This document contains supplementary information on using Minitab to produce graphical and numerical summaries from data. Also included is some guidance on using Minitab to calculate probabilities from the normal distribution.

1 Starting Minitab

Minitab is a computer package available on most university computers that allows you to analyse data both graphically and numercally.

Minitab is run by clicking on

Start > All Programs > Minitab > Minitab 16 Statistical Software

You will see two windows: a session window and a worksheet. Data are entered into columns labelled C1, C2, C3, etc in the worksheet.

2 Stem and leaf plots

Suppose C1 contains some data. To obtain a stem and leaf plot of these data you would need to do the following:

```
Graph > Stem-and-Leaf...
```

This brings up the window below. You need to type in C1 under Graph variables and click OK. If you want you can choose the stem unit by entering a value in Increment first, otherwise the programme selects this for you.

- II ×

This creates a stem and leaf plot in the session window:

 >MINITAB - Untitled

 Ele Edit Data Gale Stat Graph Editor Iools Window Help

 Image: State Graph Editor Iools Window Help

 <td

] 🗁 🖌	a 🚙 X	Pa 🖪	\odot \simeq	💷 🕴 🖡	M #	0 ? 🗊	I				
+C 🛛	à 🕞 🕕 🕯	2 🥫 🕫	n (C		i						
-2 -	848	7 A. 1	1								
E See	ssion										
Stem Leaf	-and-leaf Unit = 0	of Cl 1 .10	N = 50								
3 9 12 22 (8) 20 9 2	3 18 134 9 18 668999 12 19 001 22 19 556677899 (8) 20 00012444 20 20 56666667899 9 21 0002334 2 21 77										
								•			
■ Wo	rksheet 1 *	240k									
∎wo	rksheet 1 * C1	** C2	G	C4	CS	C6	C7				
▼ ₩0	rksheet 1 * C1	*** C2	C3	C4	ය 	C6	C7				
 ✓ ✓ ✓ ✓ ✓ 	rksheet 1 * C1 20.2780 20.9908	*** C2	G	C4	CS	C6	C7				
✓ </th <th>rksheet 1 * C1 20.2780 20.9808 19.9951</th> <th>C2</th> <th>C3</th> <th>C4</th> <th>C5</th> <th>C6</th> <th>C7</th> <th></th>	rksheet 1 * C1 20.2780 20.9808 19.9951	C2	C3	C4	C5	C6	C7				
↓ ↓ 1 2 3 4	rksheet 1 * C1 20.2780 20.9808 19.9951 20.6361	**	C3	C4	C5	C6	C7				
 ↓ ↓ 1 2 3 4 5 	rksheet 1 * C1 20.2780 20.9808 19.9951 20.6361 21.4413	*** C2	C3	C4	C5	C6	C7				
 ↓ ↓ 1 2 3 4 5 6 	C1 20.2780 20.9808 19.9951 20.6361 21.4413 20.0814	*** C2	C3	C4	C3	C6	C7				
 ✓ ✓	Image: constraint of the second sec	**	G	C4	C5	C6	C7				
 ✓ ✓	rksheet 1 * C1 20.2780 20.9808 19.9951 20.6361 21.4413 20.0814 20.6662 18.9497	**	G	C4	C5	C6	C7				
✓ </th <th>ksheet 1 * C1 20.2780 20.9808 19.9951 20.6361 21.4413 20.0814 20.6662 18.9497 20.8881</th> <th>**</th> <th>G</th> <th>C4</th> <th>C5</th> <th>C6</th> <th>C7</th> <th></th>	ksheet 1 * C1 20.2780 20.9808 19.9951 20.6361 21.4413 20.0814 20.6662 18.9497 20.8881	**	G	C4	C5	C6	C7				
 ✓ ✓	ksheet 1 * C1 20.2780 20.9808 19.9951 20.6361 21.4413 20.0814 20.6662 18.9497 20.8881 18.4261	**	C3	C4	<u>C5</u>	C6	C7				

It is easy to see some of the advantages of graphically presenting data. For example, here you can clearly see that the data are centred around a value in the low 20's and fall away on either side. From stem and leaf plots we can quickly and easily tell if the distribution of the data is symmetric or asymmetric. We can see whether there are any **outliers**, that is, observations which are either much larger or much smaller than is typical of the data. We could perhaps even tell whether the data are **multi-modal**, that is to say, whether there are two or more peaks on the graph with a gap between them. If so, this could suggest that the sample contains data from two or more groups.

