
Chapter 7

Techniques of regression

7.1 Introduction

In this chapter we will investigate relationships between continuous variables. Initially,
we will assume our data consists of n pairs of observations on two variables, say X and
Y :

(x1, y1), (x2, y2), . . . , (xn, yn).

These data could have arisen from a random sample of n individuals from a
population, on which two measurements/observations (xi, yi), i = 1, . . . , n were made;
or from an experiment in which one variable, usually the X variable, is held fixed or
controlled at certain chosen levels and independent measurements of the response
variable, conventionally Y , are taken at each of these levels. The first step is always to
plot the data on a scatter diagram.

We considered scatter diagrams, often called scatter plots, in Chapter 3. From this
diagram we can get an initial impression about the relationship between X and Y and
form some subjective assessments. The main aim of this chapter is to supplement such
descriptive analyses with more formal techniques – both in terms of quantifying the
association between X and Y , but also being able to model any relationship between X
and Y . Towards the end of the course, we will also consider extending these techniques
to investigate the relationship between the response variable Y and more than one
predictor variable – perhaps to include several predictor variables X1, X2, . . ..

7.2 Example: The Saint Clair Estate Winery

The Saint Clair Estate Winery is a vineyard in the Marlborough region of the South
Island of New Zealand. In New Zealand, wine production is a multi–million dollar
industry, and Saint Clair is one of the country’s leading producers, and exporters, of
Sauvignon Blanc wine. Tanner’s Wines, a fine wine stockist in the U.K., imports wine
from all over the world, including the Saint Clair Estate Winery.
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The price of a bottle of wine is thought to depend on many factors, such as its age, the
quality of the grapes used to produce it, the amount of rainfall during the growing
season, where the wine was produced, etc. The table below shows the price of 10
randomly selected bottles of wine from www.tanners-wines.co.uk. Also shown in this
table is the age of each wine selected. The graph below shows a scatter plot of Price
(Y ) against Age (X); we produce this by plotting points with x and y co–ordinates
given by the observed values for X and Y , i.e. (3.5, 4.50), (5, 12.95), . . . , (4, 10.00). This
plot was produced in Minitab; you will be reminded of the Minitab commands
necessary for producing scatter plots in the next practical session.

Bottle 1 2 3 4 5 6 7 8 9 10
Age (X years) 31

2
5 3 21

2
3 2 21

2
1 10 4

Price (£Y ) 4.50 12.95 6.50 4.99 7.50 14.95 8.25 3.95 18.99 10.00

Looking at the scatter plot (and maybe just the raw data themselves!), what can you say
about the relationship between age of wine and price?

✎
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7.3 Quantifying the relationship: Correlation

There is clearly a relationship between the age and price of wine; the relationship is
positive, or direct, and most people would agree that this positive relationship appears
to be quite strong and linear. How would you describe, in words, the relationship
between X and Y in the following scatter plots?

Scatterplots such as the one in the bottom left–hand corner above can be difficult to
interpret using words alone, since different people might say different things. Some
might think there is a moderate/fairly strong relationship between X and Y here,
whilst others might conclude that there is a relatively weak relationship between these
two variables. Interpreting such relationships with words alone can be very subjective;
quantifying such relationships numerically can circumvent this problem of subjectivity.
One way of doing this is to calculate the product moment correlation coefficient, often
denoted by the letter r. The formula for r is

r =
Sxy√

Sxx × Syy

,

where

Sxy =
(∑

xy
)
− nx̄ȳ,

Sxx =
(∑

x2
)
− nx̄2 and

Syy =
(∑

y2
)
− nȳ2,
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n is the number of pairs and x̄ and ȳ correspond to the mean of X and the mean of Y
(respectively).

The product moment correlation coefficient r always lies between −1 and +1. If r is
near +1, there is a strong positive linear relationship between the two variables; if r is
near −1 there is a strong negative relationship. If r is near zero, there is no linear
relationship between the variables. Note that this does not imply no relationship at all,
simply no linear relationship.

