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What we’ll cover...
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Optimisation using the differential calculus, and the role of
the second derivative
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Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2. Optimisation using calculus

An important topic in many disciplines is the study of how
quickly quantities change over time .

For example, in order to estimate the future demand for a
commodity, we need information about rates of change .

As we shall see in this chapter, we can also use such
information to solve optimisation problems: for example, we
might be interested in the number of items that need to be
produced in order to maximise profit or minimise loss .
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2. Optimisation using calculus

We have already considered rates of change in Chapter 1.

In the equation of the straight line

y = mx + c,

the gradient m represents the rate of change of y with respect
to x , and we thought about how to calculate m using the
formula

Gradient =
Change in y
Change in x

.
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2. Optimisation using calculus

In Chapter 1 we also considered some non–linear functions ,
focussing primarily on quadratic functions.

We will begin Chapter 2 with an examination of how to find the
gradient of a non–linear function , before thinking about how
this can be used to aid the process of optimisation .
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2.1 Differentiation

The concept used to describe the rate of change of a function
(linear or non–linear) is the derivative , which is the central
concept in mathematical analysis.

In this section we will define the derivative of a function, as well
as present some of the important rules for calculating it.

Isaac Newton (1642–1727) and Gottfried Leibniz
(1646–1716) discovered most of these general rules
independently of each other.

This initiated the differential calculus , which has been the
foundation for the development of modern science.

It has also been of central importance to the theoretical
development of modern economics.
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2.1.1 The gradient of a curve

A curve does not have a constant gradient – its direction is
continuously changing , and so its gradient will continuously
change too.

So we look at the gradient of the curve at a particular point on
the curve , rather than calculate the gradient of an entire line as
with a linear function.
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2.1.1 The gradient of a curve

Look at the graph of y = x2 shown below.

Let’s suppose we are interested in the gradient of this curve at
the point x = 3.

Informally, we can say a couple of things about the gradient at
this point:

The gradient will be positive – as you look at the graph
from left to right at this point, the curve goes uphill

The graph is symmetric about the point x = 0: the
gradient at x = −3 will be the same as that at x = 3 (just
negative)

As we move from x = 3 to x = 0, the gradient gets less
and less steep , and “flattens out” completely at x = 0
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2.1.1 The gradient of a curve
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2.1.1 The gradient of a curve

We know how to find the gradient of a straight line from Chapter
1, so we can approximate the gradient of the curve at x = 3 by
drawing a chord on the curve.

For example, draw a chord on the curve between the points
x = 3 and x = 5, and find the gradient of this chord [the
co-ordinates will be (3,9) and (5,25)]:

Gradient =
25 − 9
5 − 3

=
16
2

= 8.
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2.1.1 The gradient of a curve
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2.1.1 The gradient of a curve

We know how to find the gradient of a straight line from Chapter
1, so we can approximate the gradient of the curve at x = 3 by
drawing a chord on the curve.

For example, draw a chord on the curve between the points
x = 3 and x = 5, and find the gradient of this chord [the
co-ordinates will be (3,9) and (5,25)]:

Gradient =
25 − 9
5 − 3

=
16
2

= 8.
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2.1.1 The gradient of a curve

Now decrease the length of the chord and bring it closer to the
curve – for example, draw the chord between the points x = 3
and x = 4 – and find the gradient [The co-ordinates will be (3,9)
and (4,16)] :

Gradient =
16 − 9
4 − 3

=
7
1
= 7.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.1.1 The gradient of a curve
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2.1.1 The gradient of a curve

Now decrease the length of the chord and bring it closer to the
curve – for example, draw the chord between the points x = 3
and x = 4 – and find the gradient [The co-ordinates will be (3,9)
and (4,16)] :

Gradient =
16 − 9
4 − 3

=
7
1
= 7.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.1.1 The gradient of a curve