3 Bar Charts

Bar charts are a commonly–used and clear way of presenting categorical data or any ungrouped discrete frequency observations. As with stem and leaf plots, various computer packages allow you to produce these with relative ease.

Bar charts are easily drawn using Minitab:

- 1. First enter the data in the worksheet, either in summary format or as raw data, with column C1 containing the categories and the (raw or frequency) counts in column C2.
- 2. Graph > Bar Chart...

2 MI	NITAB - Uni	itled														_82
Eile	<u>E</u> dit D <u>a</u> ta	<u>⊆</u> alc <u>S</u> tat <u>G</u> ra	aph Egitor	r <u>T</u> ools ⊻	∕indow H	lelb										
Ê		お雨尾に	CH 📴	1 1 1	A <i>R</i>	0 ? 🗊										
*	•••	🔁 🗐 🍗 🖸														
-22	星山谷	1 1. 0														
E 5	ssion															_101×
					1						met					-
						Bar Charts					×					
						Bars represent	t									
						Values from a	a table	•								
						One column of v	/alues									
						Simple	Cluster	Stac	k							
						ΙΠΠ			8							
								1 4								
4						A 1 2	B 12 1 A 1 2		2							2
ill w	orksheet 1	100				Two-way table										- D ×
+	C1-T	C2	C3	C4	C	Cluster	Stack	_			11	C12	C13	C14	C15	C'_
1	Mode	Frequency				I III III	100	1								-
1	Car	10					1142									
2	Walk	7				B 12 12 A1 A2	A1 A2									1
3	Bike	4								20000		-				-
4	Metro	4				Help		UK		Cancel						-
6	Train	1			-							-				-
7										-						
8								1		1			1			
9																
1 ⁿ																+
	nind M															//
	ojeccinali.													Eduable	10	24
Draw h	dr undrus —													cuitable —	1000	24

3. Select the appropriate data format (raw data or tabulated data), the columns containing the data, and the graph format.

Bar Chart - Values from a	a table, One column of v Graph variables:	values, Simple	×
C2 Frequency	Frequency		<u>_</u>
	<u>C</u> ategorical variable: Mode		
	Bar Chart Options	<u>S</u> cale	Labels
	<u>D</u> ata View	<u>M</u> ultiple Graphs	D <u>a</u> ta Options
Select			
Help		<u>0</u> K	Cancel

4. When ready click OK.

This procedure produces the chart

This bar chart clearly shows that the most popular mode of transport is the car and that the metro, walking and cycling are all equally popular (in our small sample). Bar charts provide a simple method of quickly spotting simple patterns of popularity within a discrete data set.

3.1 Multiple Bar Charts

Day	Chart	Dance	Rest	Total
Monday	12000	10000	2700	24700
Tuesday	11000	8000	3000	22000
Wednesday	9000	6000	2000	17000
Thursday	10000	5000	2500	17500
Friday	12000	11000	3000	26000
Saturday	19000	12000	4000	35000
Sunday	10000	8000	2000	20000
Total	83000	60000	19200	162200

Consider the data below showing daily sales of CDs by music type at an independent retailer:

Multiple bar charts can be produced in Minitab as follows:

- 1. Enter the data into the worksheet, the types of music in columns and the days as rows.
- 2. Graph > Bar Chart...
- 3. Select the appropriate data format and the Stack graph format.

