
6

Random Number Generation

6.1 Randomness: quantifying uncertainty

The concepts of uncertainty and randomness have intrigued humanity

for a long time. The world around us is not deterministic and we are

faced continually with chance occurrences. Uncertainty is inherent in

nature: for example, the behaviour of fundamental physical particles,

genes and chromosomes in biology, and individuals in society under

stress or strain. The methodology for exploring uncertainty involves

the use of random numbers.

6.2 Pseudo–random numbers

Suppose we need to obtain a list of random digits 0, 1, 2, . . . , 9. How

might we go about this? There are several options:

� Fair ten–sided die:

If the sides are labelled from 0 to 9 then tosses of this die

will yield the required digits.

� Tosses of a fair coin: The following equally likely outcomes

could correspond to the integers shown:

H H H H 0 H T H T 5

H H H T 1 H T T H 6

H H T H 2 H T T T 7

H H T T 3 T H H H 8

H T H H 4 T H H T 9

The coin has no ‘memory’, and so each block of 4 tosses

is independent of any other. If any outcome other than

those listed occurs, we can ignore and toss a new set of

4. This method is rather inefficient as a lot of the time a

combination of outcomes is rejected.

40 dr lee fawcett

� The decimal expansion of π: A sequence of random digits

can be obtained by reading the table by row, by column,

or by any other rule (i.e. take every 10th digit).

� Other physical devices:

It is possible to construct more complicated mechanical

devices than a coin or a die, such as ‘wheels of fortune’,

or physical devices based on gamma rays emitted from

radioactive elements.

A disadvantage of the mechanical and electronic devices is that the

sequence of random numbers generated is not reproducible. So we often

use Pseudo–random numbers generators (RNG), that is, algorithms for

generating sequences of numbers that approximate the properties of

true random numbers.

The German Federal Office for Information Security (The Bundesamt

für Sicherheit in der Informationstechnik, or BSI) has established

criteria for quality RNG:

1. A sequence of random numbers has a high probability of containing

no identical consecutive elements;

2. A sequence of numbers which is indistinguishable from ‘true random’

numbers (tested using statistical tests); http://en.wikipedia.org/wiki/

Statistical_randomness
3. It should be impossible to calculate, or guess, from any given sub-

sequence, any previous or future values in the sequence;

4. It should be impossible, for all practical purposes, for an attacker to

calculate, or guess, the values used in the random number algorithm.

Points 3 and 4 are crucial for many applications1. 1 Everytime you make a phone call,
make contact with a wireless point, or
pay using your credit card, random

numbers are used.As we will see in this course, it is important to be able to reproduce a

sequence of random numbers. The advent of digital computers gave

rise to a number of techniques that use a recursive relation, that is,

the number ri in a sequence is a function of the preceding numbers

ri−1, ri−2,

http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Statistical_randomness

mas1343 computational probability and statistics (with r) 41

6.3 Congruential generators

Consider the set N0 of non–negative integers. That is, N0 = 0, 1, 2,
Let ‘mod’ represent the modulo operation, so that for x, m ∈N0, x 6= 0,

(x) mod m means that x is divided by m and the remainder is taken as

the result. For example, in R:

> 15%%6

[1] 3

6.3.1 Example: modulo operations

1. What is 13 mod 4? Answer = 1.

2. What is 19 mod 5? Answer = 4.

3. What is 2008 mod 3? Answer = 1.

4. What is 10,008 mod 11? Answer = 9.

Now consider the relation

ri = (ari−1 + b) mod m, i = 1, 2, . . . , m (6.1)

where r0 is the initial number, known as the seed, and a, b, m ∈N0 are

the multiplier, additive constant and modulo respectively.

The modulo operation means that at most m different numbers can

be generated before the sequence must repeat – namely, the integers

0, 1, 2, . . . , m− 1. The actual number of generated numbers is h ≤ m,

called the period of the generator.

6.3.2 Example: Congruential generators

Selecting a = 17, b = 0, m = 100, r0 = 13 in relation (6.1) generates

the following sequence:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ri 13 21 57 69 73 41 97 49 33 61 37 29 93 81 77 9 53 1 17 89

The next value, r20, is found to be 13 so that this sequence then repeats.