Now decrease the length of the chord again and bring it even
closer to the curve – draw the chord between the points x = 3
and x = 3.5 – and find the gradient [The co-ordinates will be
(3,9) and (3.5,12.25)] :

Gradient =
12.25 − 9

3.5 − 3
=

3.25
0.5

= 6.5.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.1.1 The gradient of a curve
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2.1.1 The gradient of a curve

Now decrease the length of the chord again and bring it even
closer to the curve – draw the chord between the points x = 3
and x = 3.5 – and find the gradient [The co-ordinates will be
(3,9) and (3.5,12.25)] :

Gradient =
12.25 − 9

3.5 − 3
=

3.25
0.5

= 6.5.
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2.1.1 The gradient of a curve

Point of interest Point 2 Gradient

(3,9) (5,25)
25 − 9
5 − 3

= 8

(3,9) (4,16)
16 − 9
4 − 3

= 7

(3,9) (3.5,12.25)
12.25 − 9
3.5 − 3

= 6.5

(3,9) (3.25,10.5625)
10.5625 − 9

3.25 − 3
= 6.25

(3,9) (3.1,9.61)
9.61 − 9
3.1 − 3

= 6.1

(3,9) (3.01,9.0601)
9.0601 − 9

3.01 − 3
= 6.01
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2.1.1 The gradient of a curve

So it looks like at x = 3 the gradient converges to 6.

We can generalise this approach algebraically .

Suppose the point of interest has co–ordinates (x , x2) and point
2 has an x co–ordinate close to that of the point of interest, say
x + δ. Then the y co–ordinate of point 2 is

y = (x + δ)2.
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2.1.1 The gradient of a curve

Thus, the gradient is given by

Gradient =
Change in y
Change in x

=
(x + δ)2 − x2

(x + δ)− x

=
(x + δ)(x + δ) − x2

x + δ − x

=
x2 + 2δx + δ2 − x2

δ

=
2δx + δ2

δ
= 2x + δ.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.1.1 The gradient of a curve

Now if we let δ get smaller and smaller, i.e. “tend to zero”, we
are left with just

Gradient = 2x .

So the gradient, or derivative , of the curve y = x2 is 2x .
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2.1.1 The gradient of a curve

We usually denote this quantity as
dy
dx

, pronounced “dee y by

dee x”, and so when

y = x2

dy
dx

= 2x .
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2.1.1 The gradient of a curve

We can now use this derivative to find the gradient of the curve
at any point x .

For example, when x = 3, the gradient is

dy
dx

= 2x = 2 × 3 = 6,

exactly the answer we found from first principles in the table on
page 41!
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2.1.1 The gradient of a curve

What is the gradient of the curve y = x2 at the points x = 4,
x = 1, x = 0 and x = −4? Do your answers make sense in
relation to the graph of this function?

Solution

x = 4 :
dy
dx

= 2 × 4 = 8

x = 1 :
dy
dx

= 2 × 1 = 2

x = 0 :
dy
dx

= 2 × 0 = 0

x = −1 :
dy
dx

= 2 ×−1 = −2.
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2.1.1 The gradient of a curve

Looking at the graph, these values make perfect sense: as we
approach zero, we can see the curve becomes less and less
steep, until at the origin the gradient is zero.

Also, the curve is symmetric about x = 0 and so the gradient at
x = ±1 will be the same, just negated.
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2.1.2 Some general results for polynomials

In the previous section we found that, when

y = x2,

dy
dx

= 2x .

Notice that the power of x has been “brought down”, in front of
the x , and the power itself has reduced by one (2x is actually
2x1).
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2.1.2 Some general results for polynomials

In general, when

y = xn,

dy
dx

= nxn−1.

More generally still, if

y = kxn, then

dy
dx

= nkxn−1.
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2.1.2 Examples

Find
dy
dx

for each of the following:

1. y = x3

2. y = x5

3. y = 2x3

4. y = 4x3 − 7x2 + 2x

5. y = 5x2 + 2

6. y =
√

x + 1

7. y =
1
x
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Solution to examples

1. We have y = x3. Bringing the power down, and then
reducing the power by one, gives

dy
dx

= 3x2.

