
6 R session: Multivariate extremes and Bayesian inference

As before, you will need to start R, and then attach the libraries ismev andevd , and the sup-
plementary R routines we have provided, using the commands:

> library(ismev)
> library(evd)
> source(’Rstufflee.r’)

1. In this question we carry out a simple bivariate analysis using the block–maxima ap-
proach. The datasetwind has 40 rows and 3 columns; the second and third columns
contain annual maximum wind speeds at Albany, New York and Hartford, Connecticut
(respectively) over the period 1944 to 1983.

(a) Load the data intoRusing:

> data(wind)

and have a look at it by typing

> wind

(b) The data we want are the annual maxima for Hartford and Albany respectively,
stored in columns 2 and 3. We extract them using

> hartford<-wind[,2]
> albany<-wind[,3]

and then recombine them into a vector of bivariate annual maxima using

> blockmax<-cbind(hartford,albany)

(c) We can now fit a bivariate extreme value distribution using the logistic model:

> fbvevd(blockmax)

since the logistic model is the default. You may like to experiment with other mod-
els, e.g.

> fbvevd(blockmax,model="bilog",std.err = FALSE)

although note that this model is too complex to calculate standard errors, hence
the need to switch this facility off (to avoid an error!). Youmay like to experiment
with other models.

(d) If we want to produce diagnostic plots we must first createan object containing the
fits, e.g.

> fit1<-fbvevd(blockmax)
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and then run the plots command

> plot.bvevd(fit1)

You may like to think about what these plots are telling us, and investigate how
well different models fit these data.

2. The data setwavesurge contains the data on which the bivariate example in Sec-
tion 4.3 was based. The data has 2894 rows and 2 columns; corresponding to the
wave height and sea surge in consecutive measurements takenat Newlyn, Cornwall,
between 1971 and 1977.

(a) Load the data intoRusing:

> data(wavesurge)

Now separate wave and surge using:

> wave<-wavesurge[,1]
> surge<-wavesurge[,2]

(b) You can check this has worked by plotting surge against wave height using:

> plot(wave,surge)

At this stage it would be possible to carry out univariate threshold–based anal-
yses of each ofwave andsurge separately, and you may like to do this in
your own time. However we will proceed directly to a bivariate analysis in the
exercises below.

(c) We will first identify appropriate thresholds for the analysis. We decide to iden-
tify the empirical95% quantile in each margin, and we can do this using:

> quantile(wave,0.95)
> quantile(surge,0.95)

We can now create an appropriate bivariate threshold vector, e.g. using:

> thresh<-c(6.080,0.322)

(d) We are now in a position to fit various bivariate models to the bivariate object
wavesurge :

> fbvpot(wavesurge,thresh)

fits the logistic model (the default). Check you understand all of the output,
including identifying the relevant model parameters.
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(e) To fit the bilogistic model, use:

> fbvpot(wavesurge,thresh,model=”bilog”)

You may like to experiment with other models.

(f) For any particular model fit, we can explore the model fit, and various aspects
of the inference, using the graphical routineplot.bvpot() applied to an ob-
ject generated from a fit. For example, to investigate the fitted logistic model,
use:

> fitlogistic<-fbvpot(wavesurge,thresh)
> plot.bvpot(fitlogistic)

3. We return to the datasetwind containing annual maximum wind speeds at Albany,
New York and Hartford, Connecticut over the period 1944 to 1983. The first column
gives corresponding years. The data set should already be inR, but if you have not
done Question 1 in thisRsession, reload it using:

> data(wind)

Now separate the two sets of wind speeds using

> albany<-wind[,2] and
> hartford<-wind[,3]

The function

> gev.bayes(n,dataset,mustart,sigmastart,xistart, . . .

. . . errmu,errlogsigma,errxi,sdmu,sdlogsigma,sdxi)

produces (approximate) draws from the posterior distribution π(µ, σ, ξ|y), where
µ, σ andξ are the location, scale and shape parameters of the GEV distribution and
y = (y1, y2, . . . , y40) are the annual wind speed maxima in years 1944, 1945,. . .,
1983. This routine uses Metropolis–Hastings sampling witha random walk update
scheme for each of the parameters. As in the notes, independent Normal priors are
used forµ, log(σ) andξ.

