
Chapter 3

Statistical Process Control

3.1 Introduction

Operations managers are responsible for developing and maintaining the production pro-
cesses that deliver quality products and services. Once the production process is operating,
it is often necessary to constantly monitor the process to ensure that it functions the way
it was designed. The statistical methods we introduce in this Chapter represent the most
commonly–used applications of Statistics in Business, Marketing and Management – at
any point in time, there are literally thousands of firms applying these methods. In this
Chapter, we deal with the subject of Statistical Process Control.

3.2 Process variation

All production processes result in variation; that is, no product is exactly the same as
another. For example, if you weight two boxes of 500 gram breakfast cereal,

• it is unlikely that either of them will weight exactly 500 grams;

• it is unlikely that they will have the same weight.

All products exhibit some degree of variation. This could be

1. Chance variation – caused by a number of randomly occurring events that are part of
the production process and that cannot be eliminated without changing the process;

2. Assignable variation – caused by specific events or factors that are frequently tem-
porary and that can usually be identified and eliminated.

Example

Dulux manufactures paint for indoor and outdoor domestic use; most of its paint is sold in
5 litre tins. The cans are filled by an automatic valve that regulates the amount of paint
in each can. The designers of the valve acknowledge that there will be some variation in
the amount of paint, even when the valve is working as it was designed to work. This is
chance variation. Occasionally, the valve will malfunction, causing the variation in the
amount delivered to each can to increase. This increase is the assignable variation.
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The best way to understand what is happening is to consider the volume of paint in each
can as a random variable. If the only sources of variation are caused by chance, then each
can’s volume is drawn from identical distributions. That is, each distribution has the same
shape, mean, and standard deviation. Under such circumstances, the production process is
said to be under control. In recognition of the fact that variation in output will occur even
when the process is under control and operating properly, most processes are designed so
that their products will fall within designated specification limits or “specs”. For example
the process that fills the paint cans may be designed so that the cans contain between 4.98
and 5.02 litres. Inevitably, some event or combination of factors in a production process
will cause the process distribution to change. When it does, the process is said to be out

of control. There are several possible ways for the process to go out of control. Here is a
list of the most commonly occurring possibilities and their likely assignable causes.

• Level shift

This is a change in the mean of the process distribution. Assignable causes include
machine breakdown, new machine and/or operator, or a change the environment.
In the paint can example, a temperature or humidity change may affect the density
of the paint, resulting in less paint in each can.

• Instability

This is the name we apply to the process when the standard deviation increases.
This may be caused by a machine in need of repair, defective materials, wear of
tools, or a poorly trained operator. Suppose, for example, that a part of the valve
that controls the amount of paint wears down; this could cause greater variation
than normal.

• Trend

When there is a slow, steady shift (either up or down) in the process distribution
mean, the result is a trend. This is frequently the result of less–than–regular mainte-
nance, operator fatigue, residue or dirt build up, or gradual loss of lubricant. If the
paint control valve becomes increasingly clogged, we would expect to see a steady
decrease in the amount of paint delivered.

• Cycle

This is a repeated series of small observations followed by large observations. Likely
assignable causes include environmental changes, worn parts, or operator fatigue.
If there are changes in the voltage in the electricity that runs the machines in the
paint cans example, we might see series of overfilled cans and series of underfilled
cans.

The key to quality is to detect when the process goes out of control so that we can correct
the malfunction and restore control of the process. The control chart is the statistical
method that we use to detect problems.
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3.3 Control charts

A control chart is a plot of statistics over time. For example, an x̄–chart plots a series
of sample means taken over a period of time. Each control chart contains a centreline

and control limits. The control limit above the centreline is called the upper control limit

(UCL) and that below the centreline is called the lower control limit (LCL). If, when
the sample statistics are plotted, all points are randomly distributed between the control
limits, we conclude that the process is under control. If the points are not randomly
distributed between the control limits, we conclude that the process is out of control.

3.3.1 Example: Paint tins

Suppose that in the Dulux paint tins example described previously, we want to determine
whether the central location of the distribution has changed from one period to another.
We will draw our conclusion from an x̄–chart. For the moment, let us assume that we
know the mean µ and the standard deviation σ of the process when it is under control;
µ = 5 litres and σ = 0.15 litres. Samples of 20 cans are taken every hour for a period of
24 hours; the resulting sample means (in litres) are shown in table 3.1 below.