Thus, this sequence has period 20. We can use R to calculate this

sequence:

> a=17

> b=0

> m=100

> r_0=13

> ran=vector("numeric",length=20)

> ran[1]=(a*r_0+b)%%m

> for(i in 2:20){

+ ran[i]=(a*ran[i-1]+b)%%m

+ }

> ran

[1] 21 57 69 73 41 97 49 33 61 37 29 93 81 77 9 53 1 17

89 13

42 dr lee fawcett

6.3.3 Example: Bad random number generators

In the 1970’s, a popular random generator used was RANDU, where

m = 231, a = 65539 and b = 0. Unfortunately, this is a spectacularly

bad choice of parameters. On noting that a = 65539 = 216 + 3, then

we see that

ri+1 = ari = 65539× ri = (216 + 3)ri .

So

ri+2 = a ri+1 = (216 + 3)× ri+1 = (216 + 3)2ri .

On expanding the square, we get

ri+2 = (232 + 6× 216 + 9)ri = [6(216 + 3)− 9]ri = 6ri+1 − 9ri .

Note: all these calculations should be to the mod 231. So, there is a

large correlation between the three points! What does this mean in

practice? Well, let’s consider triplets from this random generator and

compare them to R’s standard random number generator.

−5

0

5

−5

0

5

R
R

andu

0.00 0.25 0.50 0.75 1.00
ri+2

9r
i +

 6
r i+

1

Figure 6.1: Comparison of the Randu

algorithm and a standard R algorithm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0
0.2

0.4
0.6

0.8
1.0

x

y

z

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

Figure 6.2: 3d scatterplot of Randu

triples.

The RANDU demo simulates 1000 random numbers from RANDU and

from R’s standard random number generator. It then plots the results.

> require(mas1343)

> demo(RANDU)

This gives Figure 6.1.

Today’s random number generators are a (bit) more sophisticated

than what we come across in this course. Newer methods also have

quite cool names: Mersenne-Twister2 and Super-Duper.

2 http://en.wikipedia.org/wiki/Mersenne twister

Computer generation of pseudo–random numbers - remarks

1. As computers essentially use numbers to base 2, generators generally

use m = 2k, where k is a very large number (k ∈N).

2. We want the period of the sequence to be as large as possible.

6.4 Assessing random number generators

Theorem

For the relation

ri = (ari−1 + b) mod m, i = 1, 2, . . . , m , (6.2)

the maximum period, m, is achieved for b > 0 if, and only if:

(i) b and m have no common factors other than 1;

(ii) (a− 1) is a multiple of every prime number that divides

m;

(iii) (a− 1) is a multiple of 4 if m is a multiple of 4.

Proof: Beyond the scope of this course.

mas1343 computational probability and statistics (with r) 43

Remarks

1. If m = 2k, then if a = 4c + 1 for some positive integer c, (ii) and

(iii) will hold.

2. Similarly, for (i) to be true then b must be a positive odd integer if

m = 2k.

3. As a real example, the Numerical Algorithms Group (NAG) Fortran

library uses k = 59, b = 0 and a = 1313 in one of it’s random number

generator.

6.4.1 Example: Maximum periods of RNG

Check to see if the maximum period can be achieved if the congruential

method with the following parameters is used to generate a sequence

of pseudo–random numbers:

1. a = 16, b = 5, m = 20

� All three conditions must be satisfied for the maximum period

to be obtained, so we check each in turn. Condition (i): False.

b = 5 and m = 20 have a common factor, 5. Hence the maximum

period is not achieved.

2. a = 16, b = 3, m = 20

� Condition (i): True. b and m have no common factors other than

1.

� Condition (ii): False. (a− 1) = 15, and this is not divisible by 2.

But 20 is divisible by 2.

� Hence the maximum period is not achieved.

3. a = 11, b = 3, m = 20

� Condition (i): True. b and m have no common factors

other than 1.

� Condition (ii): True. (a− 1) = 10, which is divisible by

both 2 and 5, which are the only primes which divide

20.

� Condition (iii): False. m = 20 is a multiple of 4, but

(a− 1) = 10 isn’t.

� Hence the maximum period is not achieved.

44 dr lee fawcett

4. a = 21, b = 3, m = 20

� Condition (i): True. b and m have no common factors

other than 1.