۶MI	NITAB - CD.MP.)												[- 18 >
Eile	Edit Data Ga	alc <u>S</u> tat g	raph Egitor <u>T</u> o	iols <u>W</u> indov	v Help										
6	8 8 8	le 🔒 🖡	o ce 📴 🗄	1 4	R 0 ? d	1									
-	A A O A	🗐 👘 I		属											
-2	星志福 2	1 1. 10	· ·												
				_	_	_	_	_	_	_	_			1	
	2331011							_						-	<u> //</u>
					Bar Charts					×					
					Bars repres	sent									
					Values fro	m a table	-								
					12		_								
					One column	of values	3000000								
					Simple	Cluster	Stack								
						11.11									
															-
4	J				A 1 2	Å 12 12	AIŻ								•
	orksheet 1 **	400 - C			Two-way tab	le									
+	C1-T	œ	C3-T	C4	Cluster	Stack	_			C11	C12	C13	C14	C15	-
1	Day	Sales	Music Type												-
1	Monday	12000	Chart												
2	Tuesday	11000	Chart		B 12 12	A1 A2									
3	Wednesday	9000	Chart									_			
4	Thursday	10000	Chart		Help		OK		Cancel						_
5	Friday	12000	Chart			1		1	1						
6	Saturday	19000	Chart						_						_
7	Sunday	10000	Chart												_
8	Monday	10000	Dance				-			-					
9	luesday	8000	Dance												
1		ыш	lianca												1
	roiect Man 🖡														
Draw b	ar charts	here biller										Edi	table	18:33	
1 St	art 🙆 🧔	æ) ur	iversity of Newca	stle 🖌 🛦	Microsoft Photo	Editor - L.	MINITAR	CD MP3				jeu		130 10	18:33
			and a second second			and the later									10.00

- 4. Click OK.
- 5. Enter the column containing the Sales data under Graph variables and the Day and Music Type in the grouping dialogue box.

6. Click OK.

The Minitab worksheet and chart this produces are as follows:

These types of charts are particularly good for presenting such financial information or illustrating any breakdown of data over time – for example, the number of new cars sold by month and model.

4 Histograms

Normally, as with stem and leaf plots and bar charts, we would get Minitab to produce histograms for us, rather than draw them by hand.

- 1. Enter the data in column C1 of the worksheet. For illustrative purposes I have randomly generated 500 observations in this column.
- 2. Graph > Histogram...
- 3. Select the Simple graph format.

4. Select C1 under Graph variables.

Histogram - Simple				×
CT	<u>G</u> raph variables:		*	
	<u>S</u> cale <u>M</u> ultiple Graphs	Labels	<u>D</u> ata View	
Select				
Help		<u>0</u> K	Cancel	

Note: various advanced options are available e.g. a title can be added by clicking Labels

5. When happy with your choices click OK.

These instructions produce the following histogram:

The histogram produced can be amended by right-clicking on the graph. For example, the intervals used in the histogram can be changed or, more simply, the number of intervals using Edit bars > Binning.

We can double the number of intervals (from 18 to 36 intervals) using the Binning dialogue box

Edit Bars	×
Attributes Groups Options Binning	
Interval Type © <u>M</u> idpoint © <u>D</u> utpoint	
Interval Definition	
C Automatic	
C Midpoint/Cutpoint positions:	
82 84 66 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116	
Help <u>D</u> K Cancel	

This changes the histogram to

4.1 Percentage Relative Frequency Histograms

Percentage relative frequency histograms can be produced in Minitab as follows:

- 1. Place the data to be graphed in a column of the worksheet. For illustrative purposes 500 observations have been generated in column C1.
- 2. Graph > Histogram
- 3. As with ordinary histograms, select the Simple graph format, click on OK, and select column C1 under Graph variables.
- 4. Select Scale... then Y-Scale Type and tick the Percent button

Histogram - Scale		×
Axes and Ticks Y-Scale Type Gridi	ines Reference Lines	
Y-Scale Type C Erequency C Density C Density C Accumulate values across bins		
Help	<u>0</u> K	Cancel

5. Click on OK and again on OK.

This produces the following histogram:

MINITAB - Untitled	X
Elle Edit Data Galc Stat Graph Editor Iools Window Help	
● 🛛 ● ※ 陶 ඬ ジ ○ 🕅 11 商 谷 🛇 🕈 🗊	
	-0×
	A
Percentage Relative Frequency Histogram	
16-	
14-	
± 10-	
	•
	<u> </u>
Worksheet 1 ** 4-	×
+ C1 C12 C13	C14 C15 C16_
2 202.569 184 188 192 196 200 204 208 212	
3 191.794 C1	
4 199.339	
5 2U3/U34	
7 200.793	
8 200.313	
9 192.637	
197 3/45	
Project Man 🖥 🗆 🗙	
Current Worksheet: Worksheet 1	14:15
👔 Start 🔞 👩 🕼 University of Newcastle 🏘 Microsoft Photo Editor - [🔀 MINITAB - Untitled	🔟 📈 🏂 陵 🌚 14:15

Note that the *y*-axis now contains the relative percentages rather

5 Relative Frequency Polygons

These can be produced in Minitab as follows.