✎

Based on this information, can you estimate the value of r for the wine age/price data?
And for the four datasets shown in the plots above?

Since we have the data for the wine example, we can calculate the value of r here. The
easiest way to calculate the correlation coefficient (other than using a computer/stats
mode of a calculator!) is to draw up a table:

x y x2 y2 xy
3.5 4.50 12.25 20.25 15.75
5 12.95 25 167.7025 64.75
3 6.50 9 42.25 19.5
2.5 4.99 6.25 24.9001 12.475
3 7.50 9 56.25 22.5
2 14.95 4 223.5025 29.9
2.5 8.25 6.25 68.0625 20.625
1 3.95 1 15.6025 3.95
10 18.99 100 360.6201 189.900
4 10.00 16 100 40

36.5 92.58 188.75 1079.14 419.35
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Then we have:

✎

Since this is fairly close to +1, we have a moderate/strong positive linear association
between the age and price of wine. Remember that this correlation coefficient can only
be used to detect linear associations.

For information, the value of r for the plots at the start of this section, from top–left
and moving clockwise, is r = 1,−0.899, 0.699, 0.064. Note there is clearly a relationship
between X and Y in the bottom–right plot, but here r = 0.064 which is very close to
zero: this is because the relationship here is plainly non–linear.
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7.4 Modelling the relationship: linear regression

A correlation analysis may establish a linear relationship but it does not allow us to
use it to, say, predict the value of one variable given the value of another. Regression
analysis allows us to do this and more. Recall the scatter plot of the price of wine
against the corresponding age of each bottle (shown again below). A “line of best fit”
can be drawn through the data, and from this line we can make predictions of price
based on age, for ages for which we have no data.

Try this yourself, and use your line of best fit to predict the price of a bottle if wine which
is six years old.

✎

The problem is, everyone’s line of best fit is bound to be slightly different, and so
everyone’s predictions will be slightly different! The aim of regression analysis is to find
the very best line which goes through the data in a relatively objective way. We do this
through the regression equation.
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Recall from Chapter 1 that the equation of a straight line takes the general form

y = mx+ c,

where m and c are the gradient, and intercept, respectively. Statisticians tend to use
different notation for their regression equation; the convention is to use

Y = β0 + β1X + ǫ,

where Y is the response variable and X the predictor variable. The unknown
parameters β0 (“beta nought”) and β1 (“beta one”) represent the intercept and slope of
the population regression line β0+β1X. Notice we also have an unusual addition to this
equation of a straight line: ǫ (“epsilon”). This quantity represent “random error”, and
is added to the equation to allow for deviations from the straight line (in most real–life
applications, we never see a ‘perfect’ relationship – there is usually some “scatter”
about the line!). If we get time, we will think about the role of ǫ in more detail later on.

So we need to find β0 and β1; the best values will minimise the vertical distances
between the regression line and the data. These distances are known as the residuals ;
this is best seen through a diagram:

✎



178 CHAPTER 7. TECHNIQUES OF REGRESSION

Now each of the points i, i = 1, . . . , n, in our scatter plot has a y co–ordinate yi. Recall
from above that the corresponding y co–ordinates of points on the line, say ŷi, are
given by

ŷi = β0 + β1xi.

Thus, the vertical distances between the points and the line are given by

y1 − ŷ1 = y1 − β0 − β1x1

y2 − ŷ2 = y2 − β0 − β1x2

...

yn − ŷn = yn − β0 − β1xn

Now some of these distances will be negative, as defined above, as some points will lie
below the line; thus, to get rid of any “negative distances”, we square all of these
quantities:

(y1 − β0 − β1x1)
2

(y2 − β0 − β1x2)
2

...

(yn − β0 − β1xn)
2

The very best line of best fit – that is, the line which minimises the sum of these
“squared distances”, is what we call the regression line. So we want the regression line
to minimise the quantity

∆(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2.