� Condition (ii): True. (a− 1) = 20, which is divisible by

both 2 and 5, which are the only primes which divide

20.

� Condition (iii): True. m = 20 is a multiple of 4, and

(a− 1) = 20 is too.

� Hence the maximum period of 20 is achieved.

6.5 Random numbers in R

6.5.1 The runif function

R has a number of commands that generate and manipulate random

numbers. One function that we use throughout this course is. The default random number generator
used by R is the Mersenne-Twister

> runif(n, min=0, max=1)

This function will generate n random numbers between the values of

min and max. If the arguments min or max are omitted, then the default

values are 0 and 1 respectively. For example,

> runif(1)

[1] 0.8698216

> runif(1)

[1] 0.5790736

> runif(5)

[1] 0.08108483 0.58695501 0.50411941 0.97594053 0.19490056

> runif(1, 6, 7)

[1] 6.687428

Notice that calling runif returns different values. If we wish to rerun

a computer experiment, then we need repeatability. In this case we use

the command set.seed, e.g. The function set.seed is a user

friendly version that sets the seeds of
all possible underlying random number
generators. This function is actually
an interface to .Random.seed. Don’t

worry about this.

> set.seed(12345)

> runif(1)

[1] 0.7209039

> runif(1)

[1] 0.8757732

> set.seed(12345)

> runif(1)

[1] 0.7209039

If we want to generate integers, say 0, 1, . . ., 9, then we could simply

take the first value after the decimal place.

mas1343 computational probability and statistics (with r) 45

6.5.2 The sample function

Another important R function that we will use is the sample function:

> sample(x, size, replace = FALSE, prob = NULL)

This takes the following arguments:

� x: a list of values

� size: non-negative integer giving the number of items to choose.

� replace: Should sampling be with replacement? Default: FALSE.

� prob: A vector of probability weights. Default: All values equally

likely.

See ?sample for help.

Example usage of sample

Suppose we wish to sample five numbers from {1, 2, 3, 4, 5, 6}, then In sample the default is without re-

placement, i.e. no value more than
once> set.seed(1)

> x = c(1, 2, 3, 4, 5, 6)

> sample(x, 5)

[1] 2 6 3 4 1

We can also sample with replacement

> sample(x, 5, replace=TRUE)

[1] 6 6 4 4 1

This means that values may appear more than once.

6.5.3 Simulating the Capital One Cup draw

We are in the semi-finals of the Capital One cup 3, and need to organise 3 Unfortunately, Newcastle didn’t make
it through. What a shame. Not.the draw for the final stage. The remaining teams are:

Manchester Utd, Manchester City, Sunderland, West Ham.

Here’s how we do this in R.

> set.seed(3)

> teams = c("Man Utd", "Man City", "Sunderland", "West

Ham")

> sample(teams, 4)

[1] "Man Utd" "Sunderland" "West Ham" "Man City"

So, we have ‘Man Utd vs Sunderland’ and ‘Man City vs West Ham’ 4. 4 As actually happened in 2014.

However, if we think Sunderland are likely to get beaten by Manchester

United, we can rig the voting:

> prob_weights = c(0.4, 0.4, 0.05, 0.2)

> sample(teams, 4, prob=prob_weights)

[1] "Man Utd" "Man City" "West Ham" "Sunderland"

That’s better! 5 5 Perhaps. Actually, it didn’t matter
– Sunderland beat Man Utd anyway!
But lost in the final to Man City :-(

46 dr lee fawcett

Summary of R commands

Command Comment Example

sample Sample discrete numbers sample(c(1,2,3))

runif Generate a random number between 0 & 1 runif(1)

set.seed Set the seed of the random number generator set.seed(10)

Table 6.1: Summary of R commands
in this chapter.

7

Simulating Discrete Random Numbers

7.1 Simulating a Bernoulli random variable

The Bernoulli random variable I ∼ Bern(p) has already been encoun-

tered in MAS1341. It is perhaps the simplest random variable and has

the probability mass function

i 0 1

Pr[I = i] 1− p p

To simulate such a quantity, we generate an observation u from a

uniform U(0, 1) distribution and set

I =

{
0 if u < 1− p
1 if u ≥ 1− p.

