Learning outcomes: Chapter 6

- 1. In very general terms, you should know what is meant by the phrase *statistical inference*.
- **2.** You should know that the sample mean \bar{x} is an *estimator* of the (true) population mean μ , and that:
 - From a single sample, x_1, x_2, \ldots, x_n , $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ gives a *point estimate* of μ
 - \bar{x} will vary from sample to sample
 - Sometimes \bar{x} will over–estimate μ , sometimes it will under–estimate μ
- **3.** You should know that the *Central Limit Theorem* tells us how \bar{x} varies; specifically,

$$\bar{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

for large n, where σ^2 is the population variance.

- 4. As the sample size n increases, the standard error $(\sigma/\sqrt{n} \text{the standard deviation of } \bar{x})$ gets smaller, and so the precision of \bar{x} increases.
- 5. You should be able to find 90%, 95% and 99% confidence intervals for the population mean μ when (1) the population variance is known, and (2) the population variance is unknown (see overleaf).
- 6. You should be able to perform simple hypothesis tests for one mean, when (1) the population variance is known, and (2) the population variance is unknown (see overleaf).
- 7. You should be able to perform simple hypothesis tests for two means, when (1) both population variances are known, and (2) both population variances are unknown.