Time 13:03 14:03 15:03 16:03 17:03 18:03 19:03 20:03
x̄ 5.01 4.94 4.96 5.02 5.05 4.88 4.87 5.03

Time 21:03 22:03 23:03 00:03 01:03 02:03 03:03 04:03
x̄ 5.00 5.02 4.98 4.91 5.09 4.95 4.95 5.08

Time 05:03 06:03 07:03 08:03 09:03 10:03 11:03 12:03
x̄ 4.90 5.00 5.03 5.07 4.86 4.80 4.85 4.82

Table 3.1: Sample means from 24 consecutive samples of Dulux paint

Recall the Central Limit Theorem from MAS1403. This states that, no matter what the
distribution of our random variable (in this case our random variable is the amount of
paint in a Dulux tin), the mean x̄ of a random sample x1, x2, . . . , xn from this distribution
(provided n is large) is approximately Normal with mean µ and variance σ2/n, i.e.

x̄ ∼ N

(

µ,
σ2

n

)

,

where µ and σ2 are the mean and variance (respectively) of the distribution of our random
variable.

In the paint tins example, we are told that µ = 5 litres and σ = 0.15 litres. Means
are taken every hour from samples of size 20, and so we have

x̄ ∼ N

(

5,
0.152

20

)

i.e.

x̄ ∼ N(5, 0.001125)
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Also recall from MAS1403 that x̄ ± 1 standard deviation gives about 68% coverage for
the Normal distribution; x̄ ± 2 standard deviations gives about 95% coverage and x̄ ±
3 standard deviations gives about 99% coverage. Thus, the lower and upper control limits
for an x̄–chart are often defined as:

Lower control limit = µ− 3 standard errors = µ− 3

√

σ2

n
= µ− 3

σ√
n

Upper control limit = µ+ 3 standard errors = µ+ 3

√

σ2

n
= µ+ 3

σ√
n

For the Dulux paint example, this would give:

Lower control limit = 5− 3×
0.15√
20

= 4.899 (= 5− 3×
√
0.001125)

Upper control limit = 5 + 3×
0.15√
20

= 5.101 (= 5 + 3×
√
0.001125)

In the space below, construct an x̄–chart for the Dulux paint example. Identify when the
process is out of control.

Figure 3.1: x̄–chart for Dulux paint data
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3.3.2 2–sigma and 3–sigma control limits

The control limits we used in the example above are called “3–sigma” control limits, since
we used a distance of 3 standard errors either side of the mean as a tool to detect the
process being out of control. Why not use “2–sigma” control limits? Well, sometimes
these are used, although the following reasoning should help explain why 3–sigma control
limits are often preferred.

Suppose we have

H0 : The process is under control

H1 : The process is out of control

In statistical process control, a Type I error occurs if we conclude that the process is out
of control when in fact it is not (i.e. reject H0 when in fact it is true). This sort of error
can be quite expensive: if there is evidence to suggest that the process is out of control,
then the production process is usually stopped and the causes of the variation are found
and repaired – stopping the production process is costly, especially if there was no need
to do so! So, we would like the probability of a Type I error to be as small as possible.
For the paint tins example, we can work out the probability of a Type I error as follows.

Using 3–sigma control limits gives:

Pr(x̄ < lower limit) = Pr(x̄ < 4.899)

= Pr

(

z <
4.899− 5√
0.001125

)

= Pr(z < −3)

= 0.0013

Also

Pr(x̄ > upper limit) = Pr(x̄ > 5.101)

= 1− Pr(x̄ < 5.101)

= 1− Pr

(

z <
5.101− 5√
0.001125

)

= 1− Pr(z < 3)

= 1− 0.9987

= 0.0013.

Thus,

Pr(Type I error) = 0.0013 + 0.0013

= 0.0026
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Of course, we could have turned to the standard Normal distribution immediately and,
owing to the symmetry of the Normal distribution:

Pr(Type I error) = 2× Pr(z < −3)

= 2× 0.0013

= 0.0026.

Similarly, if we use 2–sigma control limits, we would have

Pr(Type I error) = 2× Pr(z < −2)

= 2× 0.0228

= 0.046.

Thus, using 3–sigma control limits will give a false alarm in about 0.26% of samples;
using 2–sigma control limits increases this to about 4.6% of samples.

A Type II error occurs when we do not detect when the process is out of control (i.e. we
retain H0 when in fact it is false).

3.3.3 Average run length

The average run length (ARL) is the expected number of samples that must be taken
before the control chart indicates that the process has gone out of control. The ARL is
determined by

ARL =
1

P

where P is the probability that a sample mean falls outside the control limits. Assuming
that 3–sigma control limits are used, this would give

ARL =
1

0.0026
= 385.