.

7.1.1 Example: Bernoulli random numbers

Suppose we generate a number from a uniform U(0, 1) distribution:

0.332, 0.739, 0.653, 0.110, 0.587, 0.144

and we wish to use these to simulate six independent observations from

I, a Bern(0.8) random variable. Here p = 0.8, so we convert using:

I =

{
0 if u < 1− p = 0.2
1 if u ≥ 1− p = 0.2.

to obtain the sequence 1, 1, 1, 0, 1, 0 as our Bernoulli random sample.

7.1.2 Using R to simulate a Bernoulli R.V.

To simulate a Bernoulli variable using R is straightforward. The easiest

way is just to use the sample command:

> p = 0.5

> sample(c(0, 1), 1, prob=c(1-p, p), replace=TRUE)

[1] 1

> sample(c(0, 1), 10, prob=c(1-p, p), replace=TRUE)

[1] 1 1 1 1 0 0 0 0 1 1

48 dr lee fawcett

7.2 Simulation of discrete random variables
You would this technique described in
this section to simulate from the Pois-

son and binomial distributions.
Suppose we want to simulate a discrete random variable X
which has probability mass function

Pr[X = xj] = pj for j = 1, 2, . . . ,

and where ∑all pj = 1. To accomplish this we first simulate

a value u from a U(0, 1) distribution and set

X =

x1 if u < p1

x2 if p1 ≤ u < p1 + p2

x3 if p1 + p2 ≤ u < p1 + p2 + p3
...

...

xj if
j−1

∑
i=1

pi ≤ u <
j

∑
i=1

pi

...
...

Now, for a Uniform random variable u, and for 0 < a < b <

1, it is the case that Pr[a ≤ U < b] = b− a. Thus,

Pr[X = xj] = Pr

[
j−1

∑
i=1

pi ≤ U <
j

∑
i=1

pi

]

=
j

∑
i=1

pi −
j−1

∑
i=1

pi

= pj .

as required.

mas1343 computational probability and statistics (with r) 49

7.2.1 Example: discrete random numbers

Simulate a random variable with the following probability mass function:

x 1 2 3 4

Pr[X = x] 0.2 0.15 0.25 0.4

Solution

We calcaluate the CDF of the distribution

x 1 2 3 4

Pr[X = x] 0.2 0.15 0.25 0.4

Pr[X ≤ x] 0.2 0.35 0.60 1.0

Then we generate an observation u from U ∼ Uniform(0, 1), so

� if u < 0.2, set X = 1;

� if 0.2 ≤ u < (0.2 + 0.15) = 0.35, set X = 2;

� if 0.35 ≤ u < (0.2 + 0.15 + 0.25) = 0.6, set X = 3;

� if u ≥ 0.6, set X = 4.

1 2 3 4

0 0.2 0.35 0.6 1

X

CDF

Figure 7.1: Simulating discrete random
numbers.

Using R

To simulate the above distribution in R, there a two (obvious) methods

that we can use: the sample command

> x = c(1, 2, 3, 4)

> prob = c(0.2, 0.15, 0.25, 0.4)

> sum(prob)

[1] 1

> sample(x, 1, prob, replace=TRUE)

[1] 1

50 dr lee fawcett

or use a bunch of if statements:

> u = runif(1)

> if(u <= 0.2) {

+ X = 1

+ } else if(u <= (0.2+0.15)) {

+ X = 2

+ } else if(u <= (0.2+0.15+0.25)) {

+ X = 3

+ } else {

+ X = 4

+ }

7.2.2 Simulating a Poisson random variable

For the uniform random numbers,

0.253, 0.588, 0.789

simulate three random numbers from a Poisson distribution with mean

λ = 2.

Solution

The pdf of the poisson distribution is

Pr[X = x] =
e−λλx

x!

where λ > 0. So we have

x 0 1 2 3 4

Pr[X = x] 0.135 0.271 0.271 0.180 0.090

Pr[X ≤ x] 0.135 0.406 0.677 0.857 0.947

0 1 2 3 4 ...

0 0.14 0.41 0.68 0.86 0.951

X

CDF

X X X
Figure 7.2: Simulating discrete random

numbers from the Poisson distribution.

