is the value of y?
> x = 5

> if(x==6) {

+ y = FALSE

+ } else {

+ y = TRUE

+ }

> y

[1] TRUE

TRUE

FALSE

Question 2

What is the value of y?
> x = 5

> if(x > 6){

+ y = 0

+ } else if(x >= 5) {

+ y = 1

+ } else {

+ y = 2

+ }

0

1

2

Question 2

What is the value of y?

> x = 5

> if(x > 6){

+ y = 0

+ }else if(x >= 5) {

+ y = 1

+ } else {

+ y = 2

+ }

> y

[1] 1

0

1

2

Question 3

What is the value of z?

> x = 5

> y = "male"

> if(x > 6 & y == "Female"){

+ z = 0

+ }else if(x < 5 & y == "Male") {

+ z = 1

+ } else {

+ z = 2

+ }

0

1

2

Question 3

What is the value of z?

> x = 5

> y = "male"

> if(x > 6 & y == "Female"){

+ z = 0

+ }else if(x < 5 & y == "Male") {

+ z = 1

+ } else {

+ z = 2

+ }

> z

[1] 2

0

1

2

5.4 Control statements

At times we would like to perform some operation on a vector or a data
frame.

Often R has built-in functions that will do this for you, e.g. mean, sd, other
times we have to write our own functions.

For example, suppose we want calculate ∑10
i=1 i2 .

In R we can use a for loop:

> x = 0

> for(i in 1:10) {

+ x = x + i^2

+ }

> x

[1] 385

5.4 Control statements

At times we would like to perform some operation on a vector or a data
frame.

Often R has built-in functions that will do this for you, e.g. mean, sd, other
times we have to write our own functions.

For example, suppose we want calculate ∑10
i=1 i2 .

In R we can use a for loop:

> x = 0

> for(i in 1:10) {

+ x = x + i^2

+ }

> x

[1] 385

5.4 Control statements

∑−1
j=−5 ej /j2 ,

> total = 0

> for(j in -5:-1) {

+ total = total + exp(j)/j^2

+ }

> total

[1] 0.4086594

5.4 Control statements

∑−1
j=−5 ej /j2 ,

> total = 0

> for(j in -5:-1) {

+ total = total + exp(j)/j^2

+ }

> total

[1] 0.4086594

5.4 Control statements

A more tricky example is, calculate ∑ ek /k2, for k = 3, 6, 9, . . . , 21:

> total = 0

> for(i in 1:7) {

+ k = i*3

+ total = total + exp(k)/k^2

+ }

> total

[1] 3208939

Question 4

What it the value of x?

> total = 0

> for(blob in 1:4) {

+ total = total + 1

+ }

> x = total

Question 4

What it the value of x?

> total = 0

> for(blob in 1:4) {

+ total = total + 1

+ }

> (x = total)

[1] 4

Question 5

What it the value of x?

> total = 0

> for(blob in 1:10) {

+ if(blob > 9) {

+ total = total + 1

+ }

+ }

> x = total

Question 5

What it the value of x?

> total = 0

> for(blob in 1:10) {

+ if(blob > 9) {

+ total = total + 1

+ }

+ }

> (x = total)

[1] 1

5.5 Putting it all together

Rather than have to constantly write R code to solve the summations in §5.4
we can create a function to solve the general form:

ie

∑
i=is

ei

i2
for i = is, is + j, is + 2j, . . . , ie .

5.5 Putting it all together

So in R we have

> Summation1 = function(i_s, i_e, j) {

+ total = 0

+ for(i in i_s:(i_e/j)) {

+ k = i*j

+ total = total + exp(k)/k^2

+ }

+ return(total)

+ }

> Summation1(-5, -1, 1)

[1] 0.4086594

> Summation1(3, 21, 3)

[1] 3208925

5.5 Putting it all together

So in R we have

> Summation1 = function(i_s, i_e, j) {

+ total = 0

+ for(i in i_s:(i_e/j)) {

+ k = i*j

+ total = total + exp(k)/k^2

+ }

+ return(total)

+ }

> Summation1(-5, -1, 1)

[1] 0.4086594

> Summation1(3, 21, 3)

[1] 3208925

5.5 Putting it all together

So in R we have

> Summation1 = function(i_s, i_e, j) {

+ total = 0

+ for(i in i_s:(i_e/j)) {

+ k = i*j

+ total = total + exp(k)/k^2

+ }

+ return(total)

+ }

> Summation1(-5, -1, 1)

[1] 0.4086594

> Summation1(3, 21, 3)

[1] 3208925

5.6.1 The apply function

We use the apply function when we want to apply the same function to
every row or column of a data frame.