This means that when the process is under control, the x̄–chart will erroneously conclude
that it is out of control once every 385 samples, on average. If the sampling plan calls for
samples to be taken once every hour (as in the paint tins example), on average there will
be a false alarm once every 385 hours.

3.3.4 Examples

1. Find the upper and lower 2–sigma control limits for the Dulux paint example. Also
find the ARL for such a control chart.



3.3. Control charts 91

Lee

2. If the control limits of an x̄–chart are set at 2.5 standard errors from the centreline,
what is the probability that on any sample the control chart will give a false alarm?
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3. A firm manufactures notebook computers. For one component, the company draws
samples of size 10 every half an hour. The company makes 4000 of these components
every hour. The control limits of the x̄–chart are set at 3 standard errors from the
mean. When the process goes out of control, it usually shifts the mean by about
0.75 standard deviations.

(a) On average, how many units will be produced until the control chart gives a
false alarm?

(b) Find the probability that the x̄–chart does not detect a shift of 0.75 standard
deviations on the first sample after the shift occurs.

In the examples presented so far, we have assumed that the process parameters (µ and
σ) were known. When the parameters are unknown, we estimate their values from the
sample data. In the next section, we discuss how to construct and use control charts in
more realistic situations. We will re–visit x̄–charts in section 3.4, as well as S–charts,
and we call these control charts for variables. In section 3.5 we will also consider control
charts for attributes.
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3.4 Control charts for variables

There are several ways to determine whether a change in the process distribution has
occurred. To determine whether the distribution means have changed, we employ the
x̄–chart. To determine whether the process distribution standard deviation has changed,
we can use the S–chart or the R–chart (S for standard deviation, R for range).

3.4.1 x̄–chart

In the previous section we determined the centreline and the control limits of an x̄–chart
using the mean and standard deviation of the process distribution. However, it is unre-
alistic to believe that the mean and standard deviation of the process distribution will
be known. Thus, to construct the x̄–chart, we need to estimate the relevant parameters
from the data.

We begin by drawing samples when we have determined that the process is under control.
For each sample, we compute the mean and standard deviation. The estimator of the
mean of the distribution is the mean of the sample means (denoted ¯̄x and pronounced “x
bar bar” or “x double bar”), given by

¯̄x =

∑k

j=1
x̄j

k
,

where x̄j is the mean of the jth sample and there are k samples. To estimate the standard
deviation of the process distribution, we calculate the “pooled standard deviation”, which
we denote S and define as

S =

√

∑k

j=1
s2j

k
.

In the previous section, where we assumed that the process distribution mean and variance
were known, the centreline and control limits were defined as

centreline = µ

Lower control limit = µ− 3
σ√
n

Upper control limit = µ+ 3
σ√
n

Because the values of µ and σ are now unknown, we must use the sample data to estimate
them. The estimator of µ is ¯̄x and the estimator of σ is S. Therefore, the centreline and
control limits are now:

centreline = ¯̄x

Lower control limit = ¯̄x− 3
S√
n

Upper control limit = ¯̄x+ 3
S√
n
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Example: Car Giant car seats

Car Giant manufactures seats for Mazda and Lexus cars. One of the components of a
front seat cushion is a wire spring, produced from 4mm steel wire. A machine is used
to bend the wire so that the spring’s length is 500mm. If the springs are longer than
500mm they will loosen and eventually fall out. If they are too short, they won’t easily
fit into position. To determine whether the process is under control, random samples of
four springs are taken every hour. The last 25 samples are shown in the table below.

Sample Spring 1 Spring 2 Spring 3 Spring 4 Mean (x̄j) St. dev. (sj)
1 501.02 501.65 504.34 501.10 502.027 1.56689
2 499.80 498.89 499.47 497.90 499.015 0.83309
3 497.12 498.35 500.34 499.33 498.785 1.37556
4 500.68 501.39 499.74 500.41 500.555 0.68267
5 495.87 500.92 498.00 499.44 498.558 2.15203
6 497.89 499.22 502.10 500.03 499.810 1.76324
7 497.24 501.04 498.74 503.51 500.132 2.74084
8 501.22 504.53 499.06 505.37 502.545 2.93381
9 499.15 501.11 497.96 502.39 500.152 1.97782
10 498.90 505.99 500.05 499.33 501.068 3.31578
11 497.38 497.80 497.57 500.72 498.368 1.57771
12 499.70 500.99 501.35 496.48 499.630 2.21626
13 501.44 500.46 502.07 500.50 501.118 0.77993
14 498.26 495.54 495.21 501.27 497.570 2.81996
15 497.57 497.00 500.32 501.22 499.027 2.05853
16 500.95 502.07 500.60 500.44 501.015 0.73487
17 499.70 500.56 501.18 502.36 500.950 1.11887
18 501.57 502.09 501.18 504.98 502.455 1.72411
19 504.20 500.92 500.02 501.71 501.712 1.79632
20 498.61 499.63 498.68 501.84 499.690 1.50694
21 499.05 501.82 500.67 497.36
22 497.85 494.08 501.79 501.95
23 501.08 503.12 503.06 503.56
24 500.75 501.18 501.09 502.88
25 502.03 501.44 498.76 499.39

Table 3.2: Spring data for Car Giant car seats

Complete the table by finding the mean and standard deviation for samples 21–25.
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The mean of the means – ¯̄x – is given by

¯̄x =
502.027 + 499.015 + . . .

25

= 500.296.

Also, the pooled standard deviation S is found as

S =

√

1.566892 + 0.833092 + . . .

25

=

√

97.125

25

= 1.971

Thus, the centreline and control limits are

Centreline = ¯̄x = 500.296

Lower control limit = ¯̄x− 3
S√
n
= 500.296− 3×

1.971√
4

= 497.34

Upper control limit = ¯̄x+ 3
S√
n
= 500.296 + 3×

1.971√
4

= 503.253

This produces the x̄–chart shown in figure 3.2. Don’t forget – you should be able to produce

these plots by hand! Is the process in control or out of control?

Figure 3.2: x̄–chart for Car Giant springs dataset

As you can probably tell, I produced the plot shown in figure 3.2 using Minitab. To do
this, all the data need to be in a single column, i.e.
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501.02

501.65

504.34

501.10

499.80

498.89

499.47

497.90

497.12

.

.

.

501.44

498.76

499.39

You then click on Stat–Control Charts–Variable Charts for Subgroups–Xbar. En-
ter the column that contains the data, and enter the Subgroup sizes (here this is 4).
Figure 3.3 below shows a screenshot from Minitab illustrating this.

Figure 3.3: Minitab screenshot showing the options for the x̄–chart
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3.4.2 S–charts

The S–chart graphs sample standard deviations to determine whether the process distri-
bution standard deviation has changed. The format is similar to that of the x̄ chart. The
S chart will display a centreline and control limits. However, the formulae for the cen-
treline and control limits are more complicated than those for the x̄–chart; Consequently,
we will let Minitab do the work here!

With the data stacked as before (see page 94), we click on Stat–Control Charts–
Variables Charts for Subgroups–S; we enter the column with the stacked data, and
we enter the Subgroup sizes as 4. In S options, we need to make sure that the Pooled
standard deviation is selected under Method for estimating standard deviation

within Estimate. Clicking OK gives the plot shown in figure 3.4.

Figure 3.4: S–chart for Car Giant springs dataset

Comments
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3.4.3 x̄–charts and S–charts in practice: Monitoring the pro-

duction process

In this section, we have introduced x̄–charts and S–charts as separate procedures. In
actual practice, however, the two charts must be drawn and assessed together. The
reason for this is that the x̄–chart uses S to calculate the control limits. Consequently,
if the S–chart indicates that the process is out of control, the value of S will not lead
to an accurate estimate of the standard deviation of the process distribution. The usual
procedure is:

1. Draw the S–chart first;

2. If this indicates that the process is under control, then draw the x̄–chart;

3. If the x̄–chart also indicates that the process is under control, we can then use both
charts to maintain control;

4. If either chart shows that the process was out of control at some time during the
creation of the charts, we can detect and fix the problem and then re–draw the
charts with new data.

When the process is under control, we can use the control chart limits and centreline to
monitor the process in the future. We do so by plotting all future statistics on the control
chart.

Example: Back to Car Giant car seats

We have determined that the process is under control – none of the points in the S–chart
nor the x̄–chart fell outside the control limits. We now use the statistics generated in the
creation of these charts to monitor the production process. Recall that the sampling plan
calls for samples of size 4 every hour. The following table lists the lengths of the springs
taken during the next six hours.

Sample Spring 1 Spring 2 Spring 3 Spring 4 Mean (x̄j) St. dev. (sj)

26 502.653 498.354 502.209 500.080

27 501.212 494.454 500.918 501.855

28 500.086 500.826 496.426 503.591

29 502.994 500.481 502.996 503.113

30 506.549 508.708 502.480 504.442

31 500.441 508.887 505.005 503.254

1. Complete the last two columns of this table.
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2. Update the S–chart and x̄–chart shown in figures 3.5 and 3.6 below (respectively).

Figure 3.5: S–chart for Car Giant springs dataset, with updated results

Figure 3.6: x̄–chart for Car Giant springs dataset, with updated results

3. Comment.
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3.4.4 Process Capability Index

The Process Capability Index, Cp, measures the theoretical or potential process capability,
and we use statistics computed in the construction of the control chart to calculate this.
Suppose that the operations manager of Car Giant determined that the springs will fit
provided that their lengths fall between 493mm and 507mm. These are known as the
lower and upper specification limits (LSL and USL), respectively. Recall that, in the Car
Giant example, we had

¯̄x = 500.296 and S = 1.971.

We now define

CPL =
¯̄x− LSL

3S
=

500.296− 493

3× 1.971
= 1.23

and

CPU =
USL− ¯̄x

3S
=

507− 500.296

3× 1.971
= 1.13.

We then define the process capability index Cp as

Cp = Min(CPL,CPU) = 1.13.

The higher the value of Cp, the better the production process meets specifications. By
determining this value, operations managers can measure improvements in the production
process.

3.5 Control charts for attributes

The quality characteristic of interest is not always a numerical measurement (e.g. mean
or standard deviation). Sometimes, the product or service has, or does have, a particular
feature or attribute. In particular, we are usually interested in whether it is satisfactory
or defective. In this case the proportion of items in the sample that possess the attribute
is recorded on the control chart instead of the sample mean or standard deviation. A
control chart produced in this way is often called a p–chart.

Suppose that when the process is in control the proportion of items with the charac-
teristic of interest is known and is p. The 3–sigma lower and upper control limits for a
proportion are

Lower control limit = p− 3

√

p(1− p)

n

Upper control limit = p+ 3

√

p(1− p)

n

and the centreline is p itself. If the lower limit is negative, you should set it equal to
zero. As was the case with x̄–charts, we very rarely know the process characteristics. If
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p is unknown, we estimate it from the data. In the above formulae, we replace p with p̄,
where

p̄ =

∑k

j=1
p̂j

k
,

where p̂j is the sample proportion of items with the attribute of interest in sample j, and
there are k samples in total.

Example

A company that produces USB memory sticks has been receiving complaints from its
customers about the large number of devices that will not store data properly. Company
management has decided to institute statistical process control to remedy the problem.
Every hour, a random sample of 200 memory sticks is taken, and each is tested to deter-
mine whether it is defective. The number of defective memory sticks in the samples of size
200 for the first 40 hours is shown in table 3.3 below. Using these data, draw a p–chart to
monitor the production process. Was the process out of control when the sample results
were generated?

19 5 16 20 6 12 18 6 13 15
10 6 7 10 18 20 13 6 8 3
8 7 4 19 3 19 9 10 10 18
15 16 5 14 3 10 19 13 19 9

Table 3.3: Number of defective memory sticks in 40 consecutive samples of size 200

Outline solution

For each sample we compute the proportion of defective memory sticks, i.e. for sample 1:

p̂1 =
19

200
= 0.095.

Similarly, for sample 2:

p̂2 =
5

200
= 0.025.

We then find the mean of all these proportions (p̄), which for the control chart gives

Centreline = p̄ = 0.05762.

The lower and upper control limits are then found as:

Lower control limit = p̄− 3

√

p̄(1− p̄)

n

= 0.05762− 3×
√

0.05762× 0.94238

200

= 0.008188 and
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Upper control limit = p̄ + 3

√

p̄(1− p̄)

n

= 0.05762 + 3×
√

0.05762× 0.94238

200

= 0.1071.

We then produce a plot of the calculated proportions p̂j , along with the centreline and
control limits, giving the plot shown in figure 3.7.

Figure 3.7: p–chart for the proportion of defective memory sticks

In Minitab, we would click on Stat–Control Charts–Attributes Charts–P; enter the
column with the (stacked) data in in Variables, enter the Subgroup sizes (200 here),
and then click OK.

Comments
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Probability Tables for the Standard Normal Distribution

The table contains values of P (Z < z), where Z ∼ N(0, 1).

z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

-3.0 0.0000 0.0000 0.0001 0.0002 0.0002 0.0003 0.0005 0.0007 0.0010 0.0013

-2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019

-2.8 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026

-2.7 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035

-2.6 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047

-2.5 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062

-2.4 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082

-2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107

-2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139

-2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179

-2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228

-1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287

-1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359

-1.7 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446

-1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548

-1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668

-1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808

-1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968

-1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151

-1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357

-1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587

-0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841

-0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119

-0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420

-0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743

-0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085

-0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446

-0.3 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821

-0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207

-0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602

0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999