Hence our random numbers are 1, 2 and 3.

7.3 Simulating a Geometric random variable

Let X ∼ Geom(p), so that X takes the random values 1, 2, 3, . . . with

probabilities p, (1− p)p, (1− p)2 p, Hence, The technique descibed in this section

only works for the geometric distribu-

tion!Pr[X = k] = p(1− p)k−1 .

mas1343 computational probability and statistics (with r) 51

1 2 3 4 5 6

0 0.2 0.36 0.49 0.59 0.670.74 1

X

CDF

Figure 7.3: Diagram illustrating on
simulating discrete random numbers
from the Geometric (p=0.2) distribu-

tion.

The Geometric distribution is the distribution of the number of

independent Bernoulli trials until the first success is encountered. For

each individual trial, the probability of success is p. We know from

§7.2 that we will obtain the value X = k (say) when simulating an

observation from X using a value of U if R’s Geometric distribution: R defines

the geometric distribution slightly dif-

ferent to how we do: Pr[X = k] =
p(1− p)x. This means that when simu-

lating geometric random numbers from
R we have to add 1.

Pr[X = 1] + Pr[X = 2] + . . . + Pr[X = k− 1] ≤ U <

Pr[X = 1] + . . . + Pr[X = k],

i.e.
k−1

∑
j=1

Pr[X = j] ≤ U <
k

∑
j=1

Pr[X = j],

i.e.
k−1

∑
j=1

(1− p)j−1 p ≤ U <
k

∑
j=1

(1− p)j−1 p . (7.1)

We know (for 0 < r < 1) that

r
n

∑
k=0

(1− r)k = 1− (1− r)n+1

i.e. a Geometric progression. So

k−1

∑
j=1

(1− p)j−1 p = p
k−1

∑
j=1

(1− p)j−1

= p
k−2

∑
j=0

(1− p)j

= 1− (1− p)k−1 .

Hence for expression 7.1 we have

1− (1− p)k−1 ≤ U < 1− (1− p)k,

i.e.

(1− p)k−1 ≥ 1−U > (1− p)k,

i.e.

(k− 1) ln(1− p) ≥ ln(1−U) > k ln(1− p),

i.e.

52 dr lee fawcett

k− 1 ≤ ln(1−U)

ln(1− p)
< k,

with the inequality sign reversing since ln(1− p) < 0. Thus, we observe

X = k if

1. X > ln(1−U)
ln(1−p)

2. X− 1 ≤ ln(1−U)
ln(1−p)

, i.e. X ≤ 1 + ln(1−U)
ln(1−p)

.

Both (1) and (2) are satisfied by X = 1 +
⌊

ln(1−U)
ln(1−p)

⌋
. The symbol b c denotes “the integer

part” (e.g. b3.246c = 3, b5.685 = 5c).
In R, we use the floor function.

7.3.1 Examples: geometric random numbers

1. Given u = 0.2179, simulate a Geom(0.2) random variable X.

Solution

X = 1 +

⌊
ln(1−U)

ln(1− p)

⌋
= 1 +

⌊
ln(1− 0.2179)

ln(1− 0.2)

⌋
= 1 +

⌊
−0.2458
−0.2231

⌋
= 1 + b1.1014c
= 1 + 1 = 2.

2. Given u = 0.8923, simulate a Geom(0.4) random variable X.

Solution

X = 1 +

⌊
ln(1− 0.8923)

ln(1− 0.4)

⌋
= 1 +

⌊
−2.228406
−0.5108256

⌋
= 1 + b4.362361c
= 1 + 4 = 5.

8

Monte Carlo Methods

8.1 The continuous uniform U(0,1) distribution

We have already used this random variable a great deal: the Uniform

distribution on the interval (0, 1), see Figure 8.1. This is denoted by

U(0, 1) and denotes the random variable which has probability density

function (PDF):

fX(x) =

{
1 0 < x < 1
0 otherwise.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

x

D
en

si
ty

Figure 8.1: PDF of the uniform distri-

bution.

In the Uniform U(a, b) distribution, all values in the range a −→ b are

equally likely; thus, if a = 0 and b = 1, the PDF must be 1 for all

values in the range 0 −→ 1, since the area under the PDF must be 1.