For example, suppose we have a data frame with three columns:

> (df4 = data.frame(c1 = 1:4, c2 = 4:7, c3 = 2:5))

c1 c2 c3

1 1 4 2

2 2 5 3

3 3 6 4

4 4 7 5

5.6.1 The apply function

The apply function takes (at least) three arguments.

The first argument is the data frame, the second the number 1 or 2
indicating row or column and the third a function to apply to each row or
column.

So

> apply(df4, 1, mean)

[1] 2.333333 3.333333 4.333333 5.333333

calculates the mean value of every row,

Standard deviation of every column

> apply(df4, 2, sd)

c1 c2 c3

1.290994 1.290994 1.290994

Suppose one of the columns was non-numeric

> (df5 = data.frame(c1 = 1:3, c2 = 4:6,

+ c3 = LETTERS[1:3]))

c1 c2 c3

1 1 4 A

2 2 5 B

3 3 6 C

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)

[1] NA NA NA

Instead, we remove the column, then calculate the mean:

> apply(df5[,1:2], 1, mean)

[1] 2.5 3.5 4.5

Suppose one of the columns was non-numeric

> (df5 = data.frame(c1 = 1:3, c2 = 4:6,

+ c3 = LETTERS[1:3]))

c1 c2 c3

1 1 4 A

2 2 5 B

3 3 6 C

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)

[1] NA NA NA

Instead, we remove the column, then calculate the mean:

> apply(df5[,1:2], 1, mean)

[1] 2.5 3.5 4.5

Question 6

What type of variable is z?

> apply(z, 1, mean)

Data frame

Double

String

logical

Question 6

What type of variable is z?
> apply(z, 1, mean)

Data frame

Double

String

logical

Question 7

Which of these statements is correct?
> apply(z, 2, median)

We calculate the median of z

We calculate the median for each row of z

We calculate the median for each column of z

We calculate the mean of z

Question 2

Which of these statements is correct?
> apply(z, 2, median)

We calculate the median of z

We calculate the median for each row of z

We calculate the median for each column of z

We calculate the mean of z

5.6.2 The tapply function

The function tapply is very useful, but at first glance can be tricky to
understand.

It’s best described using an example:

> tapply(movies$Length, movies$mpaa, mean)

NC-17 PG PG-13 R

110.18750 97.23384 104.97877 100.18818

5.6.2 The tapply function

In the above code, we have calculated the average movie length
conditional on its MPAA rating.

So the average length of a PG movie is 97 minutes and the average
NC-17 movie length is 110mins.

With tapply we can do we very interesting things.

5.6.2 The tapply function

For example, in the next piece of code, we plot the average movie rating
conditional on its length:

> tapply(movies$Length, movies$Rating, mean)[1:6]

1 1.2 1.3 1.4 1.5 1.6

85.5 93.0 87.5 85.0 67.0 86.0

> rating_by_len = tapply(movies$Length, movies$Rating,

+ mean)

> plot(names(rating_by_len), rating_by_len)

5.6.2 The tapply function

For example, in the next piece of code, we plot the average movie rating
conditional on its length:

> tapply(movies$Length, movies$Rating, mean)[1:6]

1 1.2 1.3 1.4 1.5 1.6

85.5 93.0 87.5 85.0 67.0 86.0

> rating_by_len = tapply(movies$Length, movies$Rating,

+ mean)

> plot(names(rating_by_len), rating_by_len)

5.6.2 The tapply function

●

●

●
●

●

●
●
●

●●●

●

●

●
●
●
●

●
●
●●

●●●●
●●●●

●●
●●

●●
●
●
●●●●

●●
●●

●●

●●●
●●

●●
●

●
●
●●●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

80

100

120

140

160

Rating

M
ov

ie
 le

ng
th

Figure: Plot of movie length conditional on it’s rating.

5.7 Help

R has a very good help system.

If you need information about a particular function, say plot.

Then typing ?plot in a R terminal will bring up the associated help page.

The internet is another very good source of R help.

Unfortunately, using Google isn’t particularly useful since the letter “R”
appears on most web pages!

However, you can use

http://www.rseek.org/

Using this search engine limits searches to R web-pages.

http://www.rseek.org/

