Outline solutions to revision questions

2. R-based questions

- 1. 11
- 2. 17
- 3. 23456
- 4. 2 0 -2
- 5. 1 2 10 10
- 6. 5
- 7. TRUE
- 8. TRUE
- 9. -2 -1 7 8 9 10
- 10. dataframe
- 11. x: vector of doubles; y: logical; z: vector of doubles
- 12. == tests for equality; != tests for inequality
- 13. (a) vector of doubles; (b) 10; (c) vector of logicals; (d) 10; (e) vector of doubles; (f) 5
- 14. (a) y[,1:2]; (b) y[1:2,]; (c) apply(y,1,median); (d) apply(y,2,mean); (e) y\$c3[y\$c1>0]

3. Summary statistics

	Mean	Median	IQR	Range	Variance
Dataset 1	0.605	1.98	8.19	22.86	37.280
Dataset 2	4	3.5	3.50	6	4.154
Dataset 3	4.101	3.27	3.23	12.22	18.558

4. Graphs

1. Note: these boxplots have been produced in R – the quartiles may be slightly different to those you calculate by hand!

- 2. Categorical data so bar chart or pie chart would do here.
- 3. This would be inappropriate because although we usually give our age as an integer value, age is actually continuous. Therefore, a histogram would be more appropriate.
- 4. See Table 4.2 in the lecture notes.

5. R programming

- 1. 4
- 2. 6
- 3. 15
- 4. 4
- 5. 4
- 6.6
- 7.4
- 8. 2
- 9. 2
- 10. 4
- 11. TRUE
- 12. 1
- 13. 2
- 14. 4
- 15. 1
- 16. -5
- 17. 16

6. Random number generation

- 1. (a) 2; (b) 0; (c) 1; (d) 7
- 2. (a) 17, 4, 6, 14, 19; (b) (i) b and m have no common factors other than 1, (ii) the only prime that divides m is 3, and m − 1 = 3 is a multiple of 3, and (iii) m − 1 is not a multiple of 4 − thus, the maximum period is achieved; (c) Period is 27; (d) Divide by m to give (0.6296, 0.1481, 0.2222, 0.5185, 0.7037); (e) Suitability: maximum period is achieved however, in practice, we would rather use a much larger value for m to avoid early repeatability.
- 3. See solutions to practical 5 on BB.

7. Discrete random numbers

1. We have:

Outcome	Head	Tail 0.5		
Prob.	0.5	0.5		
Cum. Prob.	0.5	1.0		

This gives: (Tail, Tail, Head, Head).

2. We get:

x	1	2	3	4	5	6
$\Pr(X \le x)$	0.10	0.25	0.40	0.55	0.70	1.00

This gives: (6, 6, 1, 2, 6, 3, 6, 5, 6, 6, 4, 2). Probably would have been suspicious as there are far more sixes than we'd expect!

3. We use

$$X = 1 + \left[\frac{\ln(1-U)}{\ln(1-p)}\right].$$

This gives:(2,1,4,1,1).

4. If $X \sim Po(3)$, then we have:

x	0	1	2	3	4	5	6	7	8	9	10
$\Pr(X = x)$	0.05	0.149	0.224	0.224	0.168	0.101	0.050	0.022	0.008	0.003	0.001
$\Pr(X \le x)$	0.05	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000

This gives: (2, 3, 1, 1, 2, 5, 2, 1).

5. See solutions on BlackBoard.

8. Monte Carlo methods

1. Cannot use regions (1) or (2), as the x-axis needs to cover the range (-2, 2). Both regions (3) and (4) will work, as the maximum value for f(x) = 2 + x in the range $-2 \le x \le 2$ is f(x) = 4, and both regions (3) and (4) will cover this.

9. Kernel density methods

- 1. See lecture notes page 63.
- 2. Kernel 1 is *not* valid, as integrating the function between -1 and 1 does not give an area of 1. All of the other kernels are valid, as they have an area of 1 between their limits.
- 3. See lecture notes page 63 (9.1) and (9.2)
- 4. Plot should look something like:

Plotting points can be calculated by considering a range of x-values to plot over – say $1 \longrightarrow 5$. Then, for example, we would have for $x_i = 1.0$:

$$\hat{f}(1.0) = \frac{1}{4} \left[K(1.0 - 2.00) + K(1.0 - 2.50) + K(1.0 - 2.75) + K(1.0 - 4.00) \right] \\ = \frac{1}{4} \left[K(-1) + K(-1.5) + K(-1.75) + K(-3) \right] \\ = \frac{1}{4} \left[\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + 0 + 0 \right] \\ = 0.2886751$$

Similarly, for other points, we get:

x_i	$\hat{f}(x_i)$
1.0	0.2886751
1.1	0.4330127
1.2	0.4330127
1.3	0.4330127
1.4	0.4330127
1.5	0.4330127
:	•
4.9	0.1443376
5.0	0.1443376