Up to now, we have used U(0, 1) random variables to simulate from

many discrete distributions, and taken the U(0, 1) random variables

for granted - but how do we simulate them in the first place?

The key is in the accuracy to which the numbers are generated. Gen-

erating U(0, 1) random variables precisely would be very difficult!

(Impossible?!?) However, we can get three decimal places by generating

a random integer x from the set

{0, 1, 2, . . . , 999},

with all outcomes equally likely, and then putting u = x/1000. Then

u is a simulation from a U(0, 1) random variable recorded to three

decimals. The simulation of x is ‘easy’, e.g. using a congruential

generator with m = 1000 and maximum period, as we saw in Chapter

5. So for a full period congruential generator with m = 232 we get set

of integers:

{0, 1, 2, . . . , 232 − 1} .

Setting u = x/232 would give a pseudo–random number from the

U(0, 1) distribution, recorded to about 8 decimal places.

8.2 Monte Carlo

The term “Monte Carlo” is used to describe any simulation study which

involves random numbers. The name is a reference to the famous Monte

54 dr lee fawcett

Carlo Casino in Monaco, where repetition of random events is the order

of the day!

8.2.1 What is a simulation study?

For our purposes, a simulation study is any study where we examine

the properties of a system using random numbers. We have already

seen simulation studies, for example in the monopoly practical. Often

simulation studies involve estimating the probability of an event (e.g.

in Practical 4 the probability of landing on a particular square). In

general, suppose we do an experiment which has the event A as one

possible outcome. We would like to estimate the probability of A,

denoted by Pr[A]. Then by repeatedly simulating the experiment, it is

simple to estimate Pr[A], the probability of the event A, using PF(A),

where:

PF(A) =
No. of times A occurs

Number of times experiment simulated
.

Here PF(A) is the frequency estimate of Pr[A]. Why does this work?

Well, suppose we denote the number of times we simulate the experiment

by n, then PF(A) has the following important property:

as n→ ∞, then PF(A)→ Pr[A].

This means that the more simulations we do, the more accurate our

estimate of Pr[A].

8.3 Approximation of integrals

Suppose we have a complicated function f (x) defined on the interval

(0, 1), and also suppose that f (x) ∈ (0, 1).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

(b)

Figure 8.2: (a) An example function.

(b) Twenty points randomly placed on
the graph.

We would like to evaluate
∫ 1

0 f (x) dx, but the function may be too

complicated to integrate. We can find an approximate answer by

noting that the integral is equal to the area under the curve, and using

Monte Carlo methods. We design an experiment which would work in

general, even if the function was defined on a general range (a, b), and

if f (x) ∈ (0, c), for any positive value c. We generate a random data

point from a simulation grid. Let

A = {the data point lies below the curve}.

Then

Pr[A] =
area under curve

area of simulation grid
,

so that ∫ b

a
f (x) dx = [area under curve]

= Pr[A]× [area of simulation grid].

mas1343 computational probability and statistics (with r) 55

8.3.1 Example

Consider the function we saw earlier in Figure 8.2, defined on (0, 1), and

with f (x) ∈ (0, 1). Estimate
∫ 1

0 f (x)dx using Monte Carlo methods.

Solution:

1. We simulate n data points from the simulation grid; here

this is the unit square (0, 1)× (0, 1).

2. Each of the coordinates x and y are generated using a

U(0, 1) random variable. Note the fact that

A = {data point (x, y) lies below the curve} = {y < f (x)}.

3. If r points lie below the curve, then Pr[A] ' PF(a) = r/n,

and thus∫ 1

0
f (x) dx = Pr[A]× [area of simulation grid]

= Pr[A]× 1

= Pr[A]

' PF(A)

= r/n.

4. In our case, from the figure above we estimate:∫ 1

0
f (x) dx ' r

n
=

14
20

= 0.7 .

56 dr lee fawcett

8.3.2 Example using R

−1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Figure 8.3: A plot of

| sin{sin[sin(x4)]}| with the sam-

pling region.

We can also easily implement the above algorithm in R. As an extreme

example, consider the function

f (x) = | sin{sin[sin(x4)]}| .