And how do we minimise a function? We use calculus! So, without showing the details
here (see the last prize question for this!), we solve

d

dβ0

∆(β0, β1) = 0

d

dβ1

∆(β0, β1) = 0

for β0 and β1. Doing so gives some very nice formulae:

β̂1 =
Sxy

Sxx

and

β̂0 = ȳ − β̂1x̄,

where the “hat” notation L̂ implies that we obtain estimates of the gradient and
intercept from our sample data, and not the true values of these parameters.
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Estimate the regression equation for the wine data, and superimpose this on the original
scatter plot.

✎

We can use the estimated regression equation to make predictions of wine price given a
certain age; for example, suppose we produce a bottle of wine that has been ageing for
41
2
years. How much should we sell it for? Based on our regression equation, we could

estimate a selling price per bottle as:

Y = 3.903 + 1.467× 4.5 = 10.505

i.e. about £10.50. It is clear from our regression equation that, for every one year
increase in age, the selling price of a bottle of wine increases by about £1.47.

A cautionary note

Care should be taken when using the regression equation to make predictions of the
response variable. In particular, we should only use our regression equation to make
predictions using X–values that lie within the range of the data observed. So, for
example, we should not use this regression equation to estimate the selling price of a
bottle of wine that has been ageing for 12 years.

Also, care should be taken not to read too much into the regression equation. For
example, consider sales of ice cream and sales of sun tan lotion. In hot weather sales of
ice cream increase and sales of sun tan lotion also increase, so ice cream sales may be a
useful predictor of sun tan lotion sales. However, the act of buying an ice cream does
not cause someone to by some sun tan lotion. What is happening is that both ice
cream sales and sun tan lotion sales are directly influenced by a third factor: in this
case, the weather.
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7.5 Testing the strength of a correlation

In Section 7.3 we thought about how we can quantify the strength of (linear)
association between a pair of variables X and Y . We then moved on, in Section 7.4, to
think about how we can model this relationship through the simple linear regression
model. Surely, though, there is no point in estimating the regression equation if there is
little, or no, linear association between X and Y ? That is, if the correlation coefficient
is close zero, we have shown that the strength of linear association is negligible and so
why would we then be interested in modelling this negligible/non–existent relationship?

The answer is – “we wouldn’t”! If our correlation coefficient r ≈ 0, there is no (linear)
relationship between X and Y and so the story ends. However, what if your value for r
is about ±0.5 or ±0.6? Thus suggests there is some linear association, but is this linear
association strong enough to warrant further analysis (i.e. regression)?

We can at least attempt to answer this question by performing a hypothesis test for the
correlation coefficient.

�



�
	Example 7.1

The following table shows the total market value (X) of 14 companies (in £million)
and the number of stock exchange transactions (Y ) in that company’s shares occurring
on a particular day. Underneath, you are given some numerical summaries; the graph
below shows a scatter plot for these data, as produced by Minitab.

Market value (X) 6.5 5.2 0.4 1.7 1.9 2.4 3.2 4.7 10.1 12.5 13.1 5.5 2.5 1.5

Transactions (Y ) 380 200 42 50 40 78 350 18 295 190 200 55 38 20

14∑

i=1

xi = 71.2
14∑

i=1

yi = 1956

n∑

i=1

x2
i = 582.66

14∑

i=1

y2i = 487166
14∑

i=1

xiyi = 13481.6
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(a) Find the sample correlation coefficient r, and comment.

(b) Formally test the strength of correlation as suggested by your answer to part (a).

✎
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�



�
	Example 7.2

Test the significance of the correlation coefficient you calculated for the wine age/price
data in Section 7.3.

✎
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7.6 Multiple linear regression

In this section we will show how the linear regression model can be extended to include
any number of predictor variables.

The model we have considered so far, namely

Y = β0 + β1X + ǫ,

has been, and is often, referred to as the simple linear regression model, because it only
involves a single predictor variable. However, frequently two or more predictor
variables may be useful together to predict Y . For instance, the sales of a product may
depend on the product’s unit price, as well as the amount of advertising expenditure
and the price of a competing product (three predictor variables), or the number of fatal
accidents during a time period may depend on the number of registered vehicles on the
road and the price of petrol (two predictor variables). The simple linear regression
model can be extended to include any number of predictor X variables, in which case it
is called the multiple linear regression model.

Most of the work covered in this section will be demonstrated via Minitab. However,
before we start, we shall think about how to determine whether a predictor variable is
an important predictor variable.

7.6.1 Back to the simple linear regression model

The regression output given by Minitab also allows us to check the significance of the
slope in our regression equation. Recall that the simple linear regression model is given
by

Y = β0 + β1X + ǫ,

where β0 represents the y–intercept of our regression line (the point on the y–axis at
which the regression line intersects) and β1 represents the slope of the regression line.
If there is little or no (linear) relationship between X and Y , then not only will the
correlation coefficient be close to zero, but so too will the slope term β1. If the slope
term is zero, then X drops out of the above linear regression model (since
β1X = 0×X = 0, and so we are left with Y = β0 + ǫ) and we can conclude that the
value of X does not influence the value of Y . In reality, we do not know the true value
of β1; from our data, we have the estimated value β̂1, and so we proceed with a
hypothesis test for the population slope β1 in the same way we did for the population
correlation coefficient ρ. The null and alternative hypotheses are now:

H0 : β1 = 0 versus

H1 : β1 6= 0

If, based on our data and the test statistic, we retain H0, then we would conclude that
the slope term β1 is not significantly different from zero and thus X is not an
important predictor of Y . If we reject H0 and thus go with the alternative hypothesis
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H1 then we would conclude that the slope term is important in our model, and so X is
a significant predictor of Y . Again, Minitab can be used to this end.

Recall that for our wine data, the estimated linear regression equation is

Y = 3.903 + 1.467X + ǫ.

This regression analysis can be performed in Minitab, giving the following output:

Regression Analysis: Price versus Age

The regression equation is

Price = 3.90 + 1.47 Age

Predictor Coef SE Coef T P

Constant 3.905 2.088 1.87 0.098

Age 1.4666 0.4806 3.05 0.016

S = 3.58129 R-Sq = 53.8% R-Sq(adj) = 48.0%

Minitab tells us that the estimated slope term using the data in our sample is
β̂1 = 1.4666 (to 4 d.p.); obviously, this is specific to our dataset and will vary from
sample to sample, but the theory suggests that this will vary with standard deviation
0.4806 (the “standard error” of our estimator); the test statistic is just the estimated
coefficient divided by its standard error (1.4666/0.4805) which gives t = 3.05, and this
gives the answer to step 3 of our hypothesis test. Minitab then uses this test statistic
to obtain a p–value for this test, which is 0.016, or 1.6%. We can now interpret the
p–value in the usual way:

• We have moderate evidence against H0 (since p lies between 1% and 5%)

• Reject it and go with the alternative H1

• The alternative suggests that β1 6= 0, and so there is a significant slope term in
our model

So, not only is there a significant correlation between age and wine, but age is an
important predictor of the price of a bottle of wine.
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7.6.2 Extending the simple linear regression model

In Section 7.2 we discussed that the price of a bottle of wine might not only depend on
the age of the wine; other factors may have a part to play – for example, the amount of
rainfall during the grape–growing season. In fact, the country and region of origin of
the ten bottles of wine that were randomly selected were sourced, and data were then
also collected relating to the total observed rainfall, and average daily afternoon
temperature, during the grape growing season in the year the wine was produced. The
full dataset is shown in the table below:

Bottle 1 2 3 4 5 6 7 8 9 10
Price (£Y ) 4.50 12.95 6.50 4.99 7.50 14.95 8.25 3.95 18.99 10.00

Age (X1 years) 31
2

5 3 21
2

3 2 21
2

1 10 4
Rainfall (X2 mm) 126 121 125 106 107 112 124 105 116 108
Temp. (Xo

3C) 16 20 17 18 18 22 19 15 21 20

Notice that we’ve labelled the predictor variables X1, X2 and X3; the main response
variable – the price of a bottle of wine – is still Y . A multiple linear regression model
that may be suitable simply extends on the simple linear regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ǫ;

as before, ǫ is our “random error” term, and β0, β1, β2 and β3 are parameters in the
model that we need to estimate. In fact, β1 is the parameter that multiplies the age of
the bottle of wine, β2 is the parameter that multiplies the amount of rainfall observed,
and β3 is the parameter that multiplies the average temperature. Notice that this is a
natural extension of the simple linear regression model using age only as presented in
Section 7.4.

So how do we find β̂0, β̂1, β̂2 and β̂3 – the estimated parameters of the model? We can
compute these by hand, as we did in Section 7.4 for the simple linear regression model,
but this requires knowledge of matrix algebra which many of you won’t have (even if
you did A Level maths!). Anyway, Minitab can perform the calculations for us. We
can enter the data from the table above in the first four columns of a Minitab

worksheet. Then, using Stat–Regression–Regression, and entering the column
containing the prices as the response and the other columns containing Age, rainfall
and temperatures as the Predictors, Minitab will perform the multiple linear
regression analysis estimating all the parameters in our model. Doing this gives the
(edited) output shown overleaf.
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Regression Analysis: Price versus Age, Rainfall, Temp.

The regression equation is

Price = - 22.5 + 0.807 Age - 0.0004 Rainfall + 1.55 Temp.

Predictor Coef SE Coef T P

Constant -22.54 10.54 -2.14 0.076

Age 0.8065 0.2853 2.83 0.030

Rainfall -0.00042 0.07383 -0.01 0.996

Temp. 1.5538 0.3117 4.99 0.002

S = 1.80760 R-Sq = 91.2% R-Sq(adj) = 86.8%

Thus, the full (multiple) regression model is:

Y = −22.5 + 0.807X1 − 0.0004X2 + 1.55X3 + ǫ,

where X1, X2 and X3 represent the age of a bottle of wine, the total rainfall during the
growing season and the corresponding average afternoon temperature (respectively).
The estimated coefficients of the model indicate the direction of the relationship
between the price of a bottle of wine and each of the corresponding predictors. For
example:

• Since β̂1 = 0.807 is positive, this indicates a positive relationship between age and
price (i.e. generally, older wines are more expensive);

• Since β̂2 = −0.0004 is negative, this indicates a negative relationship between
rainfall and price (i.e. generally, wines from regions with higher rainfall are
cheaper);

• Since β̂3 = 1.55 is positive, this indicates a positive relationship between
temperature and price (i.e. generally, wines from regions with higher
temperatures are more expensive).

We need to be careful when doing this, however. If there are strong correlations
between the predictor variables this could lead us to making incorrect conclusions
about these relationships. This is known as multicolinearity. In this case, however, the
observations made above shouldn’t be too surprising:

• You might expect the price of a bottle of wine to increase as its age increases:
vintage wines, for example, are usually quite expensive!

• Our model suggests that as rainfall during the growing season increases, the value
of a bottle of wine from that region decreases: the more rain, the less sun, and so
the lower the quality of the grapes!

• Our model also suggests that the higher the average temperature during the
growing season, the higher the price of a bottle of wine from that region: again,
you might expect this, as the higher the temperature, the more sunshine we have!
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However, producing simple scatter plots of each predictor variable (age, rainfall and
temperature) against the response variable (price) can help to inform our model. Such
scatter plots have been produced in Minitab, and are shown below.

Notice that, in agreement with our model, there are positive linear relationships
between age/price and temperature/price. However, our model suggests a negative
linear relationship between rainfall/price, and the the left–hand side of the scatter plot
for rainfall and price doesn’t seem to match up with this. In fact, what we see is a
non–monotone relationship, and possibly a non–linear relationship, which both
increases with rainfall and decreases. This sort of relationship could actually be
sensible: grapes need a certain amount of rainfall during the growing season, but too
much can be detrimental to the quality of the grapes produced; thus, there might be an
“optimal” amount of rainfall necessary for producing high–quality grapes for wine –
too little and the grapes will be lower in quality, and too much could also produce
lower quality grapes. The lower the quality, the cheaper the bottle of wine!

Since there is a non–standard relationship between rainfall and price, we might
question using rainfall in our model, or perhaps think of more complex models which
would be more appropriate for such a relationship. This highlights the importance of
the humble scatter plot!

7.6.3 Testing the importance of our predictor variables

Recall Section 7.6.1, where we used Minitab to test the significance of the parameter
β1 in our model. The null hypothesis here was H0 : β1 = 0; retention of this hypothesis
would imply that the predictor variable attached to this parameter (in Section 7.6.1
this was “Age”) is not an important predictor of the response variable (Price). The
output from Minitab for our multiple linear regression, which also uses rainfall and
temperature as predictors, is shown at the top of page 187 and can be used in a similar
way.
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Testing the importance of Age as a predictor

For example, let us once again consider the importance of Age in our model. Age is
variable X1, which has coefficient β1. Our hypotheses are:

H0 : β1 = 0 versus

H1 : β1 6= 0.

The p–value for this, as given in the Minitab output, is 0.030 (or 3%). This lies
between 0.01 and 0.05 (1% and 5%), and so we have moderate evidence against H0.
Thus we reject H0 and go with the alternative H1; β1 is significantly different from
zero, and so age appears to be important in our model.

Notice that the p–value for Age in the multiple linear regression (0.030) is different to
that obtained in the simple linear regression (0.016, page 180). This is because in a
multiple linear regression, each variable is tested in the presence of the other variables.

Testing the importance of Rainfall as a predictor

Rainfall is variable X2, which has coefficient β2. Our hypotheses are:

H0 : β2 = 0 versus

H1 : β2 6= 0.

The rainfall coefficient β2 has a p–value of 0.996 (or 99.6%). Since this is very high,
and certainly above 10%, we have no evidence against H0. Thus we retain H0: β2 = 0
and so rainfall is NOT important in our model.

Testing the importance of Temperature as a predictor

Temperature is variable X3, which has coefficient β3. Our hypotheses are:

H0 : β3 = 0 versus

H1 : β3 6= 0.

The temperature coefficient β3 has a p–value of 0.002 (or 0.2%). Since this is very
small, and certainly less than 1%, we have strong evidence against H0. Thus we reject
H0 and go with the alternative H1; β3 is significantly different from zero, and so
temperature appears to be important in our model.

Since rainfall is not an important linear predictor in our model, we should now remove
it and re–fit the model using only age and temperature. In Minitab, we perform the
regression again, but this time include only age and temperature as predictor variables.
Doing so gives the (edited) output shown overleaf.
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Regression Analysis: Price versus Age, Temp.

The regression equation is

Price = - 22.6 + 0.806 Age + 1.55 Temp

Predictor Coef SE Coef T P

Constant -22.589 4.964 -4.55 0.003

Age 0.8061 0.2553 3.16 0.016

Temp. 1.5540 0.2855 5.44 0.001

S = 1.67352 R-Sq = 91.2% R-Sq(adj) = 88.6%

Notice that the regression equation has now changed, and only includes age and
temperature. We now have:

Y = −22.6 + 0.806X1 + 1.55X3 + ǫ,

where X1 represents the age of a bottle of wine and X3 represents the average
temperature during the growing season. Notice that the p–values for both age and
temperature are still less than 0.05, so performing a hypothesis test for both would
conclude that both are important in the model (there is strong evidence to include
temperature and moderate evidence for age).

The regression equation above represents our “final” model, in that we have excluded
all variables that are not important predictors of price, and the model now includes
only those predictors that are important. We could now use this model to make
predictions.

For example, suppose you run a vineyard and have just produced a 7 year–old vintage
wine. During the growing season, the average afternoon temperature was 18.5oC and
the total amount of rainfall was 117mm. How much, per bottle, might this wine sell
for?

✎
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7.6.4 The R2 statistic

In the Minitab output shown in these lecture notes so far, you may have noticed
something called R-Sq. Each time you perform a regression analysis in Minitab, the
output includes the value of the R2 statistic, and this is sometimes used as an overall
assessment of the quality of our model. Technically, the R2 statistic tells us how much
of the variation in our Y data is explained by the predictors in the model. For
simplicity, suppose you have the simple linear regression model

Y = β0 + β1X + ǫ.

If we observe a perfect relationship between X and Y , that is, all of our points lie
perfectly on a straight line, then if we know X, we know Y , as the Y value could just
be “read off” from the regression line. In this case, we would say that X explains 100%
of the variation in Y , and the corresponding value of the R2 statistic would be 100%.

Thus, the closer the value of the R2 statistic to 100%, the better the model. We can
compare the R2 statistic for the various fits we have tried out for the wine data:

Model R2

Simple – including just “Age” (page 185) 53.8%
Multiple – including “Age”, “Rain” and “Temp” (page 187) 91.2%
Multiple – including “Age” and “Temp” (page 190) 91.2%

From this, we can clearly see the effect of including more than just “Age” in the model
as a predictor of price: the R2 value has increased sharply from 53.8% to 91.2%. Also
notice the effect of removing “Rainfall” from the model; that is, this has had no effect
at all, at least on the R2 statistic (to 1 d.p., anyway), further confirming that the
rainfall variable is not an important linear predictor in the model. Generally, the
higher the R2 statistic the better; however, we are prepared to allow small reductions
in R2 if it means we can remove a non–significant predictor variable.

�



�
	Example 7.3

On a small island the government would like to predict the number of mortgage loans
issued by the state mortgage company (Y ) from: the amount of personal income in
millions of local currency (X1), the interest rate (X2) and the year (X3).

1. Write down the “full” multiple linear regression model that might be suitable for
this scenario.

✎
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To estimate the parameters of the model the government collects the following data
over a 10–year period:

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Income 3.2 3.3 3.4 3.5 3.7 3.8 3.9 4.1 4.3 4.6
Interest 7.0 7.5 7.5 8.0 7.0 7.0 6.0 5.5 5.0 4.5

Mortgages 6,253 6,516 4,678 6,743 8,586 7,087 10,386 13,591 13,649 16,717

2. Use Minitab to fit the model in (1). Summarise the regression output in the
space below, making sure you write down the fitted model.

✎

3. Which, if any, of the variables do not appear to be important predictors in your
model?

✎

4. Remove the least important variable from your model, and re–fit using Minitab.
Again, summarise the regression output in the space below, making sure you
write down the fitted model. [Note: Never remove more than one variable at a
time! Always remove only the variable with the highest p–value (provided this is
greater than 0.05) and then re–fit!]

✎
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5. Repeat step 4 until you have removed all variables that do not appear to be
important predictors in your model. Write down your “final” regression equation
in the space below:

✎

6. Comment on the R2 statistic in your regression analyses.

✎

7. This year (2016), the average income is forecast to rise to 4.9 million units of the
local currency and the interest rate is set to rise to 5%. How many mortgages can
the state mortgage company expect to issue this year?

✎
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7.7 Chapter 7 practice questions

1. Consider the following data for a company’s monthly advertising expenditure and
their sales.

(a) Produce a scatter plot for these data, and comment on the relationship
between advertising and sales.

(b) Calculate the sample correlation coefficient. Does this agree with what you
can see in your plot in part (a)?

(c) Perform a linear regression analysis on these data, and obtain the linear
regression equation.

(d) Plot the regression line on your scatter diagram in part (a).

(e) If the company were to spend £112, 000 on advertising in a month, what
could we expect their sales to be?

Month Advertising (£000′s) Sales (£ Millions)
January 100 11.2
February 90 12.1
March 110 13.2
April 120 15.1
May 115 14.2
June 95 10.2
July 105 12.5

August 130 16.6
September 118 14.8
October 100 10.8
November 115 11.2
December 128 15.9

Hint: You may use the following summaries:

12∑

i=1

xi = 1326
12∑

i=1

yi = 157.8

12∑

i=1

x2
i = 148308

12∑

i=1

y2i = 2125.52
12∑

i=1

xiyi = 17695.1
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2. “Northern Lights”, the main electrical supplier to homes in Northern Sweden,
believes that the time a customer takes to pay their electricity bill is related to
the size of their bill. To investigate, their research team randomly selected 10
customers and recorded the size of their bill (x, in pounds) and the time it took
to pay this bill (y, in days). The results are show below.

x 400 105 205 150 460 250 315 420 100 300
y 35 15 18 20 30 22 25 34 10 20

(a) Produce a scatterplot for these data, and comment on the relationship
between the two variables. Don’t forget to label your plot.

(b) The following summaries have been obtained for the above data:

∑
x = 2705

∑
y = 229

∑
x2 = 885275

∑
y2 = 5839

∑
xy = 70720

Using these summaries,

(i) calculate the sample correlation coefficient, and comment;

(ii) perform a linear regression analysis, and obtain the linear regression
equation. Plot this regression line on your scatter diagram in part (a).

(c) Northern Lights levy a “late–payment charge” if a customer takes longer
than 30 days to pay their bill. Mr. Adams’ bill for 2012 is £375. Will he
incur this late payment charge?

(d) Another customer, Miss Bloggs, has a large electricity bill of £520. Why
should we be cautious about using the regression equation obtained in part
(b) (ii) to predict how long she will take to pay her bill?
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3. The marketing team at Marks & Spencer are investigating the effectiveness of
three types of advertising currently used: localised direct mailing (e.g. flyers
posted through letterboxes), newspaper advertising and TV advertising. The
team collect one week’s data from 25 randomly selected stores, recording:

y = Weekly gross sales (£ thousand)

x1 = Weekly local expenditure on direct mailing (£ thousand)

x2 = Weekly local expenditure on newspaper advertising (£ thousand)

x3 = Weekly local expenditure on TV commercials (£ thousand)

x4 =

{
1 if the store has a foodhall
0 if the store does not have a foodhall

(a) Which variable(s) do you think are indicator variables?

(b) Minitab was used to fit a multiple linear regression model to these data; the
resulting (edited) output for the “full” model is shown below. Look at it,
and then answer the following questions.

Regression Analysis: y versus x1, x2, x3, x4

The regression equation is

y = ?_______________________________________

Predictor Coef SE Coef T P

Constant 82.93 10.93 7.59 0.000

x1 2.894 3.837 0.75 0.459

x2 -2.232 4.355 -0.51 0.614

x3 13.1891 0.9647 13.67 0.000

x4 9.182 3.367 2.73 0.013

S = 5.72401 R-Sq = 96.2% R-Sq(adj) = 95.5%

(i) Complete the regression output above by filling in the blank indicated
by the question mark (y = ?).

(ii) Which variable should be removed before a reduced model is fitted?
Explain your answer, with reference to the null hypotheses:

H0 : βj = 0 j = 1, . . . , 4.
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(c) The (edited) output from Minitab shown below represent the “final” model.
Look at it, and then answer the following questions overleaf.

Regression Analysis: y versus x3, x4

The regression equation is

y = ?_______________________________________

Predictor Coef SE Coef T P

Constant 81.796 7.072 11.57 0.000

x3 13.2602 0.9329 14.21 0.000

x4 ?________ 3.218 2.66 0.014

S = 5.58254 R-Sq = 96.1% R-Sq(adj) = 95.7%

(i) Complete the regression output by filling in the blanks indicated by the
question marks (?).

(ii) Briefly explain what has happened between the fit of the “full” and
“final” models.

(iii) Give a practical interpretation of including x4 in the model.

(iv) Comment on the change in the R2 statistic from the “full” to the “final”
model.

(v) Next week, Marks & Spencer will spend £5000 on TV advertising in the
Northeast of England. The Newcastle branch of Marks and Spencer has
a foodhall. What can we expect the weekly gross sales to be for this
branch of the store?