- 1. Place the data in the worksheet using column C1 for the mid-points and column C2 for the percentage relative frequencies.
- 2. Graph > Scatterplot...
- 3. Select the With Connect Line option and click on OK.
- 4. Enter the column with the percentage frequencies (C2) under Y variables and the column with the midpoints (C1) under X variables

9	icatte	rplot - With Connec	t Line		X
	C1 C2	Mid-point %Rel Freq	Y variab 1 '%Rel Frec 2 3 - 5 - 6 7 Scale	Ies X variables ' ' 'Mid-point' Labels Data Options	Data View
		Select			
		Help		<u>0</u> K	Cancel

- 5. Add a title by clicking on Labels... etc.
- 6. Click on OK.

These instructions produce the graph:

These percentage relative frequency polygons are very useful for comparing two or more samples – we can easily "overlay" many relative frequency polygons, but overlaying the corresponding histograms could get really messy! Consider the data on gross weekly income (in \pounds) collected from two sites in Newcastle; see page 74 of the notes.

We can produce a graph containing polygons for both locations using Minitab instructions very similar to those above:

- 1. Place the data in the worksheet using column C1 for the mid–points, column C2 for the percentage relative frequencies and column C3 for the site where the data were taken.
- 2. Graph > Scatterplot...
- 3. Select the With Connect and Groups option and click on OK.
- 4. Enter the column with the percentage frequencies (C2) under Y variables and the column with the midpoints (C1) under X variables. Also enter the Site column (C3) in the box for Categorical variables for grouping.

- 5. Add a title by clicking on Labels... etc.
- 6. Click on OK.

The polygon produced looks like

6 Cumulative Frequency Polygons (Ogive)

This graph can be produced using the following Minitab instructions:

- 1. In column Cl, enter the end points of the class intervals, as well as the starting point of the smallest class.
- 2. In column C2, enter 0 against the starting point and the cumulative percentage relative frequencies against the relevant end point.
- 3. Graph > Scatterplot...
- 4. Select the With Connect Line option and click on OK
- 5. Enter the column with the percentage frequencies (C2) under Y variables and the column with the midpoints (C1) under X variables

t Line		×
Y variables 1 'Cum % Rel Fr 2 3 4 5 6 7 Scale Multiple Graphs	X variables A x	Data View
	t Line Y variables 1 'Cum % Rel Fr 2 3 4 5 6 7 Scale Multiple Graphs	t Line Y variables X variables 1 'Cum % Rel Fr x 2 3 4 5 5 6 7 - Scale Labels Multiple Graphs Dgta Options

- 6. Add a title by clicking on Labels... etc.
- 7. Click on OK.

This produces the following graph:

Applying this procedure to the income data from the West Road survey gives the ogive:

7 Pie Charts

Consider the data on newspaper sales to 650 students that were presented in question 6, Section 3.6 of the notes.

In Minitab, a pie chart for these data would be obtained as follows:

- 1. Enter the data into a worksheet, with category name in column C1 and frequencies in column C2.
- 2. Graph > Pie Chart...
- 3. Tick the button for Chart values from a table
- 4. Enter the Category column under Categorical variable: and the Frequency column under Summary variables:

5. Add a title and click OK.

This produces the following pie chart:

MI	NITAB - newspaper	.MPJ							_ 8 ×
Eile	Edit Data Calc ;	itat Graph	Editor Tools Wi	ndow <u>H</u> elp					
		8 00	· 🖪 † L i						
		te ifi (
1.0									
	舌 040 05 29 4								1
E 5	ession		🕂 Pie Chart of S	iales vs Paper					<u>_ ×</u>
			Die	Chart for Student Ne	wspaper Readership				-
				Ghart for Student Ne	мэрарсі іссайсі эпір				
	orksheet 1 ***	6				Times Sont Guardian Financial Times Mirror Daily Mirror Independent	C13	<u>C14</u>	× * * * * *
•	CI-I Paner	Salae					CIS	C14	
1	Times	140							
2	Sun	200							
3	Sport	50							
4	Guardian	120	L						
5	Financial Times	20							
6	Mirror	80							
7	Daily Mirror	10							
8	Independent	30							
9									
1 ⁰									<u> </u>
		cal .							<u>// 1</u>
P	rojedd Man - 🗗 🗖							-	Television
Welcon	ne to Minitab, press F:	for help.			0				14:39
d Sta	art 😡 🥭	🖉 Universi	ity of Newcastle	Microsoft Photo Editor - [MINITAB - newspaper			EN 📈	2 B B 9 14:39

It shows that The Sun, The Times and The Guardian are the most popular papers.