We wish to calculate∫ 2

0
f (x) dx =

∫ 2

0
| sin{sin[sin(x4)]}| dx ,

which according to maple evaluates to approximately 0.71875. First

plot the function to determine the necessary region:

> x = seq(0, 2, by=0.001)

> plot(x, abs(sin(sin(sin(x^4)))),

+ xlab="x", ylab="f(x)", type="l",

+ xlim=c(-1,3), ylim=c(0,1))

> abline(h=0, col=2, lty=2)

> abline(h=1, col=2, lty=2)

> abline(v=0, col=2, lty=2)

> abline(v=2, col=2, lty=2)

The plot generated in the code above is shown in figure 8.2. Then we

use a for loop to simulate lots of random numbers

> set.seed(1)

> N = 100000

> no_of_hits = 0

> for(i in 1:N) {

+ x = runif(1, 0, 2); y = runif(1)

+ if(abs(sin(sin(sin(x^4)))) > y) {

+ no_of_hits = no_of_hits + 1

+ }

+ }

> area_under_curve = no_of_hits/N*2

> area_under_curve

[1] 0.71524

mas1343 computational probability and statistics (with r) 57

8.4 Other examples of simulation studies

8.4.1 Simulating the number of sixes on three rolls of a die

Suppose you roll a fair, six–sided die three times. What is the distribu-

tion of the number of sixes that can be rolled?

� Each roll of the dice is an experiment or trial which gives

a “six” (success, or s) or “not a six” (failure, or f)

� The probability of a success is

p = Pr(six) = 1/6.

� We have n = 3 independent experiments or trials (rolls of

the dice)

� Let X be the number of sixes obtained

So, for example, the probabibility of getting 2 sixes

Pr(ss f) =

(
1
6

)2 (5
6

)
;

or perhaps

Pr(s f s) =

(
1
6

)(
5
6

)(
1
6

)
=

(
1
6

)2(5
6

)
;

or even

Pr(f ss) =

(
5
6

)(
1
6

)2

,

giving

Pr(X = 2) = 3×
(

1
6

)2
×
(

5
6

)
= 0.069.

Clearly X ∼ Bin(3, 1/6), and so, more generally,

Pr(X = r) = nCr × pr × (1− p)n−r

= 3Cr ×
(

1
6

)r
×
(

5
6

)3−r
,

giving

Pr(X = 2) = 3C2 ×
(

1
6

)2
×
(

5
6

)
= 0.069.

58 dr lee fawcett

Similarly,

Pr(X = 0) = 3C0 ×
(

1
6

)3
×
(

5
6

)3
= 0.579

Pr(X = 1) = 3C1 ×
(

1
6

)1
×
(

5
6

)2
= 0.347

Pr(X = 3) = 3C3 ×
(

1
6

)3
×
(

5
6

)0
= 0.005

Giving

x 0 1 2 3

Pr(X = x) 0.579 0.347 0.069 0.005

Now let’s use R to simulate this die-rolling experiment to see what we

observe!

> set.seed(1)

> N = 100000

> sixes = vector("numeric",N)

> for(i in 1:N) {

+ game = sample(1:6, 3, replace=TRUE)

+ sixes[i] = length(game[game==6])

+ }

> table(sixes)

sixes

0 1 2 3

57846 34767 6952 435

We can then estimate Pr(X = r), r = 0, 1, 2, 3 in the following way:

PF(X = r) =
No. of times r sixes occurs

No. of times experiment simulated
,

giving, for example,

PF(X = 2) = 6952/10000 = 0.06952.

The full estimated probability distribution is then:

x 0 1 2 3

PF(X = x) 0.57846 0.34767 0.06952 0.00435

Look how close these are to the true values!

mas1343 computational probability and statistics (with r) 59

8.4.2 Investigating the distribution of the sample mean

Recently in MAS1342 you have been thinking about point estimates.

For example, the sample mean x̄ is a point estimate of the population

mean µ: x̄ is an estimate of µ and, when you calculate it, it gives you

a single ‘point’ on the real line.

Is the sample mean x̄ a ”good” estimator of µ? In other words, will

it lie close to the value of the population mean? Since x̄ is just a point

on the real line, it is unlikely that x̄ = µ. However, it would be good if

we could figure out just how close our estimate is to the ”true” value,

and it would be good if we could get a handle on the variability of

our estimate. For example, the sample mean is bound to vary from More details of what makes a“good”es-

timator will be provided in later Statis-
tics courses

sample to sample. Can we capture this variability by using just our

single sample of size n?

The answer is “Yes”! We can do this through the Central Limit Theorem

(CLT) . Informally, the CLT tells us that, no matter what the distribution You will be introduced to this idea for-

mally after Easter in MAS1342of the parent population, as n→ ∞ the sample mean x̄ follows a Normal

distribution with mean µ and variance σ2/n, where µ and σ2 are the

population mean and variance, respectively, and n is the sample size.

In other words,

x̄ ∼ N
(

µ,
σ2

n

)
for large n.

We will now use Monte Carlo methods in R to test out this theo-

rem. Suppose we have a population of 10,000 values from U(100, 500)

distribution:

> set.seed(1)

> population = runif(10000,100,500)

0 200 400 600 800

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

x

du
ni

f(
x,

 1
00

, 5
00

)

Figure 8.4: A plot of the U(100, 500)
population.

A plot of these values is shown in Figure 8.4. You can clearly see the

Uniform distribution here, over the range (100, 500).

We can work out the ‘true’ values of the mean and variance in the

population by typing:

> (mu = mean(population))

[1] 300.0672

> (sigma = var(population))

[1] 13553.12

Thus, according to the central limit theorem, we have

x̄ ∼ N
(

300,
13553

n

)
Let’s test this out for different n.

60 dr lee fawcett

Sample size n = 5

Let’s now take 1000 samples of size n = 5 from the population; calculate

the sample mean in each; and then look at some summaries of our

sample means. Note that – according the the central limit theorem –

we should have (approximately):

x̄ ∼ N (300, 2710.6)

A histogram of these sample means is shown in Figure 8.5.

Histogram of xbar5

xbar5

F
re

qu
en

cy

100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

Figure 8.5: Sampling distribution for

x̄ with n = 5.

> xbar5 = vector("numeric",1000)

> for(i in 1:1000){

+ S = sample(population, size=5, replace=FALSE)

+ xbar5[i] = mean(S)

+ }

> (mean(xbar5))

[1] 300.1127

> (var(xbar5))

[1] 2479.201

Sample size n = 50

Now let’s take 1000 samples of size n = 50 and repeat the whole

procedure. As before, according the the central limit theorem, we

should have

x̄ ∼ N(300, 271.06)

See the output below and the graph in Figure 8.6, ploted over the same

range as that in Figure 8.5.

Histogram of xbar50

xbar50

F
re

qu
en

cy

100 150 200 250 300 350 400 450

0

50

100

150

200

Figure 8.6: Sampling distribution for
x̄ with n = 50.

> xbar50 = vector("numeric",1000)

> for(i in 1:1000){

+ S = sample(population, size=50, replace=FALSE)

+ xbar50[i] = mean(S)

+ }

> (mean(xbar50))

[1] 300.2136

> (var(xbar50))

[1] 278.2053

Sample size n = 500

Now let’s take 1000 samples of size n = 500 and repeat the whole

procedure again. According the the central limit theorem, we should

have

x̄ ∼ N(300, 27.106)

See the output below and the graph in Figure 8.7, ploted over the same

range as that in Figure 8.5.

Histogram of xbar500

xbar500

F
re

qu
en

cy

100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

Figure 8.7: Sampling distribution for

x̄ with n = 500.

mas1343 computational probability and statistics (with r) 61

> xbar500 = vector("numeric",1000)

> for(i in 1:1000){

+ S = sample(population, size=500, replace=FALSE)

+ xbar500[i] = mean(S)

+ }

> (mean(xbar500))

[1] 300.0444

> (var(xbar500))

[1] 25.36247

Comments

� The Central Limit Theorem seems to hold! In each case,

the mean of x̄, and the variance of x̄, are close to what

we’d expect

� In each of the plots, we see that normalilty seems to hold

– even though the population distribution was non-normal

� As the size of the samples increases, the sampling distri-

bution of the mean becomes less variable

� In all cases, the sampling distributions are centred around

the true mean µ

62 dr lee fawcett

Lee Fawcett