2. We have y = x5. Bringing the power down, and then
reducing the power, gives

dy
dx

= 5x4.
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Solution to examples

3. We have y = 2x3. Bringing the power down, and then
reducing the power by one, gives

dy
dx

= 3 × 2x2 = 6x2.

4. We have y = 4x3 − 7x2 + 2x1. Bringing the powers of x
down, and then reducing the powers, gives

dy
dx

= 3 × 4x2 − 2 × 7x1 + 1 × 2x0

= 12x2 − 14x + 2.
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Solution to examples

5. We have y = 5x2 + 2, i.e. y = 5x2 + 2x0. Thus

dy
dx

= 2 × 5x1 + 0 × 2x−1

= 10x ,

so constants just differentiate to zero!
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Solution to examples

6. We have y =
√

x + 1 = x0.5 + 1. Thus

dy
dx

= 0.5x−0.5

=
1
2

x−
1
2

=
1
2
×

1

x
1
2

=
1
2
×

1√
x

=
1

2
√

x
.
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Solution to examples

7. We have y =
1
x
= x−1. Thus

dy
dx

= −1x−2

= −
1
x2 .
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Example 2.1

The managing director of a company is interested in modelling
the relationship between her company’s annual profits (£P
million) and their annual advertising budget (£A thousand).

The graph below shows how the managing director believes P
changes with A.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



Example 2.1
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Example 2.1

(a) You work as part of a team of business analysts for this
company. A colleague proposes the following three profit
functions:

* P = 80 − 4.3A
* P = 2.1 + 13.5A + 0.5A2

* P = 2.1 + 6.3A − 0.13A2 + 0.0008A3 − 0.0002A4

Which of these do you think would be most appropriate in
this situation? Why?

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



Solution to Example 2.1(a)

We clearly do not have a linear function, and so this rules out
the first.

Our graph shows that the function will not be symmetric, and so
we cannot have a quadratic.

Thus the quartic must be the most suitable function.
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Example 2.1

(b) For the profit function you have chosen in part (a), find
dP
dA

.
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Solution to Example 2.1(b)

We have P = 2.1 + 6.3A1 − 0.13A2 + 0.0008A3 − 0.0002A4.

Thus

dP
dA

= 1 × 6.3A0 − 2 × 0.13A1 + 3 × 0.0008A2 − 4 × 0.0002A3

= 6.3 − 0.26A + 0.0024A2 − 0.0008A3.
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Example 2.1

(c) Use your answer to part (b) to find the gradient of your
profit function when the company spends (i) £10,000; (ii)
£15,250; (iii) £20,000 and (iv) 40,000 on advertising each
year. Do these values match up with what you see in the
graph?
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Solution to Example 2.1(c)

A = 10 :
dP

dA
= 6.3 − 0.26 × 10 + 0.0024 × 102

− 0.0008 × 103
= 3.14

A = 15.25 :
dP

dA
= ... = 0.056

A = 20 :
dP

dA
= ... = −4.34

A = 40 :
dP

dA
= ... = −51.46
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Example 2.1

(d) What will be the value of dP
dA when the company optimises

their advertising budget (i.e. maximises profit)?
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Solution to Example 2.1(d)

From the graph, we can see that the company will maximise
their profit at the peak of the curve.

This is known as a turning point in the graph.

Before this point, the gradient (dP
dA ) is positive

After this point, the gradient (dP
dA ) is negative

At this point dP
dA = 0
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Example 2.2

A small firm employs five machine operators.

For a particular contract, the firm believes it will produce
Q = 1

2

√
M units of a commodity, where M machine operators

are used.

The cost, per operator, is e40 and the price obtained per unit is
e160.

(a) Formulate a non–linear function for the firm’s profit, π, in
terms of M only.
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Solution to Example 2.2(a)

Profit = Total income − Total costs

π = 160Q − 40M

= 160
(

1
2

√
M
)

− 40M

= 80
√

M − 40M.
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Example 2.2

(b) Find dπ
dM , and solve dπ

dM = 0 for M. Comment.
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Solution to Example 2.2(b)

We have π = 80
√

M − 40M = 80M0.5 − 40M. Thus

dπ
dM

= 0.5 × 80M−0.5 − 40

= 40 ×
1

M0.5 − 40

=
40√
M

− 40.

When dπ
dM = 0 we get

40√
M

= 40

40 = 40
√

M

1 =
√

M,

and so M = 1. This means that the turning point in our graph
will occur when we use 1 machine operator.
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Example 2.2

(c) Shown below is a plot of π against M. Can you see how
this corresponds to your answer to part (b)?
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Solution to Example 2.2(c)

It is clear from the graph that the turning point in this function
occurs at M = 1 – our calculations show that this is the point at
which the gradient is zero.
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2.2 Optimisation using differentiation

Suppose a company believes there is a non–linear relationship
between it’s monthly advertising budget (£x thousand) and their
monthly profit (£y thousand).

In particular, their analyst believes that the following cubic
function explains how y varies with x :

y = −7.36 + 9.42x − 1.17x2 + 0.04x3.
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2.2 Optimisation using differentiation

The company’s monthly advertising budget cannot exceed
£17,000; their current contractual arrangements for commercial
TV and radio advertising means they must always spend at
least £4,000 on advertising every month.

A graph of this cubic, between the values of x = 4 and x = 17,
is shown overleaf.
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2.2 Optimisation using differentiation
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2.2 Optimisation using differentiation

Some things to note from the graph:

There are two turning points on the graph – one at about
x = 6 and the other at about x = 14;

One is known as a local maximum , the other is a local
minimum ;

In this example, one of these points corresponds to
maximum profit, the other corresponds to minimum profit;

At both turning points, the gradient of the curve – and

hence
dy
dx

– is zero .
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2.2 Optimisation using differentiation

To find the exact x co–ordinate of each turning point, we can
equate the derivative to zero and solve for x .

For example, we know that

dy
dx

= 9.42 − 2 × 1.17x + 3 × 0.04x2

= 9.42 − 2.34x + 0.12x2.

At each of the turning points shown in the graph, we know that
the gradient is zero. Thus, we know that

9.42 − 2.34x + 0.12x2 = 0,

and we know how to solve such a quadratic equation from the
material in Chapter 1!

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.2 Optimisation using differentiation

Using the quadratic formula, we know that

x =
−b ±

√
D

2a
,

where D is the discriminant and is equal to b2 − 4ac; a and b
are the coefficients of the x2 and x terms, respectively, and c is
the constant.

In this example, a = 0.12, b = −2.34 and c = 9.42, giving

D = (−2.34)2 − (4 × 0.12 × 9.42) = 0.954,
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2.2 Optimisation using differentiation

and so

x =
2.34 ±

√
0.954

0.24
,

giving

x =
2.34 +

√
0.954

0.24
= 13.81971, or

x =
2.34 −

√
0.954

0.24
= 5.680295.
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2.2 Optimisation using differentiation

These are the precise values of x at which the curve has zero
gradient – i.e. the advertising expenditure that will
minimise/maximise profit – and this can be seen in the graph
above.

So, spending £5,680 per month on advertising seems to be the
optimal strategy, which will give monthly profits of

y = −7.36+9.42(5.680)−1.17(5.6802)+0.04(5.6803) = £15,729.
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2.2 Optimisation using differentiation

Spending £13,820 per month on advertising seems to give the
worst outcome, with monthly profits of just

y = −7.36+9.42(13.820)−1.17(13.8202)+0.04(13.8203) = £4,944.
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2.2 Optimisation using differentiation

It is obvious from our graph which of the turning points gives
the maximum profit and which gives the minimum profit.