Note that the pie chart is a simple circle. Some computer software will draw "perspective" pie charts, pie charts with slices detached etc. It is best to avoid such gimmicks which merely obscure the information contained in the chart.

8 Scatter Plots

Consider the data for monthly output and total costs at a factory that were given in Section 3.4.8 of the notes.

If you were interested in the relationship between the cost of production and the number of units then a scatter plot can be produced using Minitab (Select Graph then Scatterplot then Simple and insert the required variables).

	TAB - scatterp	olot.MPJ													_ 8 ×
Eile	<u>E</u> dit D <u>a</u> ta <u>⊂</u> alc	: Stat Graph Eg	jitor <u>T</u> ools	Window	Help										
🗳 🖬	1 😂 🕺 Q	1 n n	t 1	MA											
+R 🔽		a to 🖻		5											
				<u> </u>											
(m)	a nan nan 1 or	1994 CF													1=1 ×1
<u>∰</u> ,589	sion		Scatter p	olot of T	otal costs vs	Monthly o	utput								- 비스
				Scatterplot of Total costs vs Monthly output											
			20000	-											
			18000	-					•						
								•							
			- 16000	-											
			ar C												
			후 14000	-			•								
															-
•			12000	-							10000000				• //
Worksheet 1 ***											X				
+	C1	C2	10000	1000	2000 3000	4000	5000 60	10 7000	ອດກ່າວ ຈາກ່າ	10 1000	C11	C12	C13	C14	C15 🔺
jį –	Total costs M	lonthly output				Mo	nthly outp	out							-
1	10300	2400			4				1						
2	12000	3900													
3	12000	3100													
4	13500	4500													
5	12200	4100						_							
6	14200	5400													
7	10800	1100								-					
8	18200	7800										· · · · ·			
9	16200	7200													•
1		Girci III			1										▶ <i>//</i>
Pro	ject Man 🧧														
Current	Vorksheet: Work	sheet 1											1	1	14:48
2 Star	t 🕼 🥭	🔄 University o	of Newcastle .	🤷	Microsoft Photo	Editor - [· MII	(ITAB - sca	tterplot				2	N 🜌 🔏	14:48

9 Time Series Plots

Consider the data on the number of computers sold (in thousands) by quarter (January-March, April-June, July-September, October-December) at a large warehouse outlet that were given in Section 3.4.9 of the notes.

In Minitab a time series plot can be obtained using:

- 1. Enter the data into a worksheet, with the Quarter, Year and Sales in columns C1, C2 and C3.
- 2. Click on Graph and select Time Series Plot...
- 3. Select the Simple graph format and click on OK.
- 4. Enter the Sales column in the Series: box.
- 5. Now click on Time/Scale..., check the Stamp button and enter the Quarter and Year columns under Stamp columns

- 6. Click OK.
- 7. Add a title etc.
- 8. Click OK.

The time series plot is:

10 Summary statistics in Minitab

Minitab can be used to calculate all of the basic numerical summary statistics covered in Chapter 3. These summaries for data in a selected column can be obtained using the commands

Stats > Basic Statistics > Display Descriptive Statistics

The results are output in the session window as follows:

Image: Statustics: C1 Variable M WF Mean SE Rean StDev Minisum Q1 Median Q3 C1 200 0 200.11 0.475 4.75 186.31 196.95 200.11 203.13 Variable Maximum C1 200.51 Variable Maximum Variable Maximum C1 200.51 Variable Maximum	
Image: Second	
C C	
C Session Image: Construction of the construct	
Descriptive Statistics: C1 Variable N N* Mean SE Hean StDev Miniawa 01 Median 03 (1 100 0 200.11 0.475 4.75 186.31 196.95 200.11 203.13 Variable Maximum (1 209.51 ↓ * C1 C2 C3 C4 C5 C5 C7 C8 C9 C10 C11 C12 C13 C14 C15 ↓ 1 205.329	
Descriptive Statistics: C1 Variable JI N* Mean SE Rean StDev Hinizona 01 Median 03 C1 100 0 200.11 0.475 4.73 106.91 196.95 200.11 203.13 Variable Maximum C1 209.51 I * C1 C2 C3 C4 C5 O5 C7 C8 C9 C10 C11 C12 C13 C14 C15 I 205.329	
Descriptive Statistics: C1 Variable B N* Mean SE Mean Sthey Minisum Q1 Median Q3 C1 D00 200.11 0.475 4.75 106.31 196.95 200.11 203.13 Variable Maximm C1 209.51 Image: State St	
Descriptive Statistics: C1 Variable N N* Mean SE Hean StDev Minimum 01 Median 03 (1 000 0 200.11 0.475 4.75 186.31 196.95 200.11 203.13) Variable Maximum C1 209.51 Image: Statistics: C1 Variable Maximum C1 209.53 Image: Statistics: C1 Variable Maximum C1 209.53 Image: Statistics: C1 Variable Maximum C1 209.53 Image: Statistics: C1 Image: C1 C2 C3 C4 C5 C5 C6 C7 C8 C9 C10 C1 C12 C1 C2 C3 C4 C5 C5 C6 C7 C9 C10 C1 C12 C1 C2 C3 C4 C5 C5 C6 C7 C9 C10 C1 C12 C1 C13 C1 C13	
Variable N N Nam SE Hean Hean <t< td=""><td></td></t<>	
c1 100 0 200.11 0.475 1.96.95 200.11 203.13 Variable Naximum 209.51	
Variable Movimu Figure 1 Figure 2005.51 Figure 2	
C1 209.51 Si Warksheet I *** C1 C2 C3 C4 C5 O6 C7 C8 C9 C10 C11 C12 C13 C14 C15 1 205.329	
More that the second	
Image: Constraint of the state of	
Image: NorthScheet 1 *** Image: NorthScheet 1 **** Image	-
Image: C1 C2 C3 C4 C5 O5 C7 C8 C9 C10 C11 C12 C13 C14 C15 1 205 329 -	• //
↓ C1 C2 C3 C4 C5 O6 C7 O8 C9 C10 C11 C12 C13 C14 C15 1 205.329	
1 205.329	C16_
	_
2 196.946	
3 199.880	
4 193.882	
5 200.109	
6 200,373	
7 189,930	
8 186.313	
9 196.463	-1
	+
Dana Weldest Weldest 1	
And a Company transmission of Neurophy of Neurophy Company and Antonio	

11 Box plots

Minitab will produce box plots using the following commands.

- 1. Enter the data into the worksheet, say column C1
- 2. Graph > Boxplot... and select the Simple graph format
- 3. Next enter the column containing the data under Graph variables:
- 4. Add a title using Labels...
- 5. Click on OK.

If the data have subgroups, such as results from three different surveys, then box plots of the sample data can be plotted by group by first entering the group variable into the worksheet, say as column C2, and then selecting the With Groups graph format. The group variable is then entered into the subsequent dialogue box under Categorical variables for grouping. Displaying group structure is one of the main uses of box plots. For example:

clearly shows that although there is overlap between the three sets of data, the first and second datasets contain roughly similar responses and that these are quite different from those in the third set. Note that the asterisks (*) at the ends of the whiskers is the way Minitab highlights outlying values.

12 Calculating probabilities from the normal distribution

Minitab can be used to calculate normal probabilities. The following commands will calculate probabilities P(X < x) and also values of x that satisfy P(X < x) = p:

1. Calc > Probability Distributions > Normal

opens up dialogue box

Normal Distribution		×
	Probability density Gumulative probability Inverse cumulative probability Mean: 100 Standard deviation: 15	
Select	C Input column: Optional storage: Input constant: Optional storage:	
Help	<u>Q</u> K Cancel	

- 2. Select Cumulative probability for $P(X \le x)$ or Inverse cumulative probability for the value of x satisfying $P(X \le x) = p$
- 3. Enter the Mean (μ) and the Standard Deviation (σ)
- 4. Select Input Constant and enter the value for x or p (as appropriate)
- 5. Click OK
- 6. The answer is displayed in the Session Window:

