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Kernel Density Estimation

9.1 Introduction

The goal of density estimation is to approximate the probability density

function of a random variable given a sample of observations. One of

the most popular methods is to use kernel density estimators.

For example, suppose we observe ten values from X ∼ N(0, 1), shown

in Figure 9.1a. In general, we don’t know the true underlying distribu-

tion. So how do we go about estimating this? How do kernel density

estimators work?
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Figure 9.1: (a) Histogram of ten val-
ues sampled from a N(0, 1) distribution.

(b) Three different Kernel density esti-
mators. The data are the X’s.

9.2 Definition

A kernel is a non-negative, real-valued integrable function K that

satisfies the following two requirements:∫ ∞

−∞
K(t) dt = 1 (9.1)

and

K(−t) = K(t) for all values of t . (9.2)

Expression 9.1 ensures that the kernel is a probability density function

(pdf), whilst expression 9.2 makes the distribution symmetric about 0.

Standard kernels are:
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Figure 9.2: (a) The Epanechnikov and
Uniform kernels. (b) The triangular

and Gaussian kernel.

Epanechnikov:

K(t) =


3
4(1− t2) −1 < t < 1

0 otherwise.

Uniform:

K(t) =


1
2 −1 < t < 1

0 otherwise.

Triangular:

K(t) =

1− |t| −1 < t < 1

0 otherwise.

Gaussian:

K(t) =
1√
2π

e−t2/2 .
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Figure 9.3: (a) Plot showing the data.
(b) A Gaussian kernel is drawn round
each point. (c) The kernels are com-

bined. (d) The function is scaled an

area of one.

9.3 The general idea

Kernel density estimation can be summarised in four steps:

1. We have some sample data. In Figure 9.3a we have three points, so

n = 3.

2. Around each of the data points, we draw a kernel. In Figure 9.3b

we have used a Gaussian kernel. However, we could have used a

Uniform, triangular, or Epanechnikov kernel.

3. Next we combine the kernels - the blue dashed line in Figure 9.3c.

4. The final step is to normalise the distribution. In our example, since

we have three points, the total area under the blue dashed curve is

3. Hence, to recover a probability density we divide by 3 to get the

black curve in Figure 9.3d.

Run demo(kerneldensity) to get figures 9.3 a-d.

9.4 Estimation

Let K be a kernel and suppose our sample contents n values: x1, . . . , xn.

Then our estimate of the true pdf f (x) is

f̂ (x) =
1
n

n

∑
i=1

K (x− xi) . (9.3)

Notice we use K (x− xi), since we draw a kernel around each xi. It’s

fairly straightforward to see that f̂ (x) is also a pdf, namely:

∫ ∞

−∞
f̂ (x) dx =

1
n

n

∑
i=1

∫ ∞

−∞
K (x− xi) dx

=
1
n

n

∑
i=1

∫ ∞

−∞
K(y) dy

=
1
n

n

∑
i=1

1

= 1 . (9.4)
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Example: River Monsters

The data shown in Table 9.1 are the lengths (to the nearest cm) of

10 Giant Groupers caught by expert angler Jeremy Wade for the TV

series River Monsters. Catch River Monsters at 7:30pm,
ITV1, every Tuesday.

101 97 99 104 103 94 102 94 102 106 Table 9.1: Length, in cm, of 10 Gi-

ant Groupers caught in the Everglades
National Park, Florida.

This sample was taken in 2013 in a lake near the Chernobyl nuclear

disaster of 1986. These fish usually grow to around 75cm in length, but

genetic mutations caused by the nuclear explosions are thought to have

increased the size of this species.

Produce a density plot for these data using the Gaussian kernel.

Solution

Let X represent the length of a fish. We have:

f̂ (x) =
1
n

n

∑
i=1

K (x− xi) ,

where the Gaussian kernel gives:

K(x− xi) =
1√
2π

exp

{
− (x− xi)

2

2

}
.

The range of our data is 94−→106, so let’s plot over the range 90−→110.

For example,

f̂ (90) =
1

10

[
1√
2π

e−(90−101)2/2 + . . . +
1√
2π

e−(90−106)2/2
]

= 0.0000267

Similarly:

f̂ (94) =
1

10

[
1√
2π

e−(94−101)2/2 + . . . +
1√
2π

e−(94−106)2/2
]

= 0.08023.

Also:

f̂ (102) =
1

10

[
1√
2π

e−(102−101)2/2 + . . . +
1√
2π

e−(102−106)2/2
]

= 0.13404.
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Similar calculations give the results shown in Table 9.2, for values in

the range 90 −→ 110 (increasing in steps of 1).

x f̂ (x) x f̂ (x)

90 0.0000267 101 0.0995432

91 0.0000886 102 0.1340384

92 0.0107983 103 0.1183411

93 0.0484075 104 0.0807319

94 0.0802317 105 0.0546929

95 0.0538066 106 0.0457634

96 0.0354386 107 0.0246539

97 0.0461933 108 0.0054126

98 0.0488910 109 0.0004433

99 0.0515926 110 0.0000138

100 0.0600920

Table 9.2: Kernel density estimation
for the River Monsters dataset.

Plotting f̂ (x) against x gives the curve shown in Figure 9.4, after

smoothing between the points considered. In practice, we would use R

to produce such plots, and R would plot over a much finer range for

X. Notice how the kernel density estimate of the probability density

function is a smoothed version of the histogram. Of course, any of the

kernels considered could be used in place of the Gaussian kernel.
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Figure 9.4: Gaussian kernel density

estimate of the pdf for the River Mon-
sters data, with histogram overlaid.