However, if we didn’t have a graph of the function, the second
derivative test can help us here.

The second derivative of a function, sometimes written as

d2y
dx2 ,

(“dee 2 y by dee x squared”) is just the derivative of the
derivative.
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2.2 Optimisation using differentiation

If x represents the x co–ordinate of our turning point, i.e.
dy
dx

(x) = 0, then:

If
d2y
dx2 (x) < 0, our turning point is a maximum ;

If
d2y
dx2 (x) > 0, our turning point is a minimum .
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2.2 Optimisation using differentiation

In this example,

dy
dx

= 9.42 − 2.34x + 0.12x2.

Thus,
d2y
dx2 = −2.34 + 0.24x .

At the first turning point, x = 5.680295, giving

d2y
dx2 = −2.34 + 0.24 × 5.680295 = −0.9767292,

which is negative, and so here we have a maximum turning
point .

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



2.2 Optimisation using differentiation

At the second turning point x = 13.81971, giving

d2y
dx2 = −2.34 + 0.24 × 13.81971 = 0.9767304,

which is positive, and so here we have a minimum turning
point .
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2.2 Optimisation using differentiation

To summarise:

There are two turning points: one at x = 5.680295 and one
at x = 13.81971

At x = 5.680295, the second derivative is negative and so
we have a local maximum

At x = 13.81971 the second derivative is positive and so
we have a local minimum

The local maximum/minimum correspond to
maximum/minimum profit, and so spending £5,680 pounds
on advertising is the optimal strategy, giving profits of just
under £16,000.

The worst strategy is to spend £13,820 on advertising,
which will give a profit of just under £5,000.
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Example 2.3

Choctastic! are a chocolate manufacturer.

One of their gift boxes has 27 chocolates in it, requiring a
volume of 1350 cubic centimetres.

The company would like to work out the optimal dimensions of
the required box to minimise the amount of packaging used
(and hence minimise production costs).
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Example 2.3

The diagram below shows a “net” of the box that will be used; x
and y are both in centimetres.

 

     Bottom

Side 1

  Side 2

   Lid

Side 3 Side 4

y

x   

x
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Example 2.3: Solution to part (a)

(a) Write down an expression for the volume of the box, in
terms of x and y .

Solution

The volume is given by

length × width × height = 1350

y × x × x = 1350

x2y = 1350.
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Example 2.3: Solution to part (b) (1/2)

(b) Formulate an expression for the surface area S of the box,
in terms of x only.

Solution

Looking at the net, there are four rectangles with area xy
and two squares with area x2. So the total surface area is

S = 4xy + 2x2.
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Example 2.3: Solution to part (b) (2/2)

Now from (a), we know that

y =
1350

x2 .

Substituting this into the equation for S gives

S = 4x
(

1350
x2

)

+ 2x2

=
4x × 1350

x2 + 2x2

=
5400

x
+ 2x2 = 5400x−1 + 2x2.
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Example 2.3

(c) Find
dS
dx

, and hence show that the optimal strategy is to

use a cuboid box for the chocolates. What are the
dimensions of this cuboid?
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Example 2.3: Solution to part (c) (1/3)

We have
S = 5400x−1 + 2x2.

Thus,
dS
dx

= − 5400x−2 + 4x .

At turning points the gradient is zero. Thus

−
5400

x2 + 4x = 0

4x =
5400

x2
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Example 2.3: Solution to part (c) (2/3)

So

4x3 = 5400

x3 = 1350

x = 3
√

1350 = 11.052 cm.
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Example 2.3: Solution to part (c) (3/3)

When x = 11.052,

y =
1350

x2 =
1350

11.0522 = 11.052 cm;

with reference to the net, we see this will give a cuboid shape
for the box!
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Example 2.3

(d) Use the second derivative test to show that you have
minimised the amount of packaging used.
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Example 2.3: Solution to part (d) (1/1)

We know that
dS
dx

= −5400x−2 + 4x .