The arguments in the function are defined as follows:
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n The number of iterations in the Metropolis–Hastings sampler
dataset A single vector containing the data
mustart The starting value forµ in the chain
sigmastart The starting value forσ in the chain
xistart The starting value forξ in the chain
errmu The random walk innovation variance forµ

errlogsigma The random walk innovation variance for log(σ)
errxi The random walk innovation variance forξ

sdmu The Normal distribution prior standard deviation forµ

sdlogsigma The Normal distribution prior standard deviation for log(σ)
sdxi The Normal distribution prior standard deviation forξ

(a) Run the Metropolis–Hastings sampler for the wind speed maxima observed at
Albany, NY, for 10,000 iterations, using

– (µ(0), σ(0), ξ(0)) = (20, 15, 0.1);

– vµ = vlog(σ) = vξ = 0.1;

– Large Normal prior standard deviations forµ, log(σ) andξ – 10000, 10000,
100 (respectively).

Make sure you store your results somewhere, e.g. use

> mcmc.results1<-gev.bayes( ...

and ignore thewarning message that R returns. Thenmcmc.results1
will store the 10,000 draws from the posteriors ofµ, log(σ) andξ, as well as
the corresponding acceptance probabilities – these can be accessed by typing,
for example,

> mcmc.results1$mu

(b) Now examine your output using

> par(mfrow=c(3,1))
> plot(ts(mcmc.results1$mu))
> plot(ts(mcmc.results1$logsigma))
> plot(ts(mcmc.results1$xi))

(You may want to edit the labels for the axes as we did in Part 3 of this course,
using, for example,xlab=’iteration’ .) Do you think your sampler is
performing well? Does it converge? If so, what is the ’burn–in’ period?

(c) Remember, an overall acceptance probability for each parameter of between
30%–50% is usually good enough. Look at your acceptance probabilities forµ,
log(σ) andξ by typing, for example

> mean(mcmc.results1$aprobmu)

Do you think your sampler is performing well?

53



(d) Now run the sampler again (maybe store your results inmcmc.results2 )
but choose more appropriate starting values based on your plots in part (b) and
change the variances of your random walk innovations if necessary (if you in-
creaseerrmu , errlogsigma or errxi the corresponding acceptance prob-
abilities will decrease). Examine your output as you did in parts (b) and (c) and
check for improvement.

(e) Once you are satisfied with your MCMC, you should summarise your posteri-
ors (after the removal of burn–in). Typing

> mu.burn<-mcmc.results2$mu[2000:10000]

would, for example, discard the first 2000 iterations as ‘burn–in’ and store the
remainder of the posterior draws forµ in the vectormu.burn . After identify-
ing an appropriate burn–in period foryour MCMC output, use commands simi-
lar to that above to obtain vectors containing posterior draws forµ, log(σ) andξ

after the removal of burn–in (and store them inmu.burn , logsigma.burn
andxi.burn ).

(f) We will now look at the posterior densities of our MCMC draws forµ, σ andξ.
Type

> par(mfrow=c(2,2))
> plot(density(mu.burn))
> plot(density(exp(logsigma.burn)))
> plot(density(xi.burn))

to produce density plots of the posterior draws for the parametersµ, σ and
ξ (note the transformation back toσ by exponentiation of the log(σ) vector).

(g) Find the posterior mean and standard deviation for each of the three GEV pa-
rameters by typing, for example,

> mean(mu.burn) and
> sd(mu.burn)

(h) Now we can obtain the posterior distribution for, say, the 1000–year return level
by using the functionret.level.gev on each of the draws forµ, σ andξ.
We can do this by typing:

> retlevel<-vector(‘numeric’, length(mu.burn))
> for(i in 1:length(retlevel))
+ {
+ retlevel[i]<-ret.level.gev(mu.burn[i], . . .

. . . exp(logsigma.burn[i]),xi.burn[i],1000)
+ }

Now typing

plot(density(retlevel))
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will add a density plot of the posterior for the 1000–year return level to your
panel of plots produced in part (f). Numerical summaries canbe obtained in
a similar fashion to (g), though owing to the (often) severe asymmetry of the
posterior surface for return levels, you may want to usemedian() and not
mean() as a summary of posterior location here.

(i) Now find maximum likelihood estimates forµ, σ, ξ and the 1000–year return
level (see Part 3) and compare these with the results from your Bayesian analy-
sis (compare m.l.e.s with posterior means, for example, andestimated standard
errors with posterior standard deviations).

(j) If you have time, and are interested in this stuff, you could re–run this type of
analysis on the Hartford data.
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