Thus
d2S
dx2 = 10800x−3 + 4.

At our turning point, x = 11.052, giving

d2S
dx2 =

10800
11.0523 + 4 = 12,

which is positive – this confirms that our turning point is a
minimum .
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2.3 Partial differentiation

As you will see in some of your other courses, most
relationships in Economics, Accounting and Finance involve
more than two variables .

For example, the demand for a good depends not only on its
own price but also on the price of substitutable or
complementary goods, incomes of consumers, advertising
expenditure and so on.

Likewise, the output from a production process depends on a
variety of inputs, including land, capital and labour.

To analyse general economic behaviour we must extend the
concept of differentiation to several variables.
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Examples

1. If f (x , y) = xy + 2y , evaluate
(a) f (3, 4);
(b) f (4, 3).

f (3,4) = 3 × 4 + 2 × 4 = 20

f (4,3) = 4 × 3 + 2 × 3 = 18
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Examples

2. If g(x1, x2, x3) = x2
1 + x2 − 3x3, evaluate

(a) g(5, 6, 10);
(b) g(0, 0, 0).

g(5,6,10) = 52 + 6 − (3 × 10) = 1

g(0,0,0) = 0.
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2.3 Partial differentiation

Given a function of two variables, for example

z = f (x , y),

we can determine two first–order derivatives. The partial
derivative of f with respect to x is written as

∂z
∂x

or
∂f
∂x

or fx ,

and is found by differentiating f with respect to x , with y held
constant.

Similarly, the partial derivative of f with respect to y is written as

∂z
∂y

or
∂f
∂y

or fy ,

and is found by differentiating f with respect to y , with x held
constant.
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Examples

Find the first–order partial derivatives of the functions

(a) f (x , y) = x2 + y3;

Solution

∂f
∂x

= 2x ;

∂f
∂y

= 3y2.

Dr. James Waldron, Dr. Lee Fawcett ACC1012 / 1053: Mathematics & Statistics



Examples

Find the first–order partial derivatives of the functions

(b) f (x , y) = x2y ;

Solution

∂f
∂x

= 2xy ;

∂f
∂y

= x2.
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Examples

Find the first–order partial derivatives of the functions

(c) f (x , y) = x2y3 − 10x .

Solution

∂f
∂x

= 2xy3 − 10;

∂f
∂y

= 3x2y2.
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2.3 Partial differentiation

In general, when we differentiate a function of two variables, the
thing we end up with is itself a function of two variables.

This suggests the possibility of differentiating a second time.

In fact, there are four second–order partial derivatives.
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2.3 Partial differentiation

We write:
∂2z
∂x2 or

∂2f
∂x2 or fxx

for the function obtained by differentiating twice with respect to
x ,

∂2z
∂y2 or

∂2f
∂y2 or fyy

for the function obtained by differentiating twice with respect to
y ;
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2.3 Partial differentiation

∂2z
∂y∂x

or
∂2f
∂y∂x

or fyx

for the function obtained by differentiating first with respect to x
and then with respect to y , and

∂2z
∂x∂y

or
∂2f
∂x∂y

or fxy

for the function obtained by differentiating first with respect to y
and then with respect to x .
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Examples

Find expressions for the second–order partial derivatives fxx ,
fyy , fyx and fxy for the functions

(a) f (x , y) = x2 + y3;

(b) f (x , y) = x2y .
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Examples

For part (a), we know that

fx = 2x and fy = 3y2.

Thus

fxx = 2;

fyy = 6y ;

fxy = 0;

fyx = 0.
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Examples

For part (b), we know that

fx = 2xy and fy = x2.

Thus

fxx = 2y ;

fyy = 0;

fxy = 2x ;

fyx = 2x